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Extracting oscillating components from nonstationary time series: A wavelet-induced method
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This paper consists in the description and application of a method called wavelet-induced mode extraction
(WIME) in the context of time-frequency analysis. WIME aims to extract the oscillating components
that build amplitude modulated-frequency modulated signals. The essence of this technique relies on the
successive extractions of the dominant ridges of wavelet-based time-frequency representations of the signal
under consideration. Our tests on simulated examples indicate strong decomposition and reconstruction skills,
trouble-free handling of crossing trajectories in the time-frequency plane, sharp performances in frequency
detection in the case of mode-mixing problems, and a natural tolerance to noise. These results are compared with
those obtained with empirical mode decomposition. We also show that WIME still gives meaningful results with
real-life data, namely, the Oceanic Niño Index.
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I. INTRODUCTION

Extracting the intrinsic components that constitute a given
amplitude modulated-frequency modulated (AM-FM) signal
is undoubtedly a subject of primary importance in many areas
involving signal processing and analysis. Among the multiple
benefits of such decompositions, one can mention that it
allows us to better understand the underlying mechanisms
governing the signal, to extract its main frequencies and their
temporal variations, and to rule out noisy parts or irrelevant
information for the study carried out. These aspects are
generally encapsulated in a time-frequency (TF) representation
of the signal and/or of the extracted components, which helps
visualize the information contained in the signal from a time,
energy, and frequency point of view simultaneously [1].

One of the most popular ways to tackle such a task is
the well-known empirical mode decomposition (EMD; see,
e.g., Refs. [2–4]). It is a complete adaptive fully data-driven
algorithm that decomposes a signal into “intrinsic mode
functions” (IMFs) that are, roughly speaking, AM-FM signals
with slowly time-varying amplitudes and frequencies (i.e., they
can be viewed as locally harmonic [5]). EMD has proven
its effectiveness in many situations (such as medicine [6,7],
climatology [8], finance [9], and geophysics [10]) despite its
lack of mathematical background, which is often mentioned as
its main drawback [5,11]. Moreover, by using EMD, one has
little control over the results since no parameter can be tuned
in this rather hermetic heuristic algorithm. Even though it has
been shown to act as an adaptive filter bank [2] and many other
studies have investigated its properties, methods that can be
analytically described are also needed.

Wavelets are now well-established tools for signal
analysis; their range of applications includes DNA analysis
[12], acoustics [13], geology [14], climatology [15–17],
and physiology [18,19], to name just a few. Wavelet
transforms are provided with a rather strong mathematical
theoretical background and with an inverse transform, which
is the backbone of reconstruction procedures (see, e.g.,
Refs. [5,20,21]). However, in the classic continuous wavelet
transform (CWT) analysis, all (or, in practice, many) wavelet
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coefficients are needed to accurately rebuild the original signal,
and the area of the TF plane needed for the reconstruction has
to be manually selected (as in, e.g., Refs. [5,14]). Approaches
such as in Ref. [22] resolve that problem by giving an
automated way to determine which wavelet coefficients to
use, but it appears that this method is relatively rigid and cannot
deal with close frequencies nor with nonstationary signals.
Other techniques such as in Ref. [11] consist in performing a
segmentation of the Fourier spectrum of the signal in order to
isolate the highest local maxima and then build a wavelet-basis
associated with each so-obtained segment. Some kind of
inverse wavelet transform allows the extraction of a component
per segment. The results presented in Ref. [11] are interesting
and the idea of segmenting the Fourier domain is appealing, but
it turns out that the procedure described is rather complicated
and is not well suited for the analysis of, e.g., “highly”
nonstationary signals having an “erratic” Fourier spectrum.
Let us also mention works such as Ref. [13], in which some
curves called “skeletons” are extracted from the wavelet
transform by considering stationary points in the “time-phase”
plane that satisfy some properties. The idea is interesting as
well, but it does not necessarily lead to components that can
be viewed as signals (i.e., functions of time).

In this paper, we develop a wavelet-based mode decompo-
sition that we call wavelet-induced mode extraction (WIME).
This method aims to extract automatically signal-length AM-
FM components that are present in a signal. It is inspired
by some of the above-mentioned techniques and attempts
to resolve most of their problems. The rest of this work
is organized as follows. We first explain the concepts and
the main ideas that animate WIME, before describing the
algorithm in detail. We then apply WIME to synthetic signals
that illustrate its advantages over the other methods, and we
compare its skills with EMD, test its tolerance to noise, and
discuss the results. Finally, we apply it to a real-life signal, the
Oceanic Niño Index (ONI), and draw some conclusions. It is
important to keep in mind that, even if WIME overcomes the
problems encountered by EMD in some very specific cases
(e.g., when the target components are not “well separated”),
EMD remains a simple and efficient multipurpose technique in
time-frequency analysis. This is the reason why such a standard
bearer was naturally chosen as reference to assess our results.
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II. WAVELET-INDUCED MODE EXTRACTION

In this section we first give the intuitive ideas that relate
to WIME before going into further details. As a preliminary
remark, one has to be aware of the class of functions that
can be handled while developing a specific tool for signal
analysis. Without going into technical details, we aim to deal
with real-valued AM-FM signals of the type

f (t) =
K∑

k=1

ak(t) cos[φk(t)],

defined on R, where ak(t) > 0, φ′
k(t) = d φk(t)/dt > 0 and

ak(t), φk(t) are “smooth” (see, e.g., Ref. [5] for more technical
details). It is clear that this class of functions is relatively
large and that many real-life signals can be (at least partly)
approximated by AM-FM components, even though pre- or
post-processing treatments may be required.

A. The continuous wavelet transform

First, we briefly give the minimal mathematical notions re-
quired for a proper understanding of WIME; more information
on the theoretical properties of wavelets can be found in the
seminal works [20,21,23,24]. Given a wavelet ψ , the CWT of
a function f ∈ L2(R) at position or time t and at scale a > 0
is defined as

Wf (t,a) =
∫
R

f (x)ψ̄

(
x − t

a

)
dx

a
, (1)

where ψ̄ is the complex conjugate of ψ .
A wavelet ψ is called a progressive wavelet if its Fourier

transform ψ̂ satisfies ψ̂(ξ ) = 0 if ξ � 0. Progressive wavelets
have the following convenient property [5]: If ψ is a progres-
sive wavelet and if

f (t) = A cos(ωt + ϕ)

with A,ω > 0, then

Wf (t,a) = A

2
ei(ωt+ϕ)ψ̂(aω). (2)

In the context of time-frequency analysis, it is recom-
mended to use a wavelet well located in the frequency domain
[17,22]. In this work, as in Ref. [22], we use the Morlet-like
wavelet ψ defined by its Fourier transform as

ψ̂(ξ ) = sin

(
πξ

2�

)
e

−(ξ−�)2

2 (3)

with � = π
√

2/ ln 2, which is localized around �. In the time
domain, we have

ψ(t) = ei�t

2
√

2π
e
− (2�t+π)2

8�2
(
e

πt
� + 1

)
.

Since |ψ̂(ξ )| < 10−5 if ξ � 0, ψ can be considered as a
progressive wavelet. Therefore, Eq. (2) holds and the choice
of ψ [Eq. (3)] gives that, at any time t , the function

a �→ |Wf (t,a)| = A

2
|ψ̂(aω)|

reaches its global maximum at a scale a∗ that satisfies a∗ =
�/ω. As a consequence, if ω is unknown, it can be obtained

as ω = �/a∗. Besides, we have

Wf (t,a∗) = A

2
ei(ωt+ϕ).

The initial function f can thus be easily recovered from the
real part of its CWT as

f (t) = 2�Wf (t,a∗) (4a)

= 2|Wf (t,a∗)| cos{arg[Wf (t,a∗)]}. (4b)

Now, if f (t) = A(t) cos(φ(t)), then around a given time t0
one has

f (t) ≈ A(t0) cos[φ(t0) + φ′(t0)(t − t0)]

by truncated Taylor series [5]. If a∗(t0) denotes the scale
at which a �→ |Wf (t0,a)| reaches its maximum, then the
instantaneous frequency φ′(t0) can be recovered from the fact
that a∗(t0) = �/φ′(t0) and Eq. (4) evaluated at t0 and a∗(t0)
gives back a value close to f (t0). Using the same process at
each time t , AM-FM signals can be recaptured as

f (t) ≈ 2|Wf (t,a∗(t))| cos{arg[Wf (t,a∗(t))]}.
As it can be seen below, this sole result propels WIME by
itself.

B. Main ideas of the method

Basically, the first step of WIME is to perform a CWT of the
signal as described above. The modulus of this CWT can be
seen as a smooth TF representation of the signal. The wavelet
spectrum is computed as

a �→ 	(a) = Et |Wf (t,a)|,
where Et denotes the mean over time. Its global maximum is
isolated and encapsulated in a frequency interval.

Then we choose a starting point with high energy in the
TF plane in the selected time-frequency band and determine
a ridge of high energy forward and backward from this point
up to the edges of the plane while adapting the frequency
window as we go along the ridge. A component modulated in
amplitude and frequency by the modulus and argument of the
CWT along that ridge can be extracted with Eq. (4) (i.e., two
times the real part of the CWT along the ridge).

Finally, we subtract this component from the signal and
repeat the whole process with this newly obtained signal. The
procedure is iterated until the components extracted are no
longer relevant.

Let us briefly comment some of the aspects of the
proposed algorithm and contrast them with other methods.
First, segmenting the wavelet spectrum instead of the Fourier
spectrum (as in Ref. [11]) has the advantage of being easier
since the wavelet spectrum is usually much smoother. For
example, chirps will generally be handled comfortably with
WIME while their Fourier spectra are extremely irregular
and are therefore more difficult to segment. Also, unlike
skeletons computed in Ref. [13], the ridges considered here
can be viewed as functions of time and thus allow to derive
signal-length components as desired, as EMD. Moreover,
regarding Ref. [4], EMD extracts the IMFs of a signal one
after another, sorting these by decreasing frequency. However,

033307-2



EXTRACTING OSCILLATING COMPONENTS FROM . . . PHYSICAL REVIEW E 96, 033307 (2017)

0 0.5 1

−4
−2
0
2
4

f

(a)

0 0.5 1
5

10
20
40
80

160
320

time

fr
eq

ue
nc

y

(b)
0 0.25 0.5 0.75

5
10
20
40
80

160
320

spectrum

fr
eq

ue
nc

y

(c)
0 0.5 1

−3
−2
−1
0
1
2
3

time

c1

(d)
0 0.5 1

−3
−2
−1
0
1
2
3

time

f1

(e)

0 0.5 1
5

10
20
40
80

160
320

time

fr
eq

ue
nc

y

(f)
0 0.25 0.5 0.75

5
10
20
40
80

160
320

spectrum

fr
eq

ue
nc

y

(g)

0 0.5 1

−3
−2
−1
0
1
2
3

time
c2

(h)
0 0.5 1

−3
−2
−1
0
1
2
3

time

f2

(i)

FIG. 1. (a) Original signal f (blue) and reconstructed signal (red) of Sec. III A; (b) (t,a) �→ |Wf (t,a)| (stands for the TF representation of
f ) and ridge detected (black line); (c) wavelet spectrum of f and its segmentation (red lines) to isolate the highest local maximum (used to set
a starting point for the ridge); (d) first component c1 extracted following the ridge; (e) original first component f1; figures (f) to (i) are the same
figures with f − c1 instead of f . Clearly, c1 and c2 successively extracted match f1 and f2.

such an approach does not take into account the energetic
hierarchical order of the components that build the signal.
WIME resolves that problem by extracting the components
successively by sorting them with respect to their energy
level, starting with the most energetic ones. In this way, some
kind of natural order is respected for the extraction, which is
particularly useful when the TF representation of the signal
displays, for example, intersecting curves.

C. Description of the algorithm

The algorithm of WIME applied on a signal f defined on
a time interval T consists in the following steps:

(1) Perform the CWT of f :

Wf (t,a) =
∫

T

f (x)ψ̄

(
x − t

a

)
dx

a
.

(2) Compute the wavelet spectrum 	 associated with f :

a �→ 	(a) = Et |Wf (t,a)|,
where Et denotes the mean over time.

(3) Locate the scale a∗ at which 	 reaches its highest local
maximum and isolate it between the scales a1 and a2 at which
	 displays the left and right local minima that are the closest
to a∗. Set A = [a1,a2].

(4) Define (t0,a(t0)) in the time-frequency band T × A of
the TF plane as

(t0,a(t0)) = argmax
(t,a)∈T ×A

|Wf (t,a)|,

which is the starting point for the ridge detection step.

(5) Compute1 the ridge (t,a(t))t∈T forward and backward
that stems from (t0,a(t0)):

(a) Compute b1 and b2 such that b2 − b1 = a2 − a1 and
a(t0) = (b1 + b2)/2, i.e., center a(t0) in a frequency interval
of the same length as the initial one.

(b) Among the scales at which the function a ∈
[b1,b2] �→ |Wf (t0 + 1,a)| reaches a local maximum, define
a(t0 + 1) as the closest one to a(t0). If there is no local
maximum, then a(t0 + 1) = a(t0).

(c) Repeat step 5) with (t0 + 1,a(t0 + 1)) instead of
(t0,a(t0)) until the end of the signal.

(d) Proceed in the same way backward from (t0,a(t0))
until the beginning of the signal.
(6) Extract the component associated with the ridge:

t �→ 2|Wf (t,a(t))| cos[arg Wf (t,a(t))].

(7) Subtract this component (say c1 at the first itera-
tion) from f to get the rest r1 = f − c1 and repeat steps
1 to 7 with r1 instead of f . Obtain c2, repeat with
r2 = r1 − c2, etc.

(8) Stop the process (iterating steps 1 to 7) when enough
energy has been drained from the signal. More precisely, if
the components already extracted are denoted by (ci)i for i =

1For this step, keep in mind that we are working with signals, i.e.,
discrete time series and not functions defined onR. We can thus move
from “one point to the next,” i.e., the points located around t0 can be
considered as located at times . . . ,t0 − 2,t0 − 1,t0,t0 + 1,t0 + 2, . . ..
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1, . . . ,N, then stop if

∥∥∥∥∥f −
N∑

i=1

ci

∥∥∥∥∥ < α‖f ‖,

where we set the threshold α = 0.05 and ‖.‖ denotes the energy
of a signal from the signal analysis point of view (i.e., as the
square of the L2 norm).

The so-obtained components successively extracted are the
counterparts of the IMFs from EMD and their sum provides
an accurate reconstruction of f . The signal c0 = f − ∑N

i=1 ci

is considered as the remaining “noise,” and therefore the
decomposition of f can be completed with this component,
i.e., f = ∑N

i=0 ci . Let us note that the ridge extraction can be
made more difficult if many components of similar energy
and frequency are added together within the signal. To
overcome these difficulties, reallocation methods [25–27] such
as synchrosqueezing [5,28] that sharpen the TF representation
of the signal might be useful before the computation of the
ridge.

TABLE I. Comparison of the extraction and reconstruction skills
of WIME and EMD for the signal used in Sec. III A. The signal
sn corresponds to the nth component cn (displayed in Fig. 1) in the
case of WIME and to the nth IMF in the case of EMD. The last line
compares the initial signal f and the reconstructed signal fr defined
as the sum of the components sn related to each case.

WIME EMD

Signals RMSE PCC RMSE PCC

s1,f1 0.261 0.987 0.163 0.995
s2,f2 0.070 0.998 0.171 0.989
fr,f 0.267 0.991 0.151 0.997

III. EXPERIMENTS

A. Basic example

We now apply WIME on several signals in order to prove
its effectiveness in various situations and depict some of its
properties. We also compare its performances with EMD. For
that purpose, the first example illustrates how WIME actually
works. We consider the function f = f1 + f2 defined on [0,1]
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FIG. 2. As for Fig. 1, (a) displays the original signal f (blue) and the reconstructed one (red) of Sec. III B, and the other rows are, for
the successive signals under consideration: (b), (f), (j) |Wf (t,a)| and ridges (black line); (c), (g), (k) wavelet spectra; (d), (h), (l) components
extracted following the ridges; (e), (i), (m) original components. The influence of the multiple crossings in the TF plane remains limited because
WIME respects the energy-based hierarchical order of the components.
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FIG. 3. (a), (c), (e) IMFs extracted with EMD from the signal of
Sec. III B; (b), (d), (f) their TF representation obtained with the CWT.
It can be seen that EMD works following a decreasing-frequency
based approach, regardless the amplitudes of the components or
IMFs to be extracted. Consequently, the IMFs only match the original
components piecewise.

as the sum of two AM-FM components:

f1(t) = (2 + sin(5πt)] cos[100(t − 0.5)3 + 100t],

f2(t) =
{

(1.5 + t) cos(0.2e10t + 350t) if t � 0.5

t−1 cos(−300t2 + 1000t) if t > 0.5.

The signal and the steps of WIME applied to f are represented
in Fig. 1. One can see that the first TF representation [i.e.,
(t,a) �→ |Wf (t,a)|) shows very distinctly the bricks used to
build f . At the first step, the wavelet spectrum displays
more energy (highest peak) around the 20 Hz frequency. The
component c1 extracted in that region corresponds to f1. At
the next step, only the footprint of f2 remains in the TF plane;
the corresponding component c2 matches with f2. Naturally,
the reconstruction of f because of c1 and c2 is highly accurate,
as shown in Fig. 1. Quantitative measurements through root
mean square error (RMSE) and Pearson correlation coefficient
(PCC) of the extraction and reconstruction skills of WIME
and of EMD can be found in Table I. It appears that both
methods display excellent skills, as expected for this basic
example.

B. Crossings in the TF plane

For the next example, we consider a function made of three
FM signals whose TF representations display some crossings
and with constant amplitudes of 1.25,1,0.75. We consider

TABLE II. Extraction and reconstruction skills of WIME for the
signal used in Sec. III B, with the same notations as previously.
In this case, since the components are not recovered by EMD, the
comparison is possible only with the reconstructed signal.

WIME EMD

Signals RMSE PCC RMSE PCC

s1,f1 0.156 0.984 N/A N/A
s2,f2 0.193 0.962 N/A N/A
s3,f3 0.131 0.970 N/A N/A
fr,f 0.111 0.996 0.133 0.994

f (t) = f1(t) + f2(t) + f3(t) for t ∈ [0,10] with

f1(t) = 1.25 cos[−(t − 3)3 + 180t],

f2(t) = cos(1.8t + 20t),

f3(t) =
{

0.75 cos(−1.6πt2 + 20πt) (t < 5)
0.75 cos(4πt) (t � 5)

,

and we then set f (10 + t) = f (10 − t) for every t ∈ [0,10]
(i.e., f is concatenated with its mirror).

The TF representation of this signal displays, as wanted,
multiple crossings between the patterns associated with each
component (see Fig. 2). However, as it can be seen in Fig. 2,
the energy corresponding to each component allows WIME
to successfully retrieve the original components; the influence
of the crossings remains extremely low. Naturally, when a
crossing occurs, WIME follows the “first come, first served”
principle: the energy is consumed by the first component that
has the crossing on its way, and when another component
reaches that point, there is no energy left for it even though it
should have been the case. This phenomenon can be noticed
in Fig. 2 and is unavoidable without treating or adjusting a
component before extracting the next one. Nevertheless, the
components obtained respect the hierarchical order imposed
by their energy level and remain easily interpretable from a
physical point of view.

This example also shows how EMD proceeds to extract
successive components, and why it is not well adapted in that
type of case. The EMD acts as a bandpass filter [2], filtering
components following a frequency-decreasing order, i.e., high-
frequency IMFs are extracted first, regardless their energy
level. From a TF representation perspective, this corresponds
to successively extract components related to the “upper ridge”
present in the considered signal, then subtracting it, extracting
the next “upper ridge,” and so on. This is illustrated in Fig. 3,
which displays the first three IMFs obtained with EMD from
f and their CWT-based TF representation.2 This also depicts
why EMD has such effective reconstruction skills: at the end
of the process, as for WIME, all the energy of the TF plane has
been drained, ridge after ridge. This can be seen in Table II,

2The TF-representation of the IMFs extracted from EMD is
generally performed with the Hilbert transform [3], but we use the
CWT to facilitate comparison with the other signals analyzed in this
paper.
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which displays the skills of the methods. The problem lies in
the fact that the hierarchical order imposed by the amplitudes
of the three components is not respected at all with EMD,
which thus gives IMFs that are not as easily interpretable
from a physical point of view. Even though it is probably
useful to have such a filtering approach in some cases (e.g.,
for denoising purposes), something is clearly wrong in this
case. Besides, EMD has no choice but following that order of
filtering whereas WIME is more flexible and could be adapted
to perform a similar task if needed.

C. Mode-mixing problem

The first example shows that WIME successfully retrieves
components that are “well-separated” in the TF plane, where

the intuitive conditions to be “well separated” (avoiding
crossings) could be defined with frequency-based formulas
as in Ref. [5]. The second signal shows that when the
components are not “well separated” with respect to their
frequencies but are distinguishable by their amplitudes, then
WIME still manages to recover the original sources of the
signal, while EMD cannot. It is thus natural now to address
the mode-mixing problem that occurs when a signal is made of
AM-FM components that are relatively close to each other, i.e.,
the components are not “well separated” with respect to their
frequency nor with their amplitudes. In this example, we still
aim to obtain a satisfying recovery of the initial components,
but we also want an accurate detection of the associated main
frequencies. The signal f considered for that purpose is made
of one AM-FM component and three AM components (t takes
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FIG. 4. As previously, (a) displays the original signal f (blue) and the reconstructed one (red) (Sec. III C); the other rows are, for the
successive signals under consideration: (b), (f), (j), (n) |Wf (t,a)| and ridges (black line); (c), (g), (k), (o) wavelet spectra; (d), (h), (l), (p)
components extracted following the ridges; (e), (i), (m), (q) original components. The period detection skill of WIME is high.
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integer values from 1 to 800):

f1(t) =
[

1 + 0.5 cos

(
2π

200
t

)]
cos

(
2π

47
t

)
,

f2(t) = ln(t)

14
cos

(
2π

31
t

)
,

f3(t) =
√

t

60
cos

(
2π

65
t

)
,

f4(t) = t

2000
cos

[
2π

23 + cos
(

2π
1600 t

) t

]
,

so that the target frequencies to detect are, respectively, 1/47,
1/31, 1/65, and ≈ 1/23 Hz.

A peculiarity of this example is that the first component
dominates the signal (see Fig. 4), with a mean energy much
higher than the others. This has the effect of eclipsing the
other components at first sight, and, looking at the first wavelet
spectrum, it is complicated to tell which frequencies are present
in the signal. In the case of WIME though, the successive
subtractions of the components unveil the less powerful ones,
as shown in Fig. 4, and so allow to detect almost exactly
the target frequencies. The fact that hidden information may
appear when dominant modes are correctly identified and taken
off the signal may be useful in real-life data analysis such as
daily temperature signals with a dominant mode of 365 days.
Therefore, even though the components retrieval is satisfying
but not as accurate as in the previous examples, substantial
information can still be obtained with WIME.

As for the previous section, EMD does not perform so
well in this case. The first four IMFs extracted with EMD
are represented in Fig. 5. While the components extracted
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FIG. 5. IMFs obtained with EMD from the signal of Sec. III C.
They are considerably different from the original components; the
first IMF itself (a) represents almost the whole signal. The estimated
frequencies [≈ 1/41 (a), 1/75 (b), 1/165 (c), 1/284 (d) Hz] are far
from the targets (≈ 1/23, 1/31, 1/47, 1/65).

TABLE III. Extraction and reconstruction skills of WIME for the
signal used in Sec. III C. In the third line s∗

3 corresponds to IMF2 for
EMD. The components are not recovered by EMD, the comparison
is possible only in some cases.

WIME EMD

Signals RMSE PCC RMSE PCC

s1,f1 0.205 0.962 0.458 0.831
s2,f2 0.109 0.932 N/A N/A
s∗

3 ,f3 0.170 0.694 0.259 0.462
s4,f4 0.070 0.902 N/A N/A
fr,f 0.064 0.997 0.068 0.998
f1,f RMSE:0.407 PCC:0.868
s1,f 0.392 0.878 0.316 0.926

with WIME are somehow close the real ones, with the target
frequencies unquestionably recovered, the IMFs have nothing
in common with the original components. With a PCC with f

close to 0.93, the first IMF is almost the initial signal itself and
with estimated frequencies of ≈ 1/41, 1/75, 1/165, 1/284 Hz
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FIG. 6. (a) Original chirp (red) and extracted component (blue)
associated with the ridge of the TF representation of the signal (b).
Remaining rows: the same with f + X (c), (d), f + 2X (e), (f),
f + 3X (g), (h), where X is a Gaussian white noise with zero mean
and variance 1. One can see that, despite the high level of noise,
WIME is still able to retrieve the initial chirp. Moreover, it does not
require any pre- or post-processing treatment or extra computational
power.
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TABLE IV. Reconstruction skills of WIME in the presence of
noise (fr = c1).

Signals SNR RMSE PCC

fr,f + X −2.792 0.129 0.983
fr,f + 2X −8.812 0.193 0.962
fr,f + 3X −12.330 0.263 0.929

(instead of ≈ 1/23, 1/31, 1/47, 1/65), we can safely conclude
that EMD fails the frequency detection test. As in the previous
cases, a comparison of the skills of the methods is presented
in Table III, which illustrates the nice performance of WIME
compared to EMD.

D. Tolerance to noise

The next step consists in performing a resistance to noise
test with WIME. Given the intrinsic nature of WIME, more
precisely the CWT part which involves convolutions with a
smooth kernel, it can be expected that WIME displays some
kind of natural tolerance to noise. In the same spirit as in
Ref. [5], we consider a chirp f defined on [0,1] by

f (t) = cos(70t + 30t2),

we generate a Gaussian white noise X of zero mean and
variance 1, and we run WIME on f , f + X, f + 2X, and
f + 3X. For the noisy signals f + nX with n > 0, the
corresponding signal-to-noise ratio (SNR) is defined as in
Ref. [5] by

SNR[dB] = 10 log10

[
var(f )

var(nX)

]
.

In the present case, the SNRs considered are respectively
−2.792, −8.812, and −12.330 dB, indicating a particularly
high level of noise in the last two cases. The results obtained
on these noisy signals are displayed in Fig. 6. It can be noted
that WIME successfully extracts f from the signals despite the
high level of noise, especially in the third and fourth cases. This
capacity is quantified more in detail in Table IV. It is important
to note that such excellent results are obtained with no extra
computational cost, i.e., WIME does not need to be adapted in
any way to deal with noise. On the contrary, it is known that
EMD has trouble to handle such erratic signals since it works
in the time domain and is first concerned with high-frequency
components, which is why we do not expand on that part. For
the record, when performing EMD on f + X, the IMF which
is the closer to f in terms of RMSE and PCC has a RMSE of
0.35 and a PCC of 0.869, which is much weaker than the results
presented in Table IV. In this context, it would be preferable
to use improved but time-consuming versions of this method
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FIG. 7. (a) Original ONI signal (red) and reconstructed signal (blue); (b) the difference between them. Then the first six successive TF
representations (c), (e), (g), (i), (k), (m) and components (d), (f), (h), (j), (l), (n) obtained with WIME.
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such as the Ensemble Empirical Mode Decomposition [8] and
the Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise [29]. Therefore, the natural tolerance to noise
of WIME is part of its key assets.

E. Test on a real-life signal: ONI index

As a final test, we apply WIME on the ONI index, which is
a 3-month running mean of sea surface temperature anomalies
in the so-called Niño 3.4 area in the Pacific Ocean. At the
Climate Prediction Center, ONI is the principal measure
for monitoring, assessing, and predicting the well-known
El Niño and La Niña events. This signal is of primary
interest in climatology and is extensively studied (see, e.g.,
Refs. [16,17,30,31] and references therein).

The components extracted with WIME are presented in
Fig. 7. It can be seen that WIME still gives satisfying results
with this signal. Indeed, the components extracted have periods
similar to those obtained in the literature (see Refs. [16,31]
and references therein), ranging from near-annual to decadal
modes of variability. The energy of the TF plane is drained
so that the reconstruction appears smooth but accurate: the
RMSE equals 0.22 and the PCC 0.96. We recall that these
results are obtained with no pre- or post-processing treatment
or adaptation of WIME; it is thus reasonable to assert that it
can be used in the context of real-life data analysis. Let us
finally add that WIME could help us improve our forecasts of
ONI performed with the model presented in Ref. [16]; indeed,
the ridges allow some desirable flexibility and could be used
intelligently to derive excellent predictions of ONI.

IV. CONCLUSION

We introduced a new method within the framework of time-
frequency analysis called wavelet-induced mode extraction
(WIME), whose main purpose is to extract automatically
the intrinsic components that form AM-FM signals. This
technique borrows some characteristics of excellent mode
decomposition procedures while trying to resolve some of their
defects. The underlying philosophy consists in successively
deriving components from high-energy ridges of the TF plane
initiated by a segmentation of the wavelet spectrum.

When applied to toy examples, WIME displayed accurate
decomposition skills. Indeed, the components retrieval involv-
ing nonstationary sources was carried out almost flawlessly.
Compared to EMD, the results appeared as good in the simple
cases and better in the trickier ones chosen here. As a matter
of example, components that were well separated with respect
to their amplitude but with intersecting trajectories in their TF
representations were definitely recovered, while EMD failed to
do so. Besides, when the focus was on the recapture of known
frequencies in a mode-mixing problem, WIME outperformed
EMD. It also appeared that the natural tolerance to noise of
WIME makes it suitable to study natural time series. As a
matter of example, the application to the ONI index showed
that sound results are still obtained with real-life data.

As future work, we aim at developing WIME as much as
possible, studying its properties in more detail and comparing
its skills with many other techniques. It could also be worth
trying to adapt WIME to wavelet-like methods such as the
increasingly popular S transform [32,33], which displays some
similarities with the CWT. Besides, WIME could be used in
combination with other wavelet methods in the context of
multifractal analysis, as has already been the case with EMD
in, e.g., Refs. [34,35]. A particularly interesting example would
be to use WIME in physiology along with the multifractal
technique used in Refs. [18,19] for breast cancer detection.
Roughly speaking, it appears that the physiological noise
measured on thermograms has different multifractal properties
in the presence of mammary glands with malignant tumors.
An important step could be to use WIME to extract and study
the variations of the dominant cardiac oscillatory components,
which could bring complementary information about the
diagnosis. The rest of the signal could also be used for finer
analyses.

Finally, let us mention that a practical easy-to-use Scilab
toolbox has been released3 so that nonspecialist researchers
get to know better wavelets and time-frequency analysis, and
can carry out their own mode decomposition experiments.
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