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Abstract— Development of a first principles model of a system
is not only a time- and cost- consuming task, but often leads
to model structures which are not directly usable to design a
controller using current available methodologies. In this paper
we use a sparse identification procedure to obtain a nonlinear
polynomial model. Since this is a NP-hard problem, a relaxed
algorithm is employed to accelerate its convergence speed. The
obtained model is further used inside the nonlinear Extended
Prediction Self-Adaptive control (NEPSAC) approach to Non-
linear Model Predictive Control (NMPC), which replaces the
complex nonlinear optimization problem by a simpler iterative
quadratic programming procedure. An organic Rankine cycle
system, characterized for presenting nonlinear time-varying
dynamics, is used as benchmark to illustrate the effectiveness
of the proposed combined strategies.

I. INTRODUCTION

Today process industry is experiencing an increasing pro-
ductivity demand. This, together with tighter environmental
regulations, demanding economical considerations and the
need of operating in an energy-efficient manner, is forcing
industry to operate systems closer to the boundary of the
admissible operating region, where productivity is often
maximized. In this regard modeling and control design play
an important role to achieve optimal operation of a system.

One of the control strategies which has been well-accepted
by industry is Model Predictive Control (MPC) [1]. MPC
refers to a family of control approaches, which makes explicit
use of a model of the process to optimally obtain the control
signal by minimizing an objective function [2]. Due to this
active use of a model, its performance is strongly linked to
the model’s ability to accurately predict the system dynamics.
Real processes are inherently nonlinear, thus ideally a low-
order nonlinear model and therefore a nonlinear MPC should
be used to control the system. However, linear predictive
controllers have been predominantly used, this is due to
the easy to obtain linear parametric models compared to
nonlinear ones [3].

Many model classes have been considered for nonlinear
identification purposes, e.g., Wiener or Hammerstein, neu-
ronal networks, radial basis functions, support vector ma-
chines and polynomial expansions. From those the polyno-
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mial nonlinear autoregressive exogenous (NARX) models are
particular interesting, since they allow a direct interpretation
and analysis of the nonlinear input-output dependencies. Sev-
eral experimental studies have shown that many systems can
be accurately approximated by polynomial NARX models of
relatively small size (see e.g., [4], [5]).

In this contribution the objective is to identify a sparse
nonlinear polynomial model using a modified version of
the Elastic Net regression algorithm originally proposed in
[6]. First it is essential to clarify what sparse means in this
context. It consists in approximating a function using a ‘few’
basis functions properly selected within a ‘large’ set. More
precisely, a sparse approximation is a linear combination of
fixed basis functions, where the vector of linear combination
coefficients is sparse, i.e. it has only a ‘few’ non-zero
elements. The pioneer work performed in [6], [7] shows
that a sparse model can be obtained by making a basic
augmentation of the ordinary least squares solution, with the
goal of obtaining a coefficient shrinkage and selection. The
augmentation often consists in including penalty functions to
the least square problem, thus providing some regularization.
In [6], [7] and the references therein, it is shown that for
sufficient amounts of regularization, solutions are sparse,
i.e., some of the coefficients of the model are exactly zero,
leading to more compact models which are easier to interpret.

The modification here proposed in section II, is used to
accelerate convergence speed by relaxing the optimization
problem, whereas the goal is to minimize a combination
of the `1- and `2- norm of the parameter vector, with
a constraint on the model accuracy. The relaxed Sparse
identification algorithm allows to obtain the structure of the
model, then a second step is implemented by identifying
its coefficients using a least-squares criterion and applying
pruning. Finally an input/output polynomial model of the
system with prescribed modeling error is obtained [8]. The
methodology is similar to the one known as simulation error
minimization with pruning (SEMP), which as reported in
[9], can yield an increase in robustness for model selection
compared to prediction error minimization (PEM) framework
with respect to low excitation identification conditions.

Then the obtained polynomial model is used to construct
a nonlinear MPC strategy, i.e., the Nonlinear Extended
Prediction Self-Adaptive Control (NEPSAC) approach to
NMPC. This controller, fully described in [10], can deal
with models in different formats (e.g. state-space, transfer
functions, neuronal networks, polynomial parametric models,
etc.) as it uses the nonlinear model for prediction directly,
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taking full advantage of the given nonlinear system dynamics
to generate a high-performance design without involving
model linearization or gain scheduling for its implementa-
tion. Additionally, the usually complex nonlinear optimiza-
tion problem, is in the NEPSAC algorithm replaced by a
simpler iterative quadratic programming procedure, to solve
problems including constraints as briefly described in section
III.

The effectiveness of the proposed combined strategy is
tested in simulation using an organic Rankine cycle (ORC)
system for waste heat recovery applications (WHR). This
system is particularly challenging, since its dynamics are
highly nonlinear and time-varying because they change as
function of the waste-heat source [11]. Their dynamic com-
ponents are mainly allocated in the evaporator, therefore
research in modeling has been focused on finding a trade-off
between model accuracy and simulation speed as evaluated in
[12], where finite volume and moving boundary approaches
to evaporator modeling are proposed.

Regarding the control design for ORC systems, it is
essential to guarantee a vapor quality at the inlet of the
expander, since liquid droplets can damage the machine. This
requirement can be achieved by ensuring a certain level of
superheating [13], [14]. For example, in [15] a feed-forward
and gain-scheduled PI controller is proposed. In [16] an
explicit multi-model MPC is applied to control superheating.
In conclusion, identifying a nonlinear model for superheating
and achieving a proper regulation of this signal despite waste-
heat variations represents the target for the controller.

The performance of the nonlinear identification and con-
trol algorithms is evaluated by developing a superheating
control of an ORC system as described in section IV. Finally,
the main outcome of this investigation is summarized in
section V.

II. SPARSE IDENTIFICATION OF NONLINEAR FUNCTIONS

In cases where an accurate first principle model is not
available for a complex system, models deduced from ex-
perimental data by means of system identification techniques
provide reliable alternatives. Whilst existing system identifi-
cation methods for linear systems can be considered to be at a
mature stage, nonlinear system identification techniques still
reveal several fundamental issues to be resolved to further
improve general model performance. In this section a sparse
identification algorithm of nonlinear functions is presented.

Identifying a sparse approximation of a function from a set
of data, possibly corrupted by noise, is what is called sparse
identification. It consists in constructing a sparse model
which involves a minimum model variables and terms but can
generate a maximum of model generalization performance.
Therefore, a sparse approximation is a linear combination of
fixed basis functions, where the vector of linear combination
coefficients is sparse, i.e. it has only a ‘few’ non-zero
elements.

A. Problem formulation

Consider a nonlinear function f0 defined by

y = f0(x) (1)

where x ∈ Rnx , y ∈ R. Suppose that f0 is not known but a set
of noise-corrupted data D = {x̃, ỹ}L

k=1 is available, described
by

ỹk = f0(x̃k)+nk, k = 1,2, . . . ,L (2)

where nk is noise. Define the following parametrized func-
tion:

fa(x) =
n

∑
i=1

ai φi(x) = φ(x)a (3)

where φ(x) = [φ1(x),φ2(x), . . . ,φn(x)], φi : X→Y are known
fixed basis functions, and a = [a1,a2, . . . ,an]

T ∈ Rn is an
unknown coefficient vector.

Problem 1: from the data set D, identify a coefficient
vector a such that

(i) is sparse and
(ii) the identification error

e( fa)=̇‖ f0− fa‖2 (4)

is small and bounded.
Sparse solutions may be preferred to full counterparts if

the model can be assumed to be sparse or when interpretation
of the results can be important.

B. Sparse Identification algorithm

The sparsity of a vector is typically measured by the `0
quasi-norm, defined as the number of its non-zero elements.
Sparse identification can be performed by looking for a
coefficient vector of the basis function linear combination
with a ‘small’ `0 quasi-norm, that yields a ‘small’ prediction
error ε between the measured output ỹ and the predicted
output fa(x̃) = φ(x̃)a. Thus, a solution to problem 1 could
be found by solving the following optimization problem:

a0 = arg min
a∈Rn
‖a‖0

sub ject to‖ỹ−Φa‖2 ≤ ε

(5)

with ε the maximum desired prediction error and

ỹ =̇ (ỹ1, . . . , ỹL)

Φ =̇

 φ1(x̃1) . . . φn(x̃1)
...

. . .
...

φ1(x̃L) . . . φn(x̃L)


=̇ [φ1(x̃) . . . φn(x̃)]

(6)

However, the `0 is a non-convex function and therefore
minimization of (5) is in general an NP-hard problem.
Similarly as proposed by [8], we propose a convex relaxation,
where an optimization problem similar to (5) is solved, by
replacing the `0 quasi-norm by a combination of a `1 and
weighted `2 norms. The optimization problem (5) is thus
redefined as a two-step algorithm:
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Step 1: solve the optimization problem

a1 = arg min
a∈Rn

L−1‖a‖1 +β‖a‖2

s.t.‖ỹ−Φa‖2 ≤ ε

(7)

with L the length of the data set, β a weighting coefficient
and ε the maximum expected prediction error.

This structure of the optimization problem in equation (7)
is chosen, as the `2 penalty ensures an unique solution also
when the number of basis functions is larger than the data
length, and the `1 penalty offers variable selection via a
sparse vector of coefficients a as demonstrated in [6].

Step 2: define a sub-space with the active basis of a1

and compute the estimate a∗ of a0 using least-squares of
prediction error

a∗ = arg min
ai∈Rn
‖ỹ−Φai‖2

s.t.ai = 0, ∀i |a1
i |< γ

(8)

with γ an additional tolerance value used for pruning, thus
enhancing sparsity.

Note that the major problem with regularization methods
is the optimal selection of the regularization parameters, in
this case γ , β and ε , which correspond to a complexity/bias
vs. variance trade-off [6].

III. NMPC-NEPSAC ALGORITHM

A brief introduction to NEPSAC algorithm is presented in
this section. For a detailed description the reader is referred
to [10] and [17].

A. Computing the Predictions
Using NEPSAC algorithm, the measured process output

can be represented as:

y(t) = x(t)+n(t) (9)

where x(t) is the model output which represents the effect
of the control input u(t) and n(t) represents the effect of the
disturbances and modeling errors, all at discrete-time index
t. Model output x(t) can be described by the generic system
dynamic model:

x(t) = f [x(t−1),x(t−2), . . . ,u(t−1),u(t−2), . . .] (10)

Notice that x(t) represents here the model output, not the
state vector. Also important is the fact that f can be either
a linear or a nonlinear function.

Furthermore, the disturbance n(t) can be modeled as
colored noise through a filter with the transfer function:

n(t) =
C(q−1)

D(q−1)
e(t) (11)

with e(t) uncorrelated (white) noise with zero-mean and
C, D monic polynomials in the backward shift operator q−1.
The disturbance model must be designed to achieve robust-
ness of the control loop against unmeasured disturbances and
modeling errors [2].

A fundamental step in the MPC methodology consists
of the prediction. Using the generic process model (9), the
predicted values of the output are:

y(t + k|t) = x(t + k|t)+n(t + k|t) (12)

x(t + k|t) and n(t + k|t) can be predicted by recursion of
the process model (10) and by using filtering techniques on
the noise model (11), respectively [10].

B. Optimization Procedure

A key element in linear MPC is the use of base (or
free) and optimizing (or forced) response concepts [2]. This
is however no longer valid for nonlinear processes, since
the superposition principle does not hold in that case. In
NEPSAC this is solved as follows:

The future response can then be expressed as:

y(t + k|t) = ybase(t + k|t)+ yoptimize(t + k|t) (13)

The two contributing factors have the following origin:
• ybase(t + k|t) is the effect of the past inputs, the apriori

defined future base control sequence ubase(t + k|t) and
the predicted disturbance n(t + k|t).

• yoptimize(t +k|t) is the effect of the additions δu(t +k|t)
that are optimized and added to ubase(t+k|t), according
to δu(t + k|t) = u(t + k|t)−ubase(t + k|t). The effect of
these additions is the discrete time convolution of ∆U =
{δu(t|t), . . . ,δu(t+Nu−1|t)} with the impulse response
coefficients of the system (G matrix), where Nu is the
chosen control horizon.

The control ∆U is the solution to the following constrained
optimization problem:

∆U =arg min
∆U∈RNu

N2

∑
k=N1

[r(t + k|t)− y(t + k|t)]2

s.t.A.∆U ≤ B

(14)

where N1 and N2 are the minimum and maximum prediction
horizons, Nu is the control horizon, r(t + k|t) is a future
setpoint or reference sequence. The various process inputs
and output constraints can all be expressed in terms of ∆U ,
resulting in matrices A, B.

As the cost function (14) with decision variables ∆U
is quadratic with linear constraints, then the minimization
problem can be solved by a QP algorithm.

C. NEPSAC iterative procedure

The procedure described until now can be used to im-
plement a linear MPC (EPSAC), if f [·] in (10) is linear, as
superposition principle holds in (13). Instead, if a nonlinear
model is employed, the condition is that the term yoptimize(t+
k|t) is small enough compared to ybase(t + k|t), in order to
make the superposition principle still valid. Such condition
can be satisfied if δu(t + k|t) is close to zero, making thus
ubase(t + k|t) close to the optimal u∗(t + k|t). To address
this issue, the idea is to recursively compute δu(t + k|t)
solving (14), within the same sample instant, until δu(t+k|t)
converges to 0. Inside the recursion ubase(t + k|t) is updated
each time to ubase(t + k|t)+δu(t + k|t).

Also important is the fact that in NEPSAC the G matrix
has to be recomputed at every sampling instant [17]. The
number of required iterations depends on how far the op-
timal u∗(t + k|t) is away with respect to u∗(t + k|t− 1). In
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quasi-steady-state situations, the number of iterations is low
(1 . . . 2) [17]. On the other hand, during transients the number
of iterations might raise to 10 [17].

IV. CASE STUDY: WASTE HEAT RECOVERY APPLICATION

This section describes the architecture and main charac-
teristics of the Organic Rankine Cycle (ORC) system used
for evaluating the performance of the developed control
strategies.

A. The Organic Rankine Cycle system

The ORC power unit investigated in this work is based
on a sub-critical 11kWel unit for stationary low temperature
waste heat recovery. The system is based on a regenerative
cycle and Solkatherm (SES36) as working fluid. The 11kWel
expander is originally a single screw compressor adapted to
run in expander mode.

Fig. 1. Schematic layout of the organic Rankine cycle power unit.

A schematic layout of the ORC system is presented in
Fig. 1. Starting from the bottom of the scheme, it is possible
to recognize the liquid receiver (b) installed at the outlet
of the condenser (a) where the fluid is collected in saturated
liquid condition. From the receiver outlet, the fluid is pumped
(c) through the regenerator (d) cold side, and the evaporator
(e), where it is heated up to superheated vapor, reaching its
maximum temperature at the evaporator outlet. The fluid,
after being expanded in the volumetric machine (f), enters
the regenerator hot side, and then it flows into the condenser
(a) to close the cycle.

In order to assess the performance of the different devel-
oped control strategies, a validated dynamic model of the
ORC system presented in Fig. 1 has been developed in the
Modelica language [12], using existent components from the
ThermoCycle library [18]. The developed Modelica model is
then exported into Simulink/Matlab environment by means
of the Functional Mock-Up Interface (FMI) open standard,
using a model exchange format. This simulation approach
takes advantage of the strengths of each platform: Modelica
for modeling and Simulink/Matlab for control design. For the
simulations performed in this paper, the generator rotational

speed is kept constant at 3000rpm to emulate an installation
directly connected to the grid.

Regarding the optimal operation of the ORC unit, the
superheating and the evaporating temperature are the most
relevant variables to be controlled [19]. The superheating is
defined as:

∆Tsh = Texp,su−Tsat,ev (15)

where Texp,su is the temperature measured at the inlet of the
expander and Tsat,ev the evaporating temperature, correspond-
ing to the temperature at which the fluid undergoes the phase
transition from saturated liquid to saturated vapor at the fixed
evaporating pressure Psat,ev.

Research performed on ORC technology (e.g., [13], [14])
has already established that to optimally operate the ORC
power unit, two conditions need to be satisfied: 1) A ‘high’
efficiency and a safe operation of the ORC unit is achieved
if a minimum amount of superheating at expander inlet is
guaranteed. 2) For each heat source condition there exists
an optimal evaporating temperature which maximizes the
output power. In this study we will focus on fulfilling the
first condition, by designing a controller for superheating.
In order to assess the overall performance of the system the
net-output power Ẇel,net is computed:

Ẇel,net = Ẇexp−Ẇpump (16)

where Ẇexp is the expander electrical power, Ẇpump is the
pump electrical power.

B. Low-order model suitable for prediction

The ORC unit considered has one manipulated variable
(the pump speed Npp), and two outputs (the evaporating
temperature Tsat,ev and the superheating ∆Tsh). Notice that
the temperature Th f and mass flow variations mh f in the
heat source also influence Tsat,ev and ∆Tsh, thus becoming
two measured disturbances. As result we are interested on
identifying a system consisting of 3 inputs (one manipulated
and two measured disturbances) and 2 outputs.

The following input signals have been considered to
perform the identification: the heat source conditions Th f
and mh f have been simulated as white noise filtered to a
maximum band of 0.5rad/s and 0.63rad/s with amplitude
variations of ±20 ◦C around 110 ◦C and ±0.5kg/s around
1.0kg/s, respectively. The pump speed has been taken as the
sum of 10 sinusoids spread over the band [0.005,0.63] rad/s,
taking values between 1320rpm and 2100rpm. A set of
L= 2000 samples has been generated from the ‘true’ system,
considering a sampling time of Ts = 1s.

A linear parametric identification is performed, using the
prediction error minimization method in the data collected
from multisine excitation signals [20]. The identified linear
model in the form of discrete-time transfer functions for a
sampling time of Ts = 1s, is presented in (17):
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∆Tsh(q)
Npp(q)

= −0.063q−1+0.059q−2

1−2.44q−1+1.955q−2−0.51q−3 (17a)

∆Tsh(q)
Th f (q)

= 0.47q−1

1−0.51q−1 (17b)

∆Tsh(q)
mh f (q)

= −2.98q−1+4.29q−2−1.31q−3

1−1.35q−1−0.11q−2+0.46q−3 (17c)

Tsat,ev(q)
Npp(q)

= 0.066q−1−0.063q−2

1−2.42q−1+1.91q−2−0.49q−3 (17d)

Tsat,ev(q)
Th f (q)

= 0.0017q−11−0.0017q−12

1−3.6q−1+4.88q−2−2.95q−3+0.67q−4 (17e)

Tsat,ev(q)
mh f (q)

= 2.43q−1−6.16q−2+5.33q−3−1.6q−4

1−2.93q−1+3.12q−2−1.42q−3+0.23q−4 (17f)

Next, we are interested in identifying a nonlinear poly-
nomial model of the system. In order to perform the sparse
identification, a set of n = 57 polynomial basis functions
has been considered and the corresponding matrix Φ =
(Φ1(x̃), . . . ,ΦL(x̃)) has been obtained according to:

Φk(x̃) =[φ1(x̃), . . . ,φn(x̃))]
=[1,y(k− r),Npp(k− r),Th f (k− r),mh f (k− r),

y(k− r)2,y(k− r)∗Npp(k− r),y(k− r)∗Th f (k− r),

y(k− r)∗mh f (k− r),Npp(k− r)2,

Npp(k− r)∗Th f (k− r),Npp(k− r)∗mh f (k− r),

Th f (k− r)2,Th f (k− r)∗mh f (k− r),mh f (k− r)2]

(18)

where r is the regressor which defines how many variables
we look in the past, for example r = 2 represents y(k− r)≡
[y(k−1),y(k−2)]; in this example r = 4 and k = 1,2, . . . ,L.

Using the regularization parameters β = 20, γ = 1e− 6
and ε = 1 ◦C, the identified model for ∆Tsh requires of 17
active basis functions. Simulations using the validation data
are performed for both linear and nonlinear models (Fig. 2).
An accurate identification of low superheating values is still
a challenging task, modeling errors can be attributed to the
choice of the fixed basis functions, these results suggest that
other type of nonlinearities should be considered. The nor-
malized root-mean-square error (RMSE,[20]) of each model
to the validation data is computed, reporting that a fitting
percentage of 48% and 72% for the linear and nonlinear
model, respectively. Nevertheless, from control point of view,
this is not a problem as still a robust controller can be tuned
to deal with modeling errors or unmodeled dynamics.

C. Application to constrained predictive control

Two predictive controllers are implemented, a EPSAC-
MPC based on the linear parametric model (17) and a
NEPSAC-NMPC based on the nonlinear polynomial model.
The controllers are tested in simulation using a heat source
profile which could be typically observed in industrial waste
heat [13], as for example from exhaust gases from a reheat
furnace, as depicted in Fig. 3.

The performance of the controllers is assessed during
a tracking test, where it is expected to have the fastest
response with minimum overshoot, while satisfying actuator
constraints (Npp,min = 1320rpm; Npp,max = 2100rpm; ∆Npp =
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Fig. 3. Temperature and mass flow rate of the defined heat source.

100rpm) and constraints at the process output (∆Tsh,min =
10 ◦C). Both linear and nonlinear controllers are tuned for
horizons N1 = 1 and N2 = 10.

The performance of the control strategies is depicted in
Fig. 4, both linear and nonlinear controllers are able to
track the reference, however the linear controller presents
oscillations at low superheating values due to large modeling
errors. The Integral Absolute Error (IAE) is used as criteria to
quantify the control performance for tracking the reference,
reporting as result 972.76 and 750.84, for the linear and
nonlinear control, respectively. The control effort is similar
in magnitude for both controllers, except for the observed
oscillations, thus suggesting that either the region/conditions
where the controller has been tested presents a weak nonlin-
earity or that the nonlinear model is still not capturing the
main nonlinearity present in the system. From a practical
point of view, the nonlinear controller achieves a smoother
control effort which might be beneficial for the actuator (i.e.,
enlarging the pump life).
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V. CONCLUSIONS

In the present contribution, a relaxed sparse identification
algorithm is presented in order to identify a parametric model
of a nonlinear system, with prescribed modeling error. The
augmentation of the basic ordinary least square solution
with a `1 penalty allows to identify the structure of the
model and to enhance sparsity, while the `2 penalty ensures
obtaining an unique solution. Sparse polynomial models
compared to other black-box identification techniques, for
example Neuronal Networks, offer the benefit that a certain
degree of understanding about the type (e.g., square, cubic,
etc) and location (e.g., input, output, etc) of nonlinearity
present in the system can be obtained. The simulation
example provided in this paper is of industrial relevance and
represents a challenging for modeling and control design.
The optimal performance for these systems is often achieved,
by proper regulation of the quality of vapor entering the
expander. The latter can be observed by computing the level
of superheating, which presents highly nonlinear and time-
varying dynamics. Results show that it is possible to identify
a sparse polynomial model that describes the dynamics over
a wide operating range.

The obtained input/output polynomial model is further
used in order to construct a constrained Nonlinear Model
Predictive Control strategy using the NEPSAC approach.
The performance of the proposed controller is tested and
compared to the one achieved using a linear model predictive
controller for the studied case. The obtained results suggest
that the NMPC strategy leads to a smoother, safer and
more efficient operation; where similar or better tracking
performance is obtained at a lower control effort.

Future work includes identification and control of multiple
input multiple output systems and using the knowledge of the
prescribed modeling error to build a robust NMPC controller.
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