

Wavelet series representations for pathwise Young integrals

Céline ESSER Celine.Esser@univ-lille1.fr

Université Lille 1 - Laboratoire Paul Painlevé

Workshop on Complex Analysis and Operators Theory Valencia, 27 – 29 October 2016

> Joint work with A. AYACHE (Université Lille 1) Q. PENG (Claremont Graduate University)

C. Esser (Université Lille 1)

Wavelet series and Young integrals

Introduction

We are interested in the approximation of the Young integral

$$Y(t) := \int_0^t \sigma(s) \, \mathrm{d}X(s), \quad t \in I := [0, 1]$$

General assumptions. There are $\alpha, \beta \in (0, 1)$ such that for any compact interval $K \subset \mathbb{R}$,

$$\sigma \in C^{\alpha}(K), \quad X \in C^{\beta}(K) \text{ and } \alpha + \beta > 1.$$

Definition

For any $\theta \in [0,1)$, the Hölder space $C^{\theta}(K)$ is the Banach space of continuous functions $f: K \to \mathbb{R}$ such that

$$||f||_{C^{\theta}(I)} := ||f||_{K,\infty} + \sup_{(x_1,x_2) \in K^2, \, x_1 < x_2} \frac{|f(x_1) - f(x_2)|}{|x_1 - x_2|^{\theta}} < +\infty.$$

The Hölder conditions give the existence of $\zeta_t \in \mathbb{R}$ such that for any sequence

$$(\mathcal{D}_n)_{n \in \mathbb{Z}_+} = \left(\left\{ \delta_0^n, \delta_1^n, \dots, \delta_{r_n}^n : r_n \in \mathbb{Z}_+, \ 0 = \delta_0^n < \delta_1^n < \dots < \delta_{r_n}^n = t \right\} \right)_{n \in \mathbb{Z}_+}$$

of partitions of the interval I for which $|\mathcal{D}_n| \to 0$, the Riemann-Stieltjes sum

$$\sum_{i=1}^{r_n} \sigma(\delta_{i-1}^n) \left(X(\delta_i^n) - X(\delta_{i-1}^n) \right)$$

converges to ζ_t . Therefore, one can define the integral $\int_0^t \sigma(s) \, \mathrm{d} X(s)$ by setting

$$\int_0^t \sigma(s) \, \mathrm{d}X(s) := \zeta_t.$$

Young - Loeve inequalities. There is a constant $\mathcal{K}_{\alpha+\beta} > 0$ such that for any $t_1 < t_2$,

$$\left| \int_{t_1}^{t_2} \sigma(s) \, \mathrm{d}X(s) - \sigma(t_1) \big(X(t_2) - X(t_1) \big) \right| \\ \leq \mathcal{K}_{\alpha+\beta} \|\sigma\|_{C^{\alpha}([t_1, t_2])} \|X\|_{C^{\beta}([t_1, t_2])} (t_2 - t_1)^{\alpha+\beta}.$$

In particular, $Y \in C^{\beta}(K)$ for any compact interval $K \subset \mathbb{R}$.

Approximation via Riemann sums

For $j \in \mathbb{Z}_+$ and $k \in \{0, \dots, 2^j - 1\}$, it is natural to approximate

$$Y\left(\frac{k}{2^{j}}\right) = \int_{0}^{\frac{k}{2^{j}}} \sigma(s) \, \mathrm{d}X(s) = \sum_{l=0}^{k-1} \int_{\frac{l}{2^{j}}}^{\frac{l+1}{2^{j}}} \sigma(s) \, \mathrm{d}X(s)$$

by

$$Y_j\left(\frac{k}{2^j}\right) := \sum_{l=0}^{k-1} \sigma\left(s_{j,l}\right) \underbrace{\left(X\left(\frac{l+1}{2^j}\right) - X\left(\frac{l}{2^j}\right)\right)}_{:=\Delta_{j,l}(X) \text{ increments of order 1 of } X}, \quad s_{j,l} \in \left[\frac{l}{2^j}, \frac{l+1}{2^j}\right]$$

The Young-Loeve inequalities directly give

$$\begin{aligned} \left| Y\left(\frac{k}{2^{j}}\right) - Y_{j}\left(\frac{k}{2^{j}}\right) \right| &\leq \sum_{l=0}^{k-1} \left| \int_{\frac{l}{2^{j}}}^{\frac{l+1}{2^{j}}} \sigma(s) \, \mathrm{d}X(s) - \sigma\left(s_{j,l}\right) \Delta_{j,l}(X) \right| \\ &\leq \sum_{l=0}^{k-1} c_{0} 2^{-j(\alpha+\beta)} \leq c_{0} 2^{-j(\alpha+\beta-1)} \end{aligned}$$

Using linear interpolation, one gets for every $j \in \mathbb{Z}_+,$ a function Y_j^{RS} which approximates Y :

$$Y_j^{RS}(t) := (2^j t - [2^j t])\sigma\left(s_{j,[2^j t]}\right)\Delta_{j,[2^j t]}(X) + Y_j\left(\frac{[2^j t]}{2^j}\right)$$

Proposition

There exists a constant c > 0 such that for all $\gamma \in [0, \beta)$ and $j \in \mathbb{Z}_+$, one has

$$\|Y - Y_j^{RS}\|_{C^{\gamma}(I)} \le c2^{-j\min(\beta - \gamma, \alpha + \beta - 1)}.$$
(1)

Question. Is it possible to find approximation procedures for Y allowing to have better rates of convergence than the one provided by (1)?

Content of the talk.

- The wavelet approximation (and the particular case of the Haar wavelet)
- Better rate of convergence under some Gaussian assumptions
- Examples of processes satisfying this assumption
- · Discussion of the optimality of the improved rate of convergence

The wavelet approximation

We assume that the collection of functions, from $\mathbb R$ to itself,

$$\left\{\varphi(\cdot-l): l \in \mathbb{Z}\right\} \cup \left\{2^{j/2}\psi(2^j \cdot -k): (j,k) \in \mathbb{Z}_+ \times \mathbb{Z}\right\}$$

satisfies one of the following two hypotheses :

 (\mathcal{H}_1) This collection is the Haar basis of $L^2(\mathbb{R})$, i.e.

$$\varphi := \mathbf{1}_{[0,1)}$$
 and $\psi := \mathbf{1}_{[0,1/2)} - \mathbf{1}_{[1/2,1)}.$

 (\mathcal{H}_2) This collection is an arbitrary compactly supported orthonormal wavelet basis of $L^2(\mathbb{R})$ such that the scaling function φ and the mother wavelet ψ are α -Hölder continuous on \mathbb{R} , i.e.

$$\sup_{(x_1,x_2)\in\mathbb{R}^2, x_1 < x_2} \left\{ \frac{|\varphi(x_1) - \varphi(x_2)| + |\psi(x_1) - \psi(x_2)|}{|x_1 - x_2|^{\alpha}} \right\} < +\infty.$$

Definition

A multiresolution analysis of $L^2(\mathbb{R})$ is an increasing sequence $(V_j)_{j\in\mathbb{Z}}$ of closed subspaces of $L^2(\mathbb{R})$ satisfying the following properties :

- $\bigcap_{j \in \mathbb{Z}} V_j = \{0\}$ and $\bigcup_{j \in \mathbb{Z}} V_j$ is dense in $L^2(\mathbb{R})$,
- for every $j \in \mathbb{Z}, f \in V_j$ if and only if $f(2 \cdot) \in V_{j+1}$,
- for every $k \in \mathbb{Z}$, $f \in V_0$ if and only if $f(\cdot k) \in V_0$,
- there exists a function $\varphi \in V_0$ such that $\{\varphi(\cdot k) : k \in \mathbb{Z}\}$ form an orthonormal basis of V_0 .

For every $j \in \mathbb{Z}_+$, let W_j be the closed subspace of V_{j+1} such that $V_{j+1} = V_j \oplus W_j$. Then

$$L^2(\mathbb{R}) = V_0 \oplus \left(\bigoplus_{j \in \mathbb{Z}_+} W_j \right)$$

and one can construct a function ψ whose translate form an orthonormal basis of W_0 . Then, the functions $2^{j/2}\psi(2^j\cdot -k), k\in\mathbb{Z}$, form an orthonormal basis of W_j .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

For any fixed $t \in I$,

$$s \mapsto \sigma_t(s) := \sigma(s) \mathbf{1}_{[0,t]}(s)$$

belongs to $L^2(\mathbb{R})$. So,

$$\sigma_t = \sum_{l=-\infty}^{+\infty} b_{0,l}(t)\varphi(\cdot - l) + \sum_{j=0}^{+\infty} \sum_{k=-\infty}^{+\infty} a_{j,k}(t)2^{j/2}\psi(2^j \cdot - k)$$

which converges in $L^2(\mathbb{R})$, where

$$b_{0,l}(t) := \int_0^t \sigma(s)\varphi(s-l) \,\mathrm{d}s$$

and

$$a_{j,k}(t) := 2^{j/2} \int_0^t \sigma(s)\psi(2^j s - k) \,\mathrm{d}s.$$

ж

For any fixed $t \in I$,

$$s \mapsto \sigma_t(s) := \sigma(s) \mathbf{1}_{[0,t]}(s)$$

belongs to $L^2(\mathbb{R}).$ So, if supp $\varphi \subseteq [N_1,N_2] \, \text{ and } \, \text{supp } \psi \subseteq [N_1,N_2]$

$$\sigma_t = \sum_{l=1-N_2}^{[t]-N_1} b_{0,l}(t)\varphi(\cdot - l) + \sum_{j=0}^{+\infty} \sum_{k=1-N_2}^{[2^jt]-N_1} a_{j,k}(t)2^{j/2}\psi(2^j \cdot -k)$$

which converges in $L^2(\mathbb{R})$, where

$$b_{0,l}(t) := \int_0^t \sigma(s)\varphi(s-l) \,\mathrm{d}s$$

and

$$a_{j,k}(t) := 2^{j/2} \int_0^t \sigma(s)\psi(2^j s - k) \,\mathrm{d}s.$$

$$\sigma_t = \sum_{l=1-N_2}^{[t]-N_1} b_{0,l}(t)\varphi(\cdot - l) + \sum_{j=0}^{+\infty} \sum_{k=1-N_2}^{[2^jt]-N_1} a_{j,k}(t) 2^{j/2} \psi(2^j \cdot -k)$$

For any $J \in \mathbb{N}$, we consider the partial sum

$$\sigma_{t,J} := \sum_{l=1-N_2}^{[t]-N_1} b_{0,l}(t)\varphi(\cdot - l) + \sum_{j=0}^{J-1} \sum_{k=1-N_2}^{[2^jt]-N_1} a_{j,k}(t)2^{j/2}\psi(2^j\cdot - k)$$

Note that supp $\sigma_{t,J} \subseteq [Q_1, Q_2]$, where Q_1, Q_2 are independent of $t \in I$ and $J \in \mathbb{Z}_+$. For any $t \in I$ and all $J \in \mathbb{N}$, one sets

$$\begin{split} Y_J^W(t) &:= \int_{Q_1}^{Q_2} \sigma_{t,J}(s) \, \mathrm{d}X(s) \\ &= \sum_{l=1-N_2}^{[t]-N_1} b_{0,l}(t) \int_{Q_1}^{Q_2} \varphi(s-l) \, \mathrm{d}X(s) \\ &+ \sum_{j=0}^{J-1} \sum_{k=1-N_2}^{[2^jt]-N_1} a_{j,k}(t) 2^{j/2} \int_{Q_1}^{Q_2} \psi(2^js-k) \, \mathrm{d}X(s). \end{split}$$

C. Esser (Université Lille 1)

Valencia, 27 - 29 October 2016 10 / 33

Particular case of the Haar basis

In this case,

$$\varphi := \mathbf{1}_{[0,1)} \quad \text{and} \quad \psi := \mathbf{1}_{[0,1/2)} - \mathbf{1}_{[1/2,1)}.$$

Note that one has

$$\begin{aligned} \sigma_{t,J} &= b_{0,0}(t)\mathbf{1}_{[0,1)} + \sum_{j=0}^{J-1} \sum_{k=0}^{[2^{j}t]-1} a_{j,k}(t) 2^{j/2} \left(\mathbf{1}_{\left[\frac{k}{2^{j}},\frac{2k+1}{2^{j+1}}\right]} - \mathbf{1}_{\left[\frac{2k+1}{2^{j+1}},\frac{k+1}{2^{j}}\right]}\right) \\ &= \sum_{k=0}^{[2^{J}t]-1} b_{J,k}(t) 2^{J/2} \mathbf{1}_{\left[\frac{k}{2^{J}},\frac{k+1}{2^{J}}\right]}\end{aligned}$$

where

$$b_{J,k}(t) := 2^{J/2} \int_0^t \sigma(s) \mathbf{1}_{\left[\frac{k}{2J}, \frac{k+1}{2J}\right]}(s) \,\mathrm{d}s.$$

Consequently,

$$Y_J^W(t) = \int_{Q_1}^{Q_2} \sigma_{t,J}(s) \, \mathrm{d}X(s) = \sum_{k=0}^{[2^J t] - 1} b_{J,k}(t) 2^{J/2} \Delta_{J,k}(X).$$

э

$$Y_J^W(t) = \sum_{k=0}^{[2^J t]-1} b_{J,k}(t) 2^{J/2} \Delta_{J,k}(X) , \quad b_{J,k}(t) := 2^{J/2} \int_0^t \sigma(s) \mathbf{1}_{\left[\frac{k}{2^J}, \frac{k+1}{2^J}\right)}(s) \, \mathrm{d}s$$

Remarks.

• This approximation procedure can be connected to the one with Riemann sums : Also assume that the $s_{J,l}$ used in the Riemann approximation are chosen so that

$$\sigma(s_{J,l}) = 2^J \int_{2^{-J}l}^{2^{-J}(l+1)} \sigma(s) \, \mathrm{d}s \,, \quad \text{for every } l \in \{0, \dots, 2^J - 1\}.$$

Then, one has $Y_J^W(2^{-J}l) = Y_J^{RS}(2^{-J}l).$

The same holds for the others wavelet basis :

$$Y_J^W(t) = \sum_{k=1-N_2}^{[2^J t]-N_1} b_{J,k}(t) 2^{J/2} \int_{Q_1}^{Q_2} \varphi(2^J s - k) \, \mathrm{d}X(s)$$

where

$$b_{J,k}(t) := 2^{J/2} \int_0^t \sigma(s)\varphi(2^J s - k) \,\mathrm{d}s$$

C. Esser (Université Lille 1)

Theorem

There is a constant c > 0 such that, for all $\gamma \in [0, \beta)$ and $J \in \mathbb{N}$, one has

$$||Y - Y_J^W||_{C^{\gamma}(I)} \le c 2^{-J \min(\beta - \gamma, \alpha + \beta - 1)}$$

Key of the proof. For each $J \in \mathbb{N}$ and $t_1, t_2 \in I$ satisfying $t_1 < t_2$, we introduce

$$\mathbb{L}_{J,t_1,t_2} := \left\{ l \in \{1 - N_2, \dots, 2^J - N_1\} : \left[\frac{l + N_1}{2^J}, \frac{l + N_2}{2^J}\right] \subseteq [t_1, t_2] \right\},\$$

and

$$\begin{split} \partial \mathbb{L}_{J,t_1,t_2} &:= \bigg\{ l \in \{1 - N_2, \dots, 2^J - N_1\} : l \notin \mathbb{L}_{J,t_1,t_2} \\ & \text{ and } \left[\frac{l + N_1}{2^J}, \frac{l + N_2}{2^J} \right] \cap [t_1, t_2] \neq \emptyset \bigg\}. \end{split}$$

Note that there is C > 0 J, t_1 and t_2 , such that

$$\operatorname{card}(\mathbb{L}_{J,t_1,t_2}) \leq C 2^J |t_1 - t_2|$$
 and $\operatorname{card}(\partial \mathbb{L}_{J,t_1,t_2}) \leq C.$

One has

$$Y_J^W(t) = \sum_{l=1-N_2}^{[2^J t] - N_1} b_{J,l}(t) 2^{J/2} \int_{2^{-J}(l+N_1)}^{2^{-J}(l+N_2)} \varphi(2^J s - l) \, \mathrm{d}X(s)$$

and

$$b_{J,l}(t_2) - b_{J,l}(t_1) = 2^{J/2} \int_{t_1}^{t_2} \sigma(s)\varphi(2^J s - l) d(s)$$

Therefore, one gets

$$Y_{J}^{W}(t_{2}) - Y_{J}^{W}(t_{1}) = \sum_{l \in \mathbb{L}_{J,t_{1},t_{2}}} \overline{\sigma}_{J,l} \int_{2^{-J}(l+N_{1})}^{2^{-J}(l+N_{2})} \varphi(2^{J}s - l) \, \mathrm{d}X(s)$$

+
$$\sum_{l \in \partial \mathbb{L}_{J,t_{1},t_{2}}} 2^{J} \int_{t_{1}}^{t_{2}} \sigma(s)\varphi(2^{J}s - l) \, \mathrm{d}s \int_{2^{-J}(l+N_{1})}^{2^{-J}(l+N_{2})} \varphi(2^{J}s - l) \, \mathrm{d}X(s)$$

where

$$\overline{\sigma}_{J,l} := 2^J \int_{2^{-J}(l+N_1)}^{2^{-J}(l+N_2)} \sigma(s)\varphi(2^Js-l) \,\mathrm{d}s.$$

ж

Moreover, it is known that integer translates of φ form "a partition of unity" in the sense that

$$\sum_{l=-\infty}^{+\infty}\varphi(x-l)=1,\quad\text{for all }x\in\mathbb{R}.$$

Consequently,

$$\begin{split} Y(t_2) - Y(t_1) &= \int_{t_1}^{t_2} \sigma(s) \, \mathrm{d}X(s) = \int_{t_1}^{t_2} \sigma(s) \Big(\sum_{l=-\infty}^{+\infty} \varphi(2^J s - l) \Big) \, \mathrm{d}X(s) \\ &= \int_{t_1}^{t_2} \sigma(s) \Big(\sum_{l \in \mathbb{L}_{J,t_1,t_2}} \varphi(2^J s - l) + \sum_{l \in \partial \mathbb{L}_{J,t_1,t_2}} \varphi(2^J s - l) \Big) \, \mathrm{d}X(s) \\ &= \sum_{l \in \mathbb{L}_{J,t_1,t_2}} \int_{2^{-J}(l+N_1)}^{2^{-J}(l+N_2)} \sigma(s) \varphi(2^J s - l) \, \mathrm{d}X(s) \\ &\quad + \sum_{l \in \partial \mathbb{L}_{J,t_1,t_2}} \int_{t_1}^{t_2} \sigma(s) \varphi(2^J s - l) \, \mathrm{d}X(s) \, . \end{split}$$

3

Next, one gets that

$$\left|Y(t_2) - Y(t_1) - Y_J^W(t_2) + Y_J^W(t_1)\right| \le \mathcal{A}_J^{(1)}(t_1, t_2) + \mathcal{A}_J^{(2)}(t_1, t_2),$$

where

$$\mathcal{A}_{J}^{(1)}(t_{1},t_{2}) := \sum_{l \in \mathbb{L}_{J,t_{1},t_{2}}} \left| \int_{2^{-J}(l+N_{1})}^{2^{-J}(l+N_{2})} \left(\sigma(s) - \overline{\sigma}_{J,l} \right) \varphi(2^{J}s - l) \, \mathrm{d}X(s) \right|$$

and

$$\begin{split} \mathcal{A}_{J}^{(2)}(t_{1},t_{2}) &:= \sum_{l \in \partial \mathbb{L}_{J,t_{1},t_{2}}} \left| \int_{t_{1}}^{t_{2}} \sigma(s)\varphi(2^{J}s-l) \,\mathrm{d}X(s) \right| \\ &+ \left| 2^{J} \int_{2^{-J}(l+N_{1})}^{2^{-J}(l+N_{2})} \varphi(2^{J}s-l) \,\mathrm{d}X(s) \int_{t_{1}}^{t_{2}} \sigma(s)\varphi(2^{J}s-l) \,\mathrm{d}s \right|. \end{split}$$

æ

・ロト ・回ト ・ヨト ・ヨト

Lemma

 (\mathcal{P}_1) There is a constant $c_2 > 0$ such that, for every $J \in \mathbb{N}$ and every $l \in \{1 - N_2, \dots, 2^J - N_1\}$, one has

$$\left|\int_{2^{-J}(l+N_1)}^{2^{-J}(l+N_2)} \left(\sigma(s) - \overline{\sigma}_{J,l}\right) \varphi(2^J s - l) \,\mathrm{d}X(s)\right| \le c_2 \, 2^{-J(\alpha+\beta)}$$

 (\mathcal{P}_2) There is a constant $c_1 > 0$ such that, for every $J \in \mathbb{N}$ and every $l \in \{1 - N_2, \dots, 2^J - N_1\}$, one has

$$\left| \int_{2^{-J}(l+N_1)}^{2^{-J}(l+N_2)} \varphi(2^J s - l) \, \mathrm{d}X(s) \right| \le c_1 2^{-J\beta}$$

 (\mathcal{P}_3) There is a constant $c_3 > 0$ such that, for every $t_1, t_2 \in I$ with $t_1 < t_2$, every $J \in \mathbb{N}$ and every $l \in \partial \mathbb{L}_{J,t_1,t_2}$, one has

$$\int_{t_1}^{t_2} \sigma(s)\varphi(2^J s - l) \, \mathrm{d}X(s) \Big| \le c_3 \min\left(2^{-J\beta}, |t_1 - t_2|^\beta\right).$$

Better rate of convergence under the Gaussian condition (G)

The Gaussian condition (G)

- $\sigma \in C^{\alpha}(K)$ for any compact interval $K \subset \mathbb{R}$.
- $X := \{X(s)\}_{s \in \mathbb{R}}$ is a real-valued centered Gaussian process which is β_0 -Hölder continuous in quadratic mean on any compact interval $K \subset \mathbb{R}$,

$$\mathbb{E}\left[\left|X(s_{1}) - X(s_{2})\right|^{2}\right] \le c|s_{1} - s_{2}|^{2\beta_{0}} \quad \forall s_{1}, s_{2} \in K$$

- $\alpha + \beta_0 > 1.$
- · The wavelet coefficients

$$\lambda_{j,k} := 2^{j/2} \int_{2^{-j}(k+N_1)}^{2^{-j}(k+N_2)} \psi(2^j s - k) \, \mathrm{d}X(s)$$

have the following "short-range dependence" property :

$$\max_{1-N_2 \le k_1 \le 2^j - N_1} \left\{ \sum_{k_2=1-N_2}^{2^j - N_1} \left| \operatorname{Cov} \left[\lambda_{j,k_1}, \lambda_{j,k_2} \right] \right| \right\} \le c 2^{-j(2\beta_0 - 1)}$$

Remarks.

 Using the equivalence of Gaussian moments and the Kolmogorov Hölder continuity theorem, one can derive that the paths of X belong to the Hölder spaces C^β(K), for all β ∈ (0, β₀) and all compact intervals K.

 \longrightarrow The stochastic process

$$Y(t) = \int_0^t \sigma(s) \, \mathrm{d}X(s)$$

can be defined pathwise and the previous result can be applied in this context. In particular, the stochastic processes Y_J^W converge to Y in $C^{\beta}(K)$.

- Using the fact that a pathwise Young integral is the limit of Riemann-Stieltjes sums, one can show that the processes $\{Y(t)\}_{t\in[0,1]}$, $\{\lambda_{j,k}\}_{(j,k)\in\mathbb{Z}_+\times\mathbb{Z}}$ and $\{Y_J^W(t)\}_{t\in[0,1]}$ are centered Gaussian processes.
- In the case of the Haar wavelets, the conditions of short-range dependence is a condition on the second order increments

$$\sum_{k_2=0}^{[2^j v]-1} \left| \operatorname{Cov} \left[\Delta_{j,k_1}^2(X), \Delta_{j,k_2}^2(X) \right] \right| \le c 2^{-2j\beta_0}$$

This condition (\mathcal{G}) allows to improve the convergence rate :

Theorem

Under the condition (\mathcal{G}), for any fixed $\beta \in (1 - \alpha, \beta_0)$ and non-negative real number $\gamma < \min(\beta, 1/2)$, there is a finite random constant c > 0 such that the inequality

$$||Y - Y_J^W||_{C^{\gamma}(I)} \le c \, 2^{-J \min(\beta - \gamma, \alpha + \beta - 1/2 - \gamma)}$$

holds almost surely, for each $J \in \mathbb{N}$.

Lemma

It suffices to obtain the result for $\gamma = 0$, i.e. to prove that there is a finite random constant c > 0 such that the inequality

$$||Y - Y_J^W||_{I,\infty} \le c \, 2^{-J \min(\beta, \alpha + \beta - 1/2)}$$

holds almost surely, for each $J \in \mathbb{N}$.

Let us recall that

$$Y_J^W(t) = \sum_{l=1-N_2}^{[t]-N_1} b_{0,l}(t) \int_{Q_1}^{Q_2} \varphi(s-l) \, \mathrm{d}X(s) + \sum_{j=0}^{J-1} \sum_{k=1-N_2}^{[2^jt]-N_1} a_{j,k}(t) \lambda_{j,k}$$

For every $j \in \mathbb{Z}_+$, we set

$$Z_j(t) := \sum_{k=1-N_2}^{[2^j t]-N_1} a_{j,k}(t) \lambda_{j,k}$$

so that

$$\|Y - Y_J^W\|_{I,\infty} = \|\sum_{j=J}^{+\infty} Z_j\|_{I,\infty} \le \sum_{j=J}^{+\infty} \|Z_j\|_{I,\infty}$$

In order to get a rate of convergence of Y^W_J to Y, one has to estimate the norm $\|Z_j\|_{I,\infty}.$

э

・ロト ・回ト ・ヨト ・ヨト

Note that $||Z_j||_{I,\infty} := \sup_{t \in [0,1]} |Z_j(t)|$ is the supremum of infinitely many random variables. It is more convenient to work with a supremum of finite number of them.

Lemma

For each $j \in \mathbb{N}$, one sets $\nu(Z_j) := \sup_{l \in \{0,...,2^j\}} |Z_j(2^{-j}l)|$. Then, for any fixed $\beta \in (1 - \alpha, \beta_0)$, one has almost surely

$$\sup_{j\in\mathbb{N}}\left\{2^{j\beta}\left|\|Z_j\|_{I,\infty}-\nu(Z_j)\right|\right\}<+\infty.$$

Idea. One has

$$\left| Z_j(t_0) - Z_j(2^{-j}[2^j t_0]) \right| \le \sum_{k=1-N_2}^{[2^j t_0] - N_1} \left| a_{j,k}(t_0) - a_{j,k}(2^{-j}[2^j t_0]) \right| \underbrace{|\lambda_{j,k}|}_{\le c2^{-(\beta-1/2)j}}$$

and

$$\left|a_{j,k}(t_0) - a_{j,k}(2^{-j}[2^j t_0])\right| \le 2^{j/2} \left(t_0 - [2^j t_0]2^{-j}\right) \|\sigma\|_{I,\infty} \|\psi\|_{[N_1,N_2],\infty} \le c 2^{-j/2}$$

Notice that if one shows that

$$\sum_{j=1}^{+\infty} \mathbb{P}\left(2^{j\min(\beta,\alpha+\beta-1/2)}\nu(Z_j) > 1\right) < +\infty,$$

then the Borel-Cantelli lemma entails that almost surely,

$$\sup_{j\in\mathbb{N}}\left\{2^{j\min(\beta,\alpha+\beta-1/2)}\nu(Z_j)\right\}<+\infty$$

and the Theorem will follows.

Using the Markov inequality, one has

$$\mathbb{P}\left(2^{j\min(\beta,\alpha+\beta-1/2)}\nu(Z_j)>1\right) \le 2^{j\min(\beta,\alpha+\beta-1/2)} \mathbb{E}\left(\nu(Z_j)\right)$$

for every $j \in \mathbb{N}$

 \longrightarrow one has to estimate $\mathbb{E}\left(\nu(Z_j)\right)$

Lemma

There exists a universal deterministic finite constant c > 0, such that, for every centered Gaussian process $\{g_n\}_{n \in \mathbb{N}}$ and for all $N \in \mathbb{N}$,

$$\mathbb{E}\left(\sup_{1\leq n\leq N}|g_n|\right)\leq c\left(1+\log N\right)^{\frac{1}{2}}\sup_{1\leq n\leq N}\left(\mathbb{E}\left(|g_n|^2\right)\right)^{\frac{1}{2}}.$$

The process $Z_j(t) := \sum_{k=1-N_2}^{\lfloor 2^j t \rfloor - N_1} a_{j,k}(t) \lambda_{j,k}$ is Gaussian and centered. Consequently, for all $j \in \mathbb{N}$, one has

$$\mathbb{E}\left(\nu(Z_j)\right) \le c\left(2+j\right)^{\frac{1}{2}} \sup_{l \in \{0,...,2^j\}} \left(\mathbb{E}\left(|Z_j(2^{-j}l)|^2\right)\right)^{\frac{1}{2}},$$

and the problem is now the computation of $\mathbb{E}\left(|Z_j(2^{-j}l)|^2\right)$. One has

$$\mathbb{E}\left[|Z_j(2^{-j}l)|^2\right] = \sum_{k_1=1-N_2}^{l-N_1} \sum_{k_2=1-N_2}^{l-N_1} a_{j,k_1}(2^{-j}l)a_{j,k_2}(2^{-j}l)\operatorname{Cov}\left[\lambda_{j,k_1},\lambda_{j,k_2}\right].$$

$$\mathbb{E}\left[|Z_j(2^{-j}l)|^2\right] = \sum_{k_1=1-N_2}^{l-N_1} \sum_{k_2=1-N_2}^{l-N_1} a_{j,k_1}(2^{-j}l)a_{j,k_2}(2^{-j}l)\operatorname{Cov}\left[\lambda_{j,k_1},\lambda_{j,k_2}\right].$$

Since σ is α -Hölder continuous, it is easy to see that there is a finite constant c > 0 such that, for every $t \in I$ and $j \in \mathbb{N}$, one has

$$\left|a_{j,k}(t)\right| \leq c 2^{-j(\alpha+\frac{1}{2})}, \quad \text{for all } k \in \mathbb{L}_{j,0,t}\,,$$

and

$$\left|a_{j,k}(t)\right| \le c2^{-\frac{j}{2}}, \quad \text{for all } k \in \partial \mathbb{L}_{j,0,t}.$$

Morever, condition (G) gives that

$$\max_{1-N_2 \le k_1 \le 2^j - N_1} \left\{ \sum_{k_2=1-N_2}^{2^j - N_1} \left| \operatorname{Cov} \left[\lambda_{j,k_1}, \lambda_{j,k_2} \right] \right| \right\} \le c_2 2^{-j(2\beta_0 - 1)}$$

Therefore, computing the cardinality of $\mathbb{L}_{j,0,t}$ and $\partial \mathbb{L}_{j,0,t}$, one gets that

$$\sup_{j \in \mathbb{N}} \sup_{l \in \{0, \dots, 2^j\}} \left\{ 2^{2j \min(\beta_0, \alpha + \beta_0 - 1/2)} \mathbb{E} \left(|Z_j(2^{-j}l)|^2 \right) \right\} < +\infty.$$

C. Esser (Université Lille 1)

Total. We have proved that

$$\sup_{j \in \mathbb{N}} \sup_{l \in \{0, \dots, 2^j\}} \left\{ 2^{2j \min(\beta_0, \alpha + \beta_0 - 1/2)} \mathbb{E} \left(|Z_j(2^{-j}l)|^2 \right) \right\} < +\infty.$$

Since

$$\mathbb{E}\left(\nu(Z_{j})\right) \leq c\left(2+j\right)^{\frac{1}{2}} \sup_{l \in \{0,\dots,2^{j}\}} \left(\mathbb{E}\left(|Z_{j}(2^{-j}l)|^{2}\right)\right)^{\frac{1}{2}},$$

and

$$\mathbb{P}\left(2^{j\min(\beta,\alpha+\beta-1/2)}\nu(Z_j)>1\right) \le 2^{j\min(\beta,\alpha+\beta-1/2)} \mathbb{E}\left(\nu(Z_j)\right)$$

we get that $\mathbb{P}\left(2^{j\min(\beta,\alpha+\beta-1/2)}\nu(Z_j)>1\right)$ is the general term of a convergent series.

Consequently, the Borel-Cantelli lemma gives that almost surely,

$$\sup_{j\in\mathbb{N}}\left\{2^{j\min(\beta,\alpha+\beta-1/2)}\nu(Z_j)\right\}<+\infty$$

hence the result.

Examples of processes satisfying the condition (G)

We consider stationary increments real-valued centered Gaussian processes $X := \{X(s)\}_{s \in \mathbb{R}}$ having, for all $(s_1, s_2) \in \mathbb{R}^2$, a covariance function of the following general form :

Cov
$$[X(s_1), X(s_2)] = \mathbb{E} [X(s_1)X(s_2)]$$

= $\int_{-\infty}^{+\infty} (e^{is_1\xi} - 1)(e^{-is_2\xi} - 1)f(\xi) d\xi$,

where the measurable nonnegative even function f satisfies the integrability condition :

$$\int_{-\infty}^{+\infty} \min\left(1,\xi^2\right) f(\xi) \,\mathrm{d}\xi < +\infty.$$

Example. The fractional Brownian motion : up to a multiplicative constant, $f(\xi) = |\xi|^{-2H-1}$ for all $\xi \neq 0$, where $H \in (0, 1)$ denotes the Hurst parameter.

We will see how the conditions given by (\mathcal{G}) can be transformed into conditions on the function f.

Proposition

A sufficient condition for the process X to be β_0 -Hölder continuous in quadratic mean is that there exist two positive finite deterministic constants c and ξ_0 , such that

 $f(\xi) \leq c|\xi|^{-2\beta_0-1}$, for almost all $\xi \in (-\infty, -\xi_0) \cup (\xi_0, +\infty)$.

Example. It is satisfied by the fractional Brownian motion of index $H = \beta_0$.

Proposition

The condition of "short-range dependence" holds as soon as f is twice continuously differentiable on $\mathbb{R} \setminus \{0\}$ and satisfies the following condition :

 (\mathcal{D}_1) In the case of the Haar basis : there exist two finite deterministic constants $\beta'_0 \in [\beta_0, 1)$ and c > 0 such that, for all $n \in \{0, 1, 2\}$ and $\xi \in \mathbb{R} \setminus \{0\}$, one has

$$\left|f^{(n)}(\xi)\right| \le c \max\left(|\xi|^{-2\beta_0 - n - 1}, |\xi|^{-2\beta'_0 - n - 1}\right)$$

 (\mathcal{D}_M) If the wavelet ψ is continuously differentiable on the real line and has at least M vanishing moments, that is

$$\int_{-\infty}^{+\infty} s^m \, \psi(s) \, \mathrm{d}s = 0, \quad \text{for all } m \in \{0, \dots, M-1\}:$$

There exist two finite deterministic constants $\beta'_0 \in [\beta_0, 1)$ and c > 0 such that, for all $n \in \{0, 1, 2\}$ and $\xi \in \mathbb{R} \setminus \{0\}$, one has

$$\left|f^{(n)}(\xi)\right| \le c \max\left(|\xi|^{-2\beta_0 - n - 1}, |\xi|^{-2\beta'_0 - nM - 1}\right)$$

Example. Clearly, (\mathcal{D}_1) and (\mathcal{D}_M) , for any $M \ge 1$, hold when $f(\xi) = |\xi|^{-2H-1}$, the two constants β_0 and β'_0 being arbitrary and such that $0 < \beta_0 \le H \le \beta'_0 < 1$.

Remarks.

- (\mathcal{D}_M) is weaker than $(\mathcal{D}_{M'})$, for any M' < M.
- A major motivation for weakening the condition (\mathcal{D}_1) to the condition (\mathcal{D}_M) is the following : the behavior of the function f at low frequencies can then be much more singular, namely f can have infinitely many oscillations in the vicinity of 0. For instance, let $\tilde{f}_{u,v,w}$ be the function defined, for all $\xi \in \mathbb{R} \setminus \{0\}$, as

$$\tilde{f}_{u,v,w}(\xi) := |\xi|^{-2u-1} + |\xi|^{-2v-1} \sin^2(|\xi|^{-w}),$$

where the three parameters u, v and w are arbitrary real numbers such that $0 < u \le v < 1$ and w > 0. Observe that the larger is w the more oscillating is $\tilde{f}_{u,v,w}$ in the neighborhood of 0. This function fails to satisfy (\mathcal{D}_1) but for any integer $M \ge 1 + w$, it satisfies (\mathcal{D}_M) with $\beta_0 = u$ and $\beta'_0 = v$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Optimality of the improved rate of convergence

One denotes by $\overline{\alpha}$ and $\overline{\beta}$ the two critical exponents defined as

 $\overline{\alpha} := \sup \big\{ \alpha \in [0,1) : \sigma \in C^{\alpha}(I) \big\} \text{ and } \overline{\beta} := \sup \big\{ \beta \in [0,1) : X \in C^{\beta}(I) \big\}.$

Proposition

Assume that $\overline{\alpha} \ge 1/2$, $\overline{\beta} < 1$, that the condition (\mathcal{G}) is satisfied for all $\beta_0 \in (1 - \overline{\alpha}, \overline{\beta})$, and that the deterministic integrand σ vanishes nowhere on I. Then, for each fixed $\gamma \in [0, \min(\overline{\beta}, 1/2))$ and arbitrarily small $\epsilon > 0$, one has, almost surely,

$$||Y - Y_J^W||_{C^{\gamma}(I)} \asymp 2^{-J(\overline{\beta} - \gamma)},$$

i.e.

$$\sup_{J\in\mathbb{N}} \left\{ 2^{J(\overline{\beta}-\gamma-\epsilon)} \|Y-Y_J^W\|_{C^{\gamma}(I)} \right\} < +\infty$$

and

$$\sup_{J\in\mathbb{N}}\left\{2^{J(\overline{\beta}-\gamma+\epsilon)}\|Y-Y_J^W\|_{C^{\gamma}(I)}\right\} = +\infty.$$

Example. Assume that the integrator X is a fBm of an arbitrary Hurst parameter $H \in (0, 1)$ and that the deterministic integrand σ is the positive (vanishing nowhere) Weierstrass type function defined as

$$\sigma(s) := \sigma_0 + \sum_{n=1}^{+\infty} b^{-na} \sin(b^n s) \quad \forall s \in \mathbb{R},$$

where a, b and σ_0 are parameters such that $a \in (0, 1)$, b > 1 and $\sigma_0(b^a - 1) > 1$. Then, almost surely,

$$\overline{\alpha} = a$$
 and $\overline{\beta} = H$.

As soon as $a \ge 1/2$ and a > 1 - H, for each fixed $\gamma \in [0, \min(H, 1/2))$, one has

$$||Y - Y_J^W||_{C^{\gamma}(I)} \approx 2^{-J(H-\gamma)}$$

References

A. Ayache, C. Esser and Q. Peng

Almost sure approximations in Hölder norms of a general stochastic process defined by a Young integral Sumbitted for publication.

A. Bonami and A. Estrade.

Anisotropic Analysis of Some Gaussian Models. J. Fourier Anal. Appl., 9 :215–236, 2003.

Z. Ciesielski, G. Kerkyacharian and B. Roynette.

Quelques Espaces Fonctionnels Associés à des processus Gaussiens. *Stud. Math.*, 107 :171–204, 1993.

I. Daubechies. Ten Lectures on Wavelets. *SIAM Philadelphia*, 1992.

M. Gubinelli, P. Imkeller and N. Perkowski. A Fourier analytic approach to pathwise stochastic integration *Electron. J. Probab.*, 21 :1–37, 2016.

T. J. Lyons, M. Caruana and T. Lévy.

Differential Equations Driven by Rough Paths. *Springer. Editor : J. Picard*, 2004.

Y. Meyer.

Wavelets and Operators Cambridge University Press, 1992.