Wavelet series representations for pathwise Young integrals

Céline Esser
Celine.Esser@univ-lille1.fr

Université Lille 1 - Laboratoire Paul Painlevé

Workshop on Complex Analysis and Operators Theory
Valencia, 27-29 October 2016

Joint work with
A. Ayache (Université Lille 1)
Q. Peng (Claremont Graduate University)

Introduction

We are interested in the approximation of the Young integral

$$
Y(t):=\int_{0}^{t} \sigma(s) \mathrm{d} X(s), \quad t \in I:=[0,1]
$$

General assumptions. There are $\alpha, \beta \in(0,1)$ such that for any compact interval $K \subset \mathbb{R}$,

$$
\sigma \in C^{\alpha}(K), \quad X \in C^{\beta}(K) \quad \text { and } \quad \alpha+\beta>1 .
$$

Definition

For any $\theta \in[0,1)$, the Hölder space $C^{\theta}(K)$ is the Banach space of continuous functions $f: K \rightarrow \mathbb{R}$ such that

$$
\|f\|_{C^{\theta}(I)}:=\|f\|_{K, \infty}+\sup _{\left(x_{1}, x_{2}\right) \in K^{2}, x_{1}<x_{2}} \frac{\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|^{\theta}}<+\infty .
$$

The Hölder conditions give the existence of $\zeta_{t} \in \mathbb{R}$ such that for any sequence

$$
\left(\mathcal{D}_{n}\right)_{n \in \mathbb{Z}_{+}}=\left(\left\{\delta_{0}^{n}, \delta_{1}^{n}, \ldots, \delta_{r_{n}}^{n}: r_{n} \in \mathbb{Z}_{+}, 0=\delta_{0}^{n}<\delta_{1}^{n}<\ldots<\delta_{r_{n}}^{n}=t\right\}\right)_{n \in \mathbb{Z}_{+}}
$$

of partitions of the interval I for which $\left|\mathcal{D}_{n}\right| \rightarrow 0$, the Riemann-Stieltjes sum

$$
\sum_{i=1}^{r_{n}} \sigma\left(\delta_{i-1}^{n}\right)\left(X\left(\delta_{i}^{n}\right)-X\left(\delta_{i-1}^{n}\right)\right)
$$

converges to ζ_{t}. Therefore, one can define the integral $\int_{0}^{t} \sigma(s) \mathrm{d} X(s)$ by setting

$$
\int_{0}^{t} \sigma(s) \mathrm{d} X(s):=\zeta_{t} .
$$

Young - Loeve inequalities. There is a constant $\mathcal{K}_{\alpha+\beta}>0$ such that for any $t_{1}<t_{2}$,

$$
\begin{aligned}
&\left|\int_{t_{1}}^{t_{2}} \sigma(s) \mathrm{d} X(s)-\sigma\left(t_{1}\right)\left(X\left(t_{2}\right)-X\left(t_{1}\right)\right)\right| \\
& \leq \mathcal{K}_{\alpha+\beta}\|\sigma\|_{C^{\alpha}\left(\left[t_{1}, t_{2}\right]\right)}\|X\|_{C^{\beta}\left(\left[t_{1}, t_{2}\right]\right)}\left(t_{2}-t_{1}\right)^{\alpha+\beta}
\end{aligned}
$$

In particular, $Y \in C^{\beta}(K)$ for any compact interval $K \subset \mathbb{R}$.

Approximation via Riemann sums

For $j \in \mathbb{Z}_{+}$and $k \in\left\{0, \ldots, 2^{j}-1\right\}$, it is natural to approximate

$$
Y\left(\frac{k}{2^{j}}\right)=\int_{0}^{\frac{k}{2 j}} \sigma(s) \mathrm{d} X(s)=\sum_{l=0}^{k-1} \int_{\frac{l}{2 j}}^{\frac{l+1}{2 j}} \sigma(s) \mathrm{d} X(s)
$$

by

$$
Y_{j}\left(\frac{k}{2^{j}}\right):=\sum_{l=0}^{k-1} \sigma(s_{j, l} \underbrace{\left(X\left(\frac{l+1}{2^{j}}\right)-X\left(\frac{l}{2^{j}}\right)\right)}_{:=\Delta_{j, l}(X) \text { increments of order } 1 \text { of } X}, \quad s_{j, l} \in\left[\frac{l}{2^{j}}, \frac{l+1}{2^{j}}\right]
$$

The Young-Loeve inequalities directly give

$$
\begin{aligned}
\left|Y\left(\frac{k}{2^{j}}\right)-Y_{j}\left(\frac{k}{2^{j}}\right)\right| & \leq \sum_{l=0}^{k-1}\left|\int_{\frac{l}{2^{j}}}^{\frac{l+1}{2^{j}}} \sigma(s) \mathrm{d} X(s)-\sigma\left(s_{j, l}\right) \Delta_{j, l}(X)\right| \\
& \leq \sum_{l=0}^{k-1} c_{0} 2^{-j(\alpha+\beta)} \leq c_{0} 2^{-j(\alpha+\beta-1)}
\end{aligned}
$$

Using linear interpolation, one gets for every $j \in \mathbb{Z}_{+}$, a function $Y_{j}^{R S}$ which approximates Y :

$$
Y_{j}^{R S}(t):=\left(2^{j} t-\left[2^{j} t\right]\right) \sigma\left(s_{j,\left[2^{j} t\right]}\right) \Delta_{j,\left[2^{j} t\right]}(X)+Y_{j}\left(\frac{\left[2^{j} t\right]}{2^{j}}\right)
$$

Proposition

There exists a constant $c>0$ such that for all $\gamma \in[0, \beta)$ and $j \in \mathbb{Z}_{+}$, one has

$$
\begin{equation*}
\left\|Y-Y_{j}^{R S}\right\|_{C^{\gamma}(I)} \leq c 2^{-j \min (\beta-\gamma, \alpha+\beta-1)} . \tag{1}
\end{equation*}
$$

Question. Is it possible to find approximation procedures for Y allowing to have better rates of convergence than the one provided by (1)?

Content of the talk.

- The wavelet approximation (and the particular case of the Haar wavelet)
- Better rate of convergence under some Gaussian assumptions
- Examples of processes satisfying this assumption
- Discussion of the optimality of the improved rate of convergence

The wavelet approximation

We assume that the collection of functions, from \mathbb{R} to itself,

$$
\{\varphi(\cdot-l): l \in \mathbb{Z}\} \cup\left\{2^{j / 2} \psi\left(2^{j} \cdot-k\right):(j, k) \in \mathbb{Z}_{+} \times \mathbb{Z}\right\}
$$

satisfies one of the following two hypotheses:
$\left(\mathcal{H}_{1}\right)$ This collection is the Haar basis of $L^{2}(\mathbb{R})$, i.e.

$$
\varphi:=\mathbf{1}_{[0,1)} \quad \text { and } \quad \psi:=\mathbf{1}_{[0,1 / 2)}-\mathbf{1}_{[1 / 2,1)} .
$$

$\left(\mathcal{H}_{2}\right)$ This collection is an arbitrary compactly supported orthonormal wavelet basis of $L^{2}(\mathbb{R})$ such that the scaling function φ and the mother wavelet ψ are α-Hölder continuous on \mathbb{R}, i.e.

$$
\sup _{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, x_{1}<x_{2}}\left\{\frac{\left|\varphi\left(x_{1}\right)-\varphi\left(x_{2}\right)\right|+\left|\psi\left(x_{1}\right)-\psi\left(x_{2}\right)\right|}{\left|x_{1}-x_{2}\right|^{\alpha}}\right\}<+\infty .
$$

Definition

A multiresolution analysis of $L^{2}(\mathbb{R})$ is an increasing sequence $\left(V_{j}\right)_{j \in \mathbb{Z}}$ of closed subspaces of $L^{2}(\mathbb{R})$ satisfying the following properties:

- $\bigcap_{j \in \mathbb{Z}} V_{j}=\{0\}$ and $\bigcup_{j \in \mathbb{Z}} V_{j}$ is dense in $L^{2}(\mathbb{R})$,
- for every $j \in \mathbb{Z}, f \in V_{j}$ if and only if $f(2 \cdot) \in V_{j+1}$,
- for every $k \in \mathbb{Z}, f \in V_{0}$ if and only if $f(\cdot-k) \in V_{0}$,
- there exists a function $\varphi \in V_{0}$ such that $\{\varphi(\cdot-k): k \in \mathbb{Z}\}$ form an orthonormal basis of V_{0}.

For every $j \in \mathbb{Z}_{+}$, let W_{j} be the closed subspace of V_{j+1} such that $V_{j+1}=V_{j} \oplus W_{j}$. Then

$$
L^{2}(\mathbb{R})=V_{0} \oplus\left(\bigoplus_{j \in \mathbb{Z}_{+}} W_{j}\right)
$$

and one can construct a function ψ whose translate form an orthonormal basis of W_{0}. Then, the functions $2^{j / 2} \psi\left(2^{j} \cdot-k\right), k \in \mathbb{Z}$, form an orthonormal basis of W_{j}.

For any fixed $t \in I$,

$$
s \mapsto \sigma_{t}(s):=\sigma(s) \mathbf{1}_{[0, t]}(s)
$$

belongs to $L^{2}(\mathbb{R})$. So,

$$
\sigma_{t}=\sum_{l=-\infty}^{+\infty} b_{0, l}(t) \varphi(\cdot-l)+\sum_{j=0}^{+\infty} \sum_{k=-\infty}^{+\infty} a_{j, k}(t) 2^{j / 2} \psi\left(2^{j} \cdot-k\right)
$$

which converges in $L^{2}(\mathbb{R})$, where

$$
b_{0, l}(t):=\int_{0}^{t} \sigma(s) \varphi(s-l) \mathrm{d} s
$$

and

$$
a_{j, k}(t):=2^{j / 2} \int_{0}^{t} \sigma(s) \psi\left(2^{j} s-k\right) \mathrm{d} s
$$

For any fixed $t \in I$,

$$
s \mapsto \sigma_{t}(s):=\sigma(s) \mathbf{1}_{[0, t]}(s)
$$

belongs to $L^{2}(\mathbb{R})$. So, if supp $\varphi \subseteq\left[N_{1}, N_{2}\right]$ and supp $\psi \subseteq\left[N_{1}, N_{2}\right]$

$$
\sigma_{t}=\sum_{l=1-N_{2}}^{[t]-N_{1}} b_{0, l}(t) \varphi(\cdot-l)+\sum_{j=0}^{+\infty} \sum_{k=1-N_{2}}^{\left[2^{j} t\right]-N_{1}} a_{j, k}(t) 2^{j / 2} \psi\left(2^{j} \cdot-k\right)
$$

which converges in $L^{2}(\mathbb{R})$, where

$$
b_{0, l}(t):=\int_{0}^{t} \sigma(s) \varphi(s-l) \mathrm{d} s
$$

and

$$
a_{j, k}(t):=2^{j / 2} \int_{0}^{t} \sigma(s) \psi\left(2^{j} s-k\right) \mathrm{d} s
$$

$$
\sigma_{t}=\sum_{l=1-N_{2}}^{[t]-N_{1}} b_{0, l}(t) \varphi(\cdot-l)+\sum_{j=0}^{+\infty} \sum_{k=1-N_{2}}^{\left[2^{j} t\right]-N_{1}} a_{j, k}(t) 2^{j / 2} \psi\left(2^{j} \cdot-k\right)
$$

For any $J \in \mathbb{N}$, we consider the partial sum

$$
\sigma_{t, J}:=\sum_{l=1-N_{2}}^{[t]-N_{1}} b_{0, l}(t) \varphi(\cdot-l)+\sum_{j=0}^{J-1} \sum_{k=1-N_{2}}^{\left[2^{j} t\right]-N_{1}} a_{j, k}(t) 2^{j / 2} \psi\left(2^{j} .-k\right)
$$

Note that supp $\sigma_{t, J} \subseteq\left[Q_{1}, Q_{2}\right]$, where Q_{1}, Q_{2} are independent of $t \in I$ and $J \in \mathbb{Z}_{+}$. For any $t \in I$ and all $J \in \mathbb{N}$, one sets

$$
\begin{aligned}
Y_{J}^{W}(t):= & \int_{Q_{1}}^{Q_{2}} \sigma_{t, J}(s) \mathrm{d} X(s) \\
= & \sum_{l=1-N_{2}}^{[t]-N_{1}} b_{0, l}(t) \int_{Q 1}^{Q_{2}} \varphi(s-l) \mathrm{d} X(s) \\
& \quad+\sum_{j=0}^{J-1} \sum_{k=1-N_{2}}^{\left[2^{j} t\right]-N_{1}} a_{j, k}(t) 2^{j / 2} \int_{Q_{1}}^{Q_{2}} \psi\left(2^{j} s-k\right) \mathrm{d} X(s) .
\end{aligned}
$$

Particular case of the Haar basis

In this case,

$$
\varphi:=\mathbf{1}_{[0,1)} \quad \text { and } \quad \psi:=\mathbf{1}_{[0,1 / 2)}-\mathbf{1}_{[1 / 2,1)} .
$$

Note that one has

$$
\begin{aligned}
\sigma_{t, J} & =b_{0,0}(t) \mathbf{1}_{[0,1)}+\sum_{j=0}^{J-1} \sum_{k=0}^{\left[2^{j} t\right]-1} a_{j, k}(t) 2^{j / 2}\left(\mathbf{1}_{\left[\frac{k}{2^{j}}, \frac{2 k+1}{2^{j+1}}\right)}-\mathbf{1}_{\left[\frac{2 k+1}{2^{j}+1}, \frac{k+1}{2^{j}}\right)}\right) \\
& =\sum_{k=0}^{\left[2^{J} t\right]-1} b_{J, k}(t) 2^{J / 2} \mathbf{1}_{\left[\frac{k}{2^{J}}, \frac{k+1}{2^{J}}\right)}
\end{aligned}
$$

where

$$
b_{J, k}(t):=2^{J / 2} \int_{0}^{t} \sigma(s) \mathbf{1}_{\left[\frac{k}{2^{J}}, \frac{k+1}{2^{J}}\right)}(s) \mathrm{d} s
$$

Consequently,

$$
Y_{J}^{W}(t)=\int_{Q_{1}}^{Q_{2}} \sigma_{t, J}(s) \mathrm{d} X(s)=\sum_{k=0}^{\left[2^{J} t\right]-1} b_{J, k}(t) 2^{J / 2} \Delta_{J, k}(X) .
$$

$$
Y_{J}^{W}(t)=\sum_{k=0}^{\left[2^{J} t\right]-1} b_{J, k}(t) 2^{J / 2} \Delta_{J, k}(X), \quad b_{J, k}(t):=2^{J / 2} \int_{0}^{t} \sigma(s) \mathbf{1}_{\left[\frac{k}{2^{J}}, \frac{k+1}{2^{J}}\right)}(s) \mathrm{d} s
$$

Remarks.

- This approximation procedure can be connected to the one with Riemann sums: Also assume that the $s_{J, l}$ used in the Riemann approximation are chosen so that

$$
\sigma\left(s_{J, l}\right)=2^{J} \int_{2^{-J} l}^{2^{-J}(l+1)} \sigma(s) \mathrm{d} s, \quad \text { for every } l \in\left\{0, \ldots, 2^{J}-1\right\}
$$

Then, one has $Y_{J}^{W}\left(2^{-J} l\right)=Y_{J}^{R S}\left(2^{-J} l\right)$.

- The same holds for the others wavelet basis :

$$
Y_{J}^{W}(t)=\sum_{k=1-N_{2}}^{\left[2^{J} t\right]-N_{1}} b_{J, k}(t) 2^{J / 2} \int_{Q_{1}}^{Q_{2}} \varphi\left(2^{J} s-k\right) \mathrm{d} X(s)
$$

where

$$
b_{J, k}(t):=2^{J / 2} \int_{0}^{t} \sigma(s) \varphi\left(2^{J} s-k\right) \mathrm{d} s
$$

Theorem

There is a constant $c>0$ such that, for all $\gamma \in[0, \beta)$ and $J \in \mathbb{N}$, one has

$$
\left\|Y-Y_{J}^{W}\right\|_{C^{\gamma}(I)} \leq c 2^{-J \min (\beta-\gamma, \alpha+\beta-1)}
$$

Key of the proof. For each $J \in \mathbb{N}$ and $t_{1}, t_{2} \in I$ satisfying $t_{1}<t_{2}$, we introduce

$$
\mathbb{L}_{J, t_{1}, t_{2}}:=\left\{l \in\left\{1-N_{2}, \ldots, 2^{J}-N_{1}\right\}:\left[\frac{l+N_{1}}{2^{J}}, \frac{l+N_{2}}{2^{J}}\right] \subseteq\left[t_{1}, t_{2}\right]\right\}
$$

and

$$
\begin{aligned}
& \partial \mathbb{L}_{J, t_{1}, t_{2}}:=\left\{l \in\left\{1-N_{2}, \ldots, 2^{J}-N_{1}\right\}: l \notin \mathbb{L}_{J, t_{1}, t_{2}}\right. \\
&\left.\quad \text { and }\left[\frac{l+N_{1}}{2^{J}}, \frac{l+N_{2}}{2^{J}}\right] \cap\left[t_{1}, t_{2}\right] \neq \emptyset\right\} .
\end{aligned}
$$

Note that there is $C>0 J, t_{1}$ and t_{2}, such that

$$
\operatorname{card}\left(\mathbb{L}_{J, t_{1}, t_{2}}\right) \leq C 2^{J}\left|t_{1}-t_{2}\right| \quad \text { and } \quad \operatorname{card}\left(\partial \mathbb{L}_{J, t_{1}, t_{2}}\right) \leq C .
$$

One has

$$
Y_{J}^{W}(t)=\sum_{l=1-N_{2}}^{\left[2^{J} t\right]-N_{1}} b_{J, l}(t) 2^{J / 2} \int_{2^{-J}\left(l+N_{1}\right)}^{2^{-J}\left(l+N_{2}\right)} \varphi\left(2^{J} s-l\right) \mathrm{d} X(s)
$$

and

$$
b_{J, l}\left(t_{2}\right)-b_{J, l}\left(t_{1}\right)=2^{J / 2} \int_{t_{1}}^{t_{2}} \sigma(s) \varphi\left(2^{J} s-l\right) \mathrm{d}(s)
$$

Therefore, one gets

$$
\begin{aligned}
Y_{J}^{W}\left(t_{2}\right)- & Y_{J}^{W}\left(t_{1}\right)=\sum_{l \in \mathbb{L}_{J, t_{1}, t_{2}}} \bar{\sigma}_{J, l} \int_{2^{-J}\left(l+N_{1}\right)}^{2^{-J}\left(l+N_{2}\right)} \varphi\left(2^{J} s-l\right) \mathrm{d} X(s) \\
& +\sum_{l \in \partial \mathbb{L}_{J, t_{1}, t_{2}}} 2^{J} \int_{t_{1}}^{t_{2}} \sigma(s) \varphi\left(2^{J} s-l\right) \mathrm{d} s \int_{2^{-J}\left(l+N_{1}\right)}^{2^{-J}\left(l+N_{2}\right)} \varphi\left(2^{J} s-l\right) \mathrm{d} X(s)
\end{aligned}
$$

where

$$
\bar{\sigma}_{J, l}:=2^{J} \int_{2^{-J}\left(l+N_{1}\right)}^{2^{-J}\left(l+N_{2}\right)} \sigma(s) \varphi\left(2^{J} s-l\right) \mathrm{d} s
$$

Moreover, it is known that integer translates of φ form "a partition of unity" in the sense that

$$
\sum_{l=-\infty}^{+\infty} \varphi(x-l)=1, \quad \text { for all } x \in \mathbb{R}
$$

Consequently,

$$
\begin{aligned}
& Y\left(t_{2}\right)-Y\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} \sigma(s) \mathrm{d} X(s)=\int_{t_{1}}^{t_{2}} \sigma(s)\left(\sum_{l=-\infty}^{+\infty} \varphi\left(2^{J} s-l\right)\right) \mathrm{d} X(s) \\
& =\int_{t_{1}}^{t_{2}} \sigma(s)\left(\sum_{l \in \mathbb{L}_{J, t_{1}, t_{2}}} \varphi\left(2^{J} s-l\right)+\sum_{l \in \partial \mathbb{L}_{J, t_{1}, t_{2}}} \varphi\left(2^{J} s-l\right)\right) \mathrm{d} X(s) \\
& =\sum_{l \in \mathbb{L}_{J, t_{1}, t_{2}}} \int_{2^{-J}\left(l+N_{1}\right)}^{2^{-J}\left(l+N_{2}\right)} \sigma(s) \varphi\left(2^{J} s-l\right) \mathrm{d} X(s) \\
& \quad+\sum_{l \in \partial \mathbb{L}_{J, t_{1}, t_{2}}} \int_{t_{1}}^{t_{2}} \sigma(s) \varphi\left(2^{J} s-l\right) \mathrm{d} X(s)
\end{aligned}
$$

Next, one gets that

$$
\left|Y\left(t_{2}\right)-Y\left(t_{1}\right)-Y_{J}^{W}\left(t_{2}\right)+Y_{J}^{W}\left(t_{1}\right)\right| \leq \mathcal{A}_{J}^{(1)}\left(t_{1}, t_{2}\right)+\mathcal{A}_{J}^{(2)}\left(t_{1}, t_{2}\right),
$$

where

$$
\mathcal{A}_{J}^{(1)}\left(t_{1}, t_{2}\right):=\sum_{l \in \mathbb{L}_{J, t_{1}, t_{2}}}\left|\int_{2^{-J}\left(l+N_{1}\right)}^{2^{-J}\left(l+N_{2}\right)}\left(\sigma(s)-\bar{\sigma}_{J, l}\right) \varphi\left(2^{J} s-l\right) \mathrm{d} X(s)\right|
$$

and

$$
\begin{aligned}
\mathcal{A}_{J}^{(2)}\left(t_{1}, t_{2}\right):= & \sum_{l \in \partial \mathbb{L}_{J, t_{1}, t_{2}}}\left|\int_{t_{1}}^{t_{2}} \sigma(s) \varphi\left(2^{J} s-l\right) \mathrm{d} X(s)\right| \\
& +\left|2^{J} \int_{2^{-J}\left(l+N_{1}\right)}^{2^{-J}\left(l+N_{2}\right)} \varphi\left(2^{J} s-l\right) \mathrm{d} X(s) \int_{t_{1}}^{t_{2}} \sigma(s) \varphi\left(2^{J} s-l\right) \mathrm{d} s\right| .
\end{aligned}
$$

Lemma

$\left(\mathcal{P}_{1}\right)$ There is a constant $c_{2}>0$ such that, for every $J \in \mathbb{N}$ and every $l \in\left\{1-N_{2}, \ldots, 2^{J}-N_{1}\right\}$, one has

$$
\left|\int_{2^{-J}\left(l+N_{1}\right)}^{2^{-J}\left(l+N_{2}\right)}\left(\sigma(s)-\bar{\sigma}_{J, l}\right) \varphi\left(2^{J} s-l\right) \mathrm{d} X(s)\right| \leq c_{2} 2^{-J(\alpha+\beta)}
$$

$\left(\mathcal{P}_{2}\right)$ There is a constant $c_{1}>0$ such that, for every $J \in \mathbb{N}$ and every $l \in\left\{1-N_{2}, \ldots, 2^{J}-N_{1}\right\}$, one has

$$
\left|\int_{2^{-J}\left(l+N_{1}\right)}^{2^{-J}\left(l+N_{2}\right)} \varphi\left(2^{J} s-l\right) \mathrm{d} X(s)\right| \leq c_{1} 2^{-J \beta}
$$

$\left(\mathcal{P}_{3}\right)$ There is a constant $c_{3}>0$ such that, for every $t_{1}, t_{2} \in I$ with $t_{1}<t_{2}$, every $J \in \mathbb{N}$ and every $l \in \partial \mathbb{L}_{J, t_{1}, t_{2}}$, one has

$$
\left|\int_{t_{1}}^{t_{2}} \sigma(s) \varphi\left(2^{J} s-l\right) \mathrm{d} X(s)\right| \leq c_{3} \min \left(2^{-J \beta},\left|t_{1}-t_{2}\right|^{\beta}\right)
$$

Better rate of convergence under the Gaussian condition (\mathcal{G})

The Gaussian condition (G)

- $\sigma \in C^{\alpha}(K)$ for any compact interval $K \subset \mathbb{R}$.
- $X:=\{X(s)\}_{s \in \mathbb{R}}$ is a real-valued centered Gaussian process which is β_{0}-Hölder continuous in quadratic mean on any compact interval $K \subset \mathbb{R}$,

$$
\mathbb{E}\left[\left|X\left(s_{1}\right)-X\left(s_{2}\right)\right|^{2}\right] \leq c\left|s_{1}-s_{2}\right|^{2 \beta_{0}} \quad \forall s_{1}, s_{2} \in K
$$

- $\alpha+\beta_{0}>1$.
- The wavelet coefficients

$$
\lambda_{j, k}:=2^{j / 2} \int_{2^{-j}\left(k+N_{1}\right)}^{2^{-j}\left(k+N_{2}\right)} \psi\left(2^{j} s-k\right) \mathrm{d} X(s)
$$

have the following "short-range dependence" property :

$$
\max _{1-N_{2} \leq k_{1} \leq 2^{j}-N_{1}}\left\{\sum_{k_{2}=1-N_{2}}^{2^{j}-N_{1}}\left|\operatorname{Cov}\left[\lambda_{j, k_{1}}, \lambda_{j, k_{2}}\right]\right|\right\} \leq c 2^{-j\left(2 \beta_{0}-1\right)}
$$

Remarks.

- Using the equivalence of Gaussian moments and the Kolmogorov Hölder continuity theorem, one can derive that the paths of X belong to the Hölder spaces $C^{\beta}(K)$, for all $\beta \in\left(0, \beta_{0}\right)$ and all compact intervals K.
\longrightarrow The stochastic process

$$
Y(t)=\int_{0}^{t} \sigma(s) \mathrm{d} X(s)
$$

can be defined pathwise and the previous result can be applied in this context. In particular, the stochastic processes Y_{J}^{W} converge to Y in $C^{\beta}(K)$.

- Using the fact that a pathwise Young integral is the limit of Riemann-Stieltjes sums, one can show that the processes $\{Y(t)\}_{t \in[0,1]},\left\{\lambda_{j, k}\right\}_{(j, k) \in \mathbb{Z}_{+} \times \mathbb{Z}}$ and $\left\{Y_{J}^{W}(t)\right\}_{t \in[0,1]}$ are centered Gaussian processes.
- In the case of the Haar wavelets, the conditions of short-range dependence is a condition on the second order increments

$$
\sum_{k_{2}=0}^{\left[2^{j} v\right]-1}\left|\operatorname{Cov}\left[\Delta_{j, k_{1}}^{2}(X), \Delta_{j, k_{2}}^{2}(X)\right]\right| \leq c 2^{-2 j \beta_{0}}
$$

This condition (\mathcal{G}) allows to improve the convergence rate :

Theorem

Under the condition (\mathcal{G}), for any fixed $\beta \in\left(1-\alpha, \beta_{0}\right)$ and non-negative real number $\gamma<\min (\beta, 1 / 2)$, there is a finite random constant $c>0$ such that the inequality

$$
\left\|Y-Y_{J}^{W}\right\|_{C^{\gamma}(I)} \leq c 2^{-J \min (\beta-\gamma, \alpha+\beta-1 / 2-\gamma)}
$$

holds almost surely, for each $J \in \mathbb{N}$.

Lemma

It suffices to obtain the result for $\gamma=0$, i.e. to prove that there is a finite random constant $c>0$ such that the inequality

$$
\left\|Y-Y_{J}^{W}\right\|_{I, \infty} \leq c 2^{-J \min (\beta, \alpha+\beta-1 / 2)}
$$

holds almost surely, for each $J \in \mathbb{N}$.

Let us recall that

$$
Y_{J}^{W}(t)=\sum_{l=1-N_{2}}^{[t]-N_{1}} b_{0, l}(t) \int_{Q 1}^{Q_{2}} \varphi(s-l) \mathrm{d} X(s)+\sum_{j=0}^{J-1} \sum_{k=1-N_{2}}^{\left[2^{j} t\right]-N_{1}} a_{j, k}(t) \lambda_{j, k}
$$

For every $j \in \mathbb{Z}_{+}$, we set

$$
Z_{j}(t):=\sum_{k=1-N_{2}}^{\left[2^{j} t\right]-N_{1}} a_{j, k}(t) \lambda_{j, k}
$$

so that

$$
\left\|Y-Y_{J}^{W}\right\|_{I, \infty}=\left\|\sum_{j=J}^{+\infty} Z_{j}\right\|_{I, \infty} \leq \sum_{j=J}^{+\infty}\left\|Z_{j}\right\|_{I, \infty}
$$

In order to get a rate of convergence of Y_{J}^{W} to Y, one has to estimate the norm $\left\|Z_{j}\right\|_{I, \infty}$.

Note that $\left\|Z_{j}\right\|_{I, \infty}:=\sup _{t \in[0,1]}\left|Z_{j}(t)\right|$ is the supremum of infinitely many random variables. It is more convenient to work with a supremum of finite number of them.

Lemma

For each $j \in \mathbb{N}$, one sets $\nu\left(Z_{j}\right):=\sup _{l \in\left\{0, \ldots, 2^{j}\right\}}\left|Z_{j}\left(2^{-j} l\right)\right|$. Then, for any fixed $\beta \in\left(1-\alpha, \beta_{0}\right)$, one has almost surely

$$
\sup _{j \in \mathbb{N}}\left\{2^{j \beta}\left|\left\|Z_{j}\right\|_{I, \infty}-\nu\left(Z_{j}\right)\right|\right\}<+\infty .
$$

Idea. One has

$$
\left|Z_{j}\left(t_{0}\right)-Z_{j}\left(2^{-j}\left[2^{j} t_{0}\right]\right)\right| \leq \sum_{k=1-N_{2}}^{\left[2^{j} t_{0}\right]-N_{1}}\left|a_{j, k}\left(t_{0}\right)-a_{j, k}\left(2^{-j}\left[2^{j} t_{0}\right]\right)\right| \underbrace{\left|\lambda_{j, k}\right|}_{\leq c 2^{-(\beta-1 / 2) j}}
$$

and

$$
\left|a_{j, k}\left(t_{0}\right)-a_{j, k}\left(2^{-j}\left[2^{j} t_{0}\right]\right)\right| \leq 2^{j / 2}\left(t_{0}-\left[2^{j} t_{0}\right] 2^{-j}\right)\|\sigma\|_{I, \infty}\|\psi\|_{\left[N_{1}, N_{2}\right], \infty} \leq c 2^{-j / 2}
$$

Notice that if one shows that

$$
\sum_{j=1}^{+\infty} \mathbb{P}\left(2^{j \min (\beta, \alpha+\beta-1 / 2)} \nu\left(Z_{j}\right)>1\right)<+\infty
$$

then the Borel-Cantelli lemma entails that almost surely,

$$
\sup _{j \in \mathbb{N}}\left\{2^{j \min (\beta, \alpha+\beta-1 / 2)} \nu\left(Z_{j}\right)\right\}<+\infty
$$

and the Theorem will follows.
Using the Markov inequality, one has

$$
\mathbb{P}\left(2^{j \min (\beta, \alpha+\beta-1 / 2)} \nu\left(Z_{j}\right)>1\right) \leq 2^{j \min (\beta, \alpha+\beta-1 / 2)} \mathbb{E}\left(\nu\left(Z_{j}\right)\right)
$$

for every $j \in \mathbb{N}$
\longrightarrow one has to estimate $\mathbb{E}\left(\nu\left(Z_{j}\right)\right)$

Lemma

There exists a universal deterministic finite constant $c>0$, such that, for every centered Gaussian process $\left\{g_{n}\right\}_{n \in \mathbb{N}}$ and for all $N \in \mathbb{N}$,

$$
\mathbb{E}\left(\sup _{1 \leq n \leq N}\left|g_{n}\right|\right) \leq c(1+\log N)^{\frac{1}{2}} \sup _{1 \leq n \leq N}\left(\mathbb{E}\left(\left|g_{n}\right|^{2}\right)\right)^{\frac{1}{2}}
$$

The process $Z_{j}(t):=\sum_{k=1-N_{2}}^{\left[2^{j} t\right]-N_{1}} a_{j, k}(t) \lambda_{j, k}$ is Gaussian and centered. Consequently, for all $j \in \mathbb{N}$, one has

$$
\mathbb{E}\left(\nu\left(Z_{j}\right)\right) \leq c(2+j)^{\frac{1}{2}} \sup _{l \in\left\{0, \ldots, 2^{j}\right\}}\left(\mathbb{E}\left(\left|Z_{j}\left(2^{-j} l\right)\right|^{2}\right)\right)^{\frac{1}{2}},
$$

and the problem is now the computation of $\mathbb{E}\left(\left|Z_{j}\left(2^{-j} l\right)\right|^{2}\right)$. One has

$$
\mathbb{E}\left[\left|Z_{j}\left(2^{-j} l\right)\right|^{2}\right]=\sum_{k_{1}=1-N_{2}}^{l-N_{1}} \sum_{k_{2}=1-N_{2}}^{l-N_{1}} a_{j, k_{1}}\left(2^{-j} l\right) a_{j, k_{2}}\left(2^{-j} l\right) \operatorname{Cov}\left[\lambda_{j, k_{1}}, \lambda_{j, k_{2}}\right] .
$$

$$
\mathbb{E}\left[\left|Z_{j}\left(2^{-j} l\right)\right|^{2}\right]=\sum_{k_{1}=1-N_{2}}^{l-N_{1}} \sum_{k_{2}=1-N_{2}}^{l-N_{1}} a_{j, k_{1}}\left(2^{-j} l\right) a_{j, k_{2}}\left(2^{-j} l\right) \operatorname{Cov}\left[\lambda_{j, k_{1}}, \lambda_{j, k_{2}}\right] .
$$

Since σ is α-Hölder continuous, it is easy to see that there is a finite constant $c>0$ such that, for every $t \in I$ and $j \in \mathbb{N}$, one has

$$
\left|a_{j, k}(t)\right| \leq c 2^{-j\left(\alpha+\frac{1}{2}\right)}, \quad \text { for all } k \in \mathbb{L}_{j, 0, t}
$$

and

$$
\left|a_{j, k}(t)\right| \leq c 2^{-\frac{j}{2}}, \quad \text { for all } k \in \partial \mathbb{L}_{j, 0, t}
$$

Morever, condition (\mathcal{G}) gives that

$$
\max _{1-N_{2} \leq k_{1} \leq 2^{j}-N_{1}}\left\{\sum_{k_{2}=1-N_{2}}^{2^{j}-N_{1}}\left|\operatorname{Cov}\left[\lambda_{j, k_{1}}, \lambda_{j, k_{2}}\right]\right|\right\} \leq c_{2} 2^{-j\left(2 \beta_{0}-1\right)}
$$

Therefore, computing the cardinality of $\mathbb{L}_{j, 0, t}$ and $\partial \mathbb{L}_{j, 0, t}$, one gets that

$$
\sup _{j \in \mathbb{N}} \sup _{l \in\left\{0, \ldots, 2^{j}\right\}}\left\{2^{2 j \min \left(\beta_{0}, \alpha+\beta_{0}-1 / 2\right)} \mathbb{E}\left(\left|Z_{j}\left(2^{-j} l\right)\right|^{2}\right)\right\}<+\infty
$$

Total. We have proved that

$$
\sup _{j \in \mathbb{N}} \sup _{l \in\left\{0, \ldots, 2^{j}\right\}}\left\{2^{2 j \min \left(\beta_{0}, \alpha+\beta_{0}-1 / 2\right)} \mathbb{E}\left(\left|Z_{j}\left(2^{-j} l\right)\right|^{2}\right)\right\}<+\infty .
$$

Since

$$
\mathbb{E}\left(\nu\left(Z_{j}\right)\right) \leq c(2+j)^{\frac{1}{2}} \sup _{l \in\left\{0, \ldots, 2^{j}\right\}}\left(\mathbb{E}\left(\left|Z_{j}\left(2^{-j} l\right)\right|^{2}\right)\right)^{\frac{1}{2}},
$$

and

$$
\mathbb{P}\left(2^{j \min (\beta, \alpha+\beta-1 / 2)} \nu\left(Z_{j}\right)>1\right) \leq 2^{j \min (\beta, \alpha+\beta-1 / 2)} \mathbb{E}\left(\nu\left(Z_{j}\right)\right),
$$

we get that $\mathbb{P}\left(2^{j \min (\beta, \alpha+\beta-1 / 2)} \nu\left(Z_{j}\right)>1\right)$ is the general term of a convergent series.

Consequently, the Borel-Cantelli lemma gives that almost surely,

$$
\sup _{j \in \mathbb{N}}\left\{2^{j \min (\beta, \alpha+\beta-1 / 2)} \nu\left(Z_{j}\right)\right\}<+\infty
$$

hence the result.

Examples of processes satisfying the condition (\mathcal{G})

We consider stationary increments real-valued centered Gaussian processes $X:=\{X(s)\}_{s \in \mathbb{R}}$ having, for all $\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}$, a covariance function of the following general form :

$$
\begin{aligned}
\operatorname{Cov}\left[X\left(s_{1}\right), X\left(s_{2}\right)\right] & =\mathbb{E}\left[X\left(s_{1}\right) X\left(s_{2}\right)\right] \\
& =\int_{-\infty}^{+\infty}\left(e^{i s_{1} \xi}-1\right)\left(e^{-i s_{2} \xi}-1\right) f(\xi) \mathrm{d} \xi,
\end{aligned}
$$

where the measurable nonnegative even function f satisfies the integrability condition :

$$
\int_{-\infty}^{+\infty} \min \left(1, \xi^{2}\right) f(\xi) \mathrm{d} \xi<+\infty
$$

Example. The fractional Brownian motion : up to a multiplicative constant, $f(\xi)=|\xi|^{-2 H-1}$ for all $\xi \neq 0$, where $H \in(0,1)$ denotes the Hurst parameter.

We will see how the conditions given by (\mathcal{G}) can be transformed into conditions on the function f.

Proposition

A sufficient condition for the process X to be β_{0}-Hölder continuous in quadratic mean is that there exist two positive finite deterministic constants c and ξ_{0}, such that

$$
f(\xi) \leq c|\xi|^{-2 \beta_{0}-1}, \quad \text { for almost all } \xi \in\left(-\infty,-\xi_{0}\right) \cup\left(\xi_{0},+\infty\right)
$$

Example. It is satisfied by the fractional Brownian motion of index $H=\beta_{0}$.

Proposition

The condition of "short-range dependence" holds as soon as f is twice continuously differentiable on $\mathbb{R} \backslash\{0\}$ and satisfies the following condition :
$\left(\mathcal{D}_{1}\right)$ In the case of the Haar basis : there exist two finite deterministic constants $\beta_{0}^{\prime} \in\left[\beta_{0}, 1\right)$ and $c>0$ such that, for all $n \in\{0,1,2\}$ and $\xi \in \mathbb{R} \backslash\{0\}$, one has

$$
\left|f^{(n)}(\xi)\right| \leq c \max \left(|\xi|^{-2 \beta_{0}-n-1},|\xi|^{-2 \beta_{0}^{\prime}-n-1}\right) .
$$

$\left(\mathcal{D}_{M}\right)$ If the wavelet ψ is continuously differentiable on the real line and has at least M vanishing moments, that is

$$
\int_{-\infty}^{+\infty} s^{m} \psi(s) \mathrm{d} s=0, \quad \text { for all } m \in\{0, \ldots, M-1\}:
$$

There exist two finite deterministic constants $\beta_{0}^{\prime} \in\left[\beta_{0}, 1\right)$ and $c>0$ such that, for all $n \in\{0,1,2\}$ and $\xi \in \mathbb{R} \backslash\{0\}$, one has

$$
\left|f^{(n)}(\xi)\right| \leq c \max \left(|\xi|^{-2 \beta_{0}-n-1},|\xi|^{-2 \beta_{0}^{\prime}-n M-1}\right) .
$$

Example. Clearly, $\left(\mathcal{D}_{1}\right)$ and $\left(\mathcal{D}_{M}\right)$, for any $M \geq 1$, hold when $f(\xi)=|\xi|^{-2 H-1}$, the two constants β_{0} and β_{0}^{\prime} being arbitrary and such that $0<\beta_{0} \leq H \leq \beta_{0}^{\prime}<1$.

Remarks.

- $\left(\mathcal{D}_{M}\right)$ is weaker than $\left(\mathcal{D}_{M^{\prime}}\right)$, for any $M^{\prime}<M$.
- A major motivation for weakening the condition $\left(\mathcal{D}_{1}\right)$ to the condition $\left(\mathcal{D}_{M}\right)$ is the following : the behavior of the function f at low frequencies can then be much more singular, namely f can have infinitely many oscillations in the vicinity of 0 . For instance, let $\tilde{f}_{u, v, w}$ be the function defined, for all $\xi \in \mathbb{R} \backslash\{0\}$, as

$$
\tilde{f}_{u, v, w}(\xi):=|\xi|^{-2 u-1}+|\xi|^{-2 v-1} \sin ^{2}\left(|\xi|^{-w}\right)
$$

where the three parameters u, v and w are arbitrary real numbers such that $0<u \leq v<1$ and $w>0$. Observe that the larger is w the more oscillating is $\tilde{f}_{u, v, w}$ in the neighborhood of 0 . This function fails to satisfy $\left(\mathcal{D}_{1}\right)$ but for any integer $M \geq 1+w$, it satisfies $\left(\mathcal{D}_{M}\right)$ with $\beta_{0}=u$ and $\beta_{0}^{\prime}=v$.

Optimality of the improved rate of convergence

One denotes by $\bar{\alpha}$ and $\bar{\beta}$ the two critical exponents defined as

$$
\bar{\alpha}:=\sup \left\{\alpha \in[0,1): \sigma \in C^{\alpha}(I)\right\} \text { and } \bar{\beta}:=\sup \left\{\beta \in[0,1): X \in C^{\beta}(I)\right\} .
$$

Proposition

Assume that $\bar{\alpha} \geq 1 / 2, \bar{\beta}<1$, that the condition (\mathcal{G}) is satisfied for all $\beta_{0} \in(1-\bar{\alpha}, \bar{\beta})$, and that the deterministic integrand σ vanishes nowhere on I. Then, for each fixed $\gamma \in[0, \min (\bar{\beta}, 1 / 2))$ and arbitrarily small $\epsilon>0$, one has, almost surely,

$$
\left\|Y-Y_{J}^{W}\right\|_{C^{\gamma}(I)} \asymp 2^{-J(\bar{\beta}-\gamma)}
$$

i.e.

$$
\sup _{J \in \mathbb{N}}\left\{2^{J(\bar{\beta}-\gamma-\epsilon)}\left\|Y-Y_{J}^{W}\right\|_{C^{\gamma}(I)}\right\}<+\infty
$$

and

$$
\sup _{J \in \mathbb{N}}\left\{2^{J(\bar{\beta}-\gamma+\epsilon)}\left\|Y-Y_{J}^{W}\right\|_{C^{\gamma}(I)}\right\}=+\infty
$$

Example. Assume that the integrator X is a fBm of an arbitrary Hurst parameter $H \in(0,1)$ and that the deterministic integrand σ is the positive (vanishing nowhere) Weierstrass type function defined as

$$
\sigma(s):=\sigma_{0}+\sum_{n=1}^{+\infty} b^{-n a} \sin \left(b^{n} s\right) \quad \forall s \in \mathbb{R},
$$

where a, b and σ_{0} are parameters such that $a \in(0,1), b>1$ and $\sigma_{0}\left(b^{a}-1\right)>1$. Then, almost surely,

$$
\bar{\alpha}=a \quad \text { and } \quad \bar{\beta}=H .
$$

As soon as $a \geq 1 / 2$ and $a>1-H$, for each fixed $\gamma \in[0, \min (H, 1 / 2))$, one has

$$
\left\|Y-Y_{J}^{W}\right\|_{C^{\gamma}(I)} \asymp 2^{-J(H-\gamma)}
$$

References

A. Ayache, C. Esser and Q. Peng

Almost sure approximations in Hölder norms of a general stochastic process defined by a Young integral Sumbitted for publication.
A. Bonami and A. Estrade.

Anisotropic Analysis of Some Gaussian Models.
J. Fourier Anal. Appl., 9 :215-236, 2003.
Z. Ciesielski, G. Kerkyacharian and B. Roynette.

Quelques Espaces Fonctionnels Associés à des processus Gaussiens.
Stud. Math., 107 :171-204, 1993.
I. Daubechies.

Ten Lectures on Wavelets.
SIAM Philadelphia, 1992.
M. Gubinelli, P. Imkeller and N. Perkowski.

A Fourier analytic approach to pathwise stochastic integration
Electron. J. Probab., 21 :1-37, 2016.

T. J. Lyons, M. Caruana and T. Lévy.

Differential Equations Driven by Rough Paths.
Springer. Editor: J. Picard, 2004.
Y. Meyer.

Wavelets and Operators
Cambridge University Press, 1992.

