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Abstract

Given a set of words S, one can associate with every word w ∈ S its extension graph
which describes the possible left and right extensions of w in S. Families of sets can be
defined from the properties of the extension graph of their elements: acyclic sets, tree
sets, neutral sets, etc. In this paper we study the specific case of the set of factors of
a substitutive language and we show that it is decidable whether these properties are
verified or not.

1 Introduction

Given a set S of finite words and an element w ∈ S, the extension graph of w describes the
possible left and right extensions of w in S. Some families of sets S are defined by a limitation
of the possible extensions graphs of a word in the sets: tree condition, planar tree condition,
acyclicity condition, connected condition, etc. (see [BDFD+15a, BDFD+15b, DP16]). The
class of tree sets introduced in [BDFD+15a] (i.e. sets satisfying the tree condition) contains
the family of Arnoux-Rauzy sets and that of regualar interval exchange sets.

The study of bispecial words is essential in order to understand the properties of a factorial
set. By the number of left, right and bi-extension of a word we can compute the factor
complexity of a set (see, for example, [Cas97]). In particular, knowing the shape of the
extension graph of all bispecial words in a set S allows us to check whether S satisfies one of
the above conditions.

For finite sets, all the properties above are trivially decidable. In this paper we consider
sets arising as language of a substitutive language. It is known since Cassaigne’s work that
any long enough bispecial word is the (possibly extended) image under the substitution of a
shorter one. Thus, a finite number of bispecial words is enough in order to compute all the
bispecial words of a set. Cassaigne’s method of describing bispecial words has been formalized
by Klouda [Klo12] who studied the two-sided extensions of a bispecial word examining them
by pairs. More precisely, he studied bispecial triplets ((l1, l2), w, (r1, r2)), where l1, l2, r1, r2
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are such that l1wr1, l2wr2 ∈ S. In this paper the same technique is applied but it is formalized
in such a way that all extensions are considered together. To acquire this, we make use of
the bilateral recognizability introduced by Mossé [Mos92, Mos96] that roughly ensures that
any long enough finite word can be uniquely desubstituted, except for a prefix and a suffix.

The paper is organized as follows. In Section 2 we examine the basic notions on sets
and words. In particular, we define the extension graph of a word of a set and we introduce
the notion of recognizability. In Section 3 we consider the special case of a bispecial word.
Specifically, we define the set of initial bispecial words and we show that the extensions of
any bispecial word are governed by the extensions of the initial ones.

The main result of this paper is given in Section 4, where we define the graph of extension
graphs and we prove that this graph is finite and computable for primitive substitutive lan-
guages (Theorem 26). This implies that we can decide whether the language of a primitive
morphism satisfies the tree condition (resp. planar tree condition, etc.) or not (Corollary 28).

2 Preliminaries

In this section, we first recall some notions on sets of words including recurrent, uniformly
recurrent and tree sets.

2.1 Extension graphs

Let A be a finite alphabet. We denote by A∗ the free monoid on A and by ε the empty word.
We denote by A+ = A∗ \ {ε}.

Consider the word u = u1 · · · un with uk ∈ A for all k ∈ {1, . . . , n}. For all i, j such that
1 ≤ i ≤ j ≤ n, we let u[i:j] denote the factor ui · · · uj. We also let u[ :i] and u[−i: ] respectively
denote the prefix u1 · · · ui and the suffix un−i+1 · · · un. We extend the later notation to sets
of words, i.e.,

S[ :i] = {u[ :i] | u ∈ S}

S[−i: ] = {u[−i: ] | u ∈ S},

where it is assumed that i ≤ minu∈S |u|.
Given a set of words S and a word u, we let Su−1 and u−1S denote the sets

Su−1 = {v ∈ A∗ | vu ∈ S}

u−1S = {v ∈ A∗ | uv ∈ S}

A set of words on the alphabet A is said to be factorial if it contains the alphabet A and
all the factors of its elements.

Let S be a set of words on the alphabet A. For w ∈ S, we denote

LS(w) = {a ∈ A | aw ∈ S}

RS(w) = {a ∈ A | wa ∈ S}

ES(w) = {(a, b) ∈ A×A | awb ∈ S}

and further

ℓS(w) = Card(LS(w)), rS(w) = Card(RS(w)), eS(w) = Card(ES(w)).
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We omit the subscript S when it is clear from the context. A word w is right-extendable
if r(w) > 0, left-extendable if ℓ(w) > 0 and biextendable if e(w) > 0. A factorial set S
is called right-extendable (resp. left-extendable, resp. biextendable) if every word in S is
right-extendable (resp. left-extendable, resp. biextendable).

A word w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥ 2. It is called
bispecial if it is both left-special and right-special.

For w ∈ S, we denote

mS(w) = eS(w) − ℓS(w) − rS(w) + 1.

We omit the subscript S when it is clear from the context. The word w is called weak if
m(w) < 0, neutral if m(w) = 0 and strong if m(w) > 0. We say that a factorial set S is
neutral if every nonempty word in S is neutral.

A set of words S 6= {ε} is recurrent if it is factorial and if for any u,w ∈ S there is a
v ∈ S such that uvw ∈ S. An infinite factorial set is said to be uniformly recurrent if for
any word u ∈ S there is an integer n ≥ 1 such that u is a factor of any word of S of length
n. A uniformly recurrent set is recurrent. In [DP16] it is proved that the converse is true for
neutral sets.

The factor complexity of a factorial set S of words on an alphabet A is the sequence
pn = Card(S ∩An). It can be computed from the set {m(w) | w ∈ S} [Cas97].

Let S be a biextendable set of words. For w ∈ S, we consider the set E(w) as an undirected
bipartite graph on the set of vertices which is the disjoint union of L(w) and R(w) with edges
the pairs (a, b) ∈ E(w). This graph is called the extension graph of w. We note that, since
E(w) has ℓ(w)+r(w) vertices and b(w) edges, the number 1−m(w) is the Euler characteristic
of the graph E(w) (see [DP16]).

If the extension graph E(w) is acyclic, then m(w) ≤ 0. Thus w is weak or neutral. More
precisely, one has in this case that c = 1 −m(w) is the number of connected components of
the graph E(w).

A biextendable set S is called acyclic if for every w ∈ S the graph E(w) is acyclic. It is
connected if for every w ∈ S the graph E(w) is connected.

A biextendable set S is called a tree set of characteristic c if for any nonempty w ∈ S, the
graph E(w) is a tree and if E(ε) is a union of c trees (the definition of tree set in [BDFD+15a]
corresponds to a tree set of characteristic 1). Note that a tree set of characteristic c is a
neutral set of characteristic c.

A planar tree set of characteristic c with respect to two orders <1 and <2 on the alphabet
A is a tree set of characteristic c compatible with the two orders (see [BDFD+15b]), i.e. for
any w ∈ S one has

a <2 c =⇒ b ≥1 d for any (a, b), (c, d) ∈ E(w).

For two sets of words X,Y and a word w ∈ S, we denote

LX(w) = {x ∈ X | xw ∈ S},

RY (w) = {y ∈ Y | wy ∈ S},

EX,Y (w) = {(x, y) ∈ X × Y | xwy ∈ S}.

As for E(w), we consider EX,Y (w) as an undirected graph on the set of vertices which
is the disjoint union of LX(w) and RY (w). Such a graph is called a generalized extension
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graph. When X = An, and S is understood, we write Ln(w) instead of LAn

(w). Similarly we
define Rm(w), and En,m(w). Moreover, when n = m, we call the graph En,n(w) the uniform
generalized extension graph (of degree n) of w. Note that E(w) = E1,1(w).

2.2 Recognizability and synchronizing delay

Consider a morphism σ : A∗ → A∗. We are interested in the set Sσ of words that occur as
factors of σn(a) for some n ∈ N and some a ∈ A. More precisely, we consider

Sσ = {u ∈ A∗ | ∃n ∈ N, a ∈ A : σn(a) ∈ A∗uA∗}.

Note that we will always assume that Sσ is infinite.
A morphism σ : A∗ → A∗ is primitive if there exists k ∈ N such that all letters a ∈ A

occurs in σk(b) for all b ∈ A. In this case, for all a ∈ A we have

Sσ = {u ∈ A∗ | ∃n ∈ N : σn(a) ∈ A∗uA∗}.

Such a morphism is aperiodic if Sσ is not the set of factors of a periodic infinite word.

Example 1. Let A = {a, b} and ϕ : A∗ → A∗ be the Fibonacci morphism defined by
ϕ(a) = ab, ϕ(b) = a. Let us consider the morphism

σF = ϕ2 : a 7→ aba, b 7→ ab.

Both morphisms ϕ and σF are primitive and aperiodic. The set S = SσF
is called the

Fibonacci set. Note that, since σF is a power of ϕ, we have also S = Sϕ.
The extension graph E(ε) and the generalized uniform extension graph E4,4(ε) of the

empty word are represented in Figure 1.

b

a

a

b

abab

baab

baba

aaba

abaa

aaba

abaa

abab

baab

baba

Figure 1: The graphs of E(ε) (on the left) and E4,4(ε) (on the right).

Note that identifying in E4,4(ε) all vertices on the left having the same last letter and all
vertices on the right having the same first letter, we find the graph E(ε).

An important notion when dealing with sets of words associate with morphisms is the
notion of recognizability. It roughly says that any long enough word in Sσ has a unique
pre-image under σ, exept for a prefix and a suffix.

Definition 2. A morphism σ : A∗ → A∗ is said to be recognizable if there exists some constant
C ∈ N such that for any word u ∈ Sσ of length at least 2C + 1, there exist p, v, s ∈ Sσ such
that

u = pσ(v)s with |s|, |p| ≤ C (1)

and for all p′, v′, s′ ∈ Sσ satisfying (1), there exists z, t ∈ A∗ such that v = zv′t, p′ = pσ(z)
and s′ = sσ(t). The smallest integer C satisying this condition is called the recognizability
constant of σ.
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Theorem 3 ([Mos92, Mos96]). Any aperiodic primitive morphism is recognizable.

Example 4. Let σF and S as in Example 1. One can check that the recognizability constant
of S is 4.

Theorem 3 does not give any information on the constant of recognizablity. When we
know it exsits, it can be computed by checking all positive integers one by one until we reach
it. The next result gives a theoretical bound on that constant. We set |σ| = maxa∈A |σ(a)|.

Theorem 5 ([DL]). Let σ : A∗ → A∗ be an aperiodic primitive substitution. The recogniz-
ability constant of σ is bounded by 2K9

σ |σ
8#AK24

σ |+ |σ#A|, where Kσ = 1 + |σ|1+3(#A)2 .

The bound given in Theorem 5 is clearly huge! As explained in [DL], it could be easily
improved but this would require much longer statements and heavy notations although the
improved bound would probably not be optimal. Using other techniques, the next result
provides more reasonable bounds, but for restricted cases. To be able to state it correctly, we
need to define the notion of synchronizing point.

Given a word u = u1 · · · u|u| ∈ Sσ, we say that a triplet (p, v, s) is an interpretation of u if
σ(v) = puv. Two interpretations (p, v, s), (p′, v′, s′) are said to be synchronized at position n
if there exists i, j such that 1 ≤ i ≤ |v|, 1 ≤ j ≤ |v′| and

σ(v1 · · · vi) = pu1 · · · un and σ(v′1 · · · v
′
j) = p′u1 · · · un.

The word u has a synchronizing point (at position n) if all its interpretations are synchronized
(at position n). The morphism σ is said to be circular if there is some constant D such that
any word of length at least D has a synchronizing point. The smallest such integer D is called
the synchronizing delay of σ.

A morphism σ : A∗ → A∗ is k-uniform if for all a ∈ A, |σ(a)| = k.

Theorem 6 ([KM16]). If #A = 2 and if σ : A∗ → A∗ is a k-uniform morphism (k ≥ 2) which
is injective on Sσ and recognizable, then its synchronizing delay D is bounded as follows:

1. D ≤ 8 if k = 2,

2. D ≤ k2 + 3k − 4 if k is an odd prime number,

3. D ≤ k2
(

k
d
− 1

)

+ 5k − 4 otherwise,

where d is the least divisor of k greater than 1.

3 Extensions of bispecial words

In the following, we assume that σ : A∗ → A∗ is an aperiodic primitive morphism and C is
its recognizability constant. Since Sσ = Sσk for all k ≥ 1, we can replace σ by a power of
itself and assume that |σ(a)| ≥ 2 for all a ∈ A (as we did in Example 1). Furthermore, the
next lemma ensures that the power of σ that is needed is less than Card(A)2.

Lemma 7 ([HJ90]). A d × d matrix M is primitive if and only if there is an integer k ≤
d2 − 2d+ 2 such that Mk contains only positive entries.
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Our goal is to understand the extension graph of all bispecial words in Sσ. It is known
that long enough bispecial words are obtained as extended images under σ of shorter bispecial
words. We formalize this using the definition of recognizability.

Definition 8. Let u and v be as in Definition 2. We say that v is the antecedent of u under
σ. We also say that u is an extended image of v under σ.

By maximality of v, the antecedent of a word u is obviously unique. The next result states
that any long enough bispecial word is an extended image of some shorter bispecial word.

Lemma 9. If u ∈ Sσ is bispecial and has length at least 2C + 1, then its antecedent v is
bispecial and shorter than u.

Proof. As σ(v) is a factor of u and |σ(a)| ≥ 2 for all a, v is shorter than u. Let us prove by
contradiction that v is left special, the proof that it is right special is symmetric. Let p, s ∈ A∗

such that u = pσ(v)s. If v is not left special, there exists a unique letter a ∈ A such that
av ∈ Sσ. By maximality of the antecedent, this implies that |p| < |σ(a)|. This contradicts
the fact that u is left special, since pσ(v) has a unique left extension which is the letter b such
that σ(a) ∈ A∗bp.

Example 10. Let us consider σF and S as in Example 1. The recognizability constant of
σF is 4 (see Example 4). Thus, by Lemma 9, every word of length 9 in S can be uniquely
desubstituted. For instance, the word ba is the antecedent of ba ababa ab = ba σF (ba) ab ∈
S ∩A9.

The next result is a trivial consequence of Lemma 9 and justifies the notion of initial
bispecial words.

Corollary 11. If u ∈ Sσ is bispecial and has length at least 2C + 1, there exists a unique
finite sequence (u1, u2, . . . , uk) of bispecial words in Sσ such that uk = u, |u1| ≤ 2C and for
all i ∈ {2, k − 1}, ui is the antecedent of ui+1 and has length at least 2C + 1.

Definition 12. A bispecial word is said to be initial if it has length at most 2C.

Example 13. Let σF and S be as in Examples 1 and 10. The set of initial bispecial word of
S is {ε, a, aba, abaaba}.

Let us consider the bispecial word u = abaababaaba ∈ S of length 11 > 9. The antecedent
v = aba of u is also bispecial, in accord with Lemma 9.

Observe that some initial bispecial word could have a unique antecedent and could there-
fore not be considered as initial. We could have defined as initial bispecial words the bispecial
words that do not have a unique antecedent like it is done in [Klo12]. We decided to proceed
in this way because the condition on the length is easier to check.

We now show that the extensions of a non-initial bispecial word are completely determined
by the extensions of its antecedent.

Lemma 14. Let u ∈ Sσ with length at least 2C + 1 and v be its antecedent. If p, s ∈ A∗ are
such that u = pσ(v)s, then for all m ≥ |p| and all n ≥ |s|, we have

Lm(u) = Am ∩ σ(Lm(v))p−1

Rn(u) = An ∩ s−1σ(Rn(v))

Bm,n(u) =
{

(x, y) ∈ Am ×An | ∃ (x′, y′) ∈ Bm,n(v) : σ(x
′) ∈ A∗xp, σ(y′) ∈ syA∗

}

.
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Proof. For each equality, the inclusion ⊇ is obvious. Let us show that

Lm(u) ⊆ Am ∩ σ(Lm(v))p−1 =
{

x ∈ Am | ∃x′ ∈ Lm(v) : σ(x′) ∈ A∗xp
}

, (2)

the other two cases are similar. Let x ∈ Am such that xu ∈ Sσ. By uniqueness of v, there
exists x′ ∈ A∗ such that x′v ∈ Sσ and σ(x′) ∈ A∗xp. It suffices to show that one can choose
x′ with length m. If there exists such a x′, with |x′| < m, then the result follows from the
fact that Sσ is biextendable: one can extend x′ to the left until we reach the wanted length.
On the other hand, if one can find x′ with |x′| > m, then its suffix z of length m also satisfies
σ(z) ∈ A∗xp. Indeed, by the assumption made on σ, we have |σ(z)| ≥ 2|z| = 2m ≥ |xp|,
which concludes with the inclusion (2).

Definition 15. Let u, v be words in A+. We set

1. fL(u, v) the longest common suffix of σ(u) and σ(v);

2. fR(u, v) the longest common prefix of σ(u) and σ(v).

Lemma 16. Let w ∈ Sσ be a word of length at least C/2. If u, v ∈ LC(w) have distinct last
letter, we have |fL(u, v)| ≤ C. In particular, |σ(u)fL(u, v)

−1| ≥ C and |σ(v)fL(u, v)
−1| ≥ C.

Symmetrically, if u, v ∈ RC(w) have distinct first letter, we have |fR(u, v)| ≤ C. In
particular, |fR(u, v)

−1σ(u)| ≥ C and |fR(u, v)
−1σ(v)| ≥ C.

Proof. Let us prove the first part of the result, the second one is symmetric. Proceed by
contradiction and suppose that |fL(u, v)| ≥ C + 1. By the assumption made on σ, we have
|σ(w)| ≥ C. Thus, by recognizability, the word fL(u, v)σ(w) has an antecedent x and we have

fL(u, v)σ(w) = pσ(x)s with |p|, |s| ≤ C.

As fL(u, v) is a suffix of σ(u), the antecedent x can be writen as x = yz, where y is a suffix
of u and z is a prefix of w. Similarly the antecedent x can be writen as x = y′z, where y′

is a suffix of v. As u and v do not have any common proper suffix by assumtion, we have
y = y′ = ε. We thus get

fL(u, v)σ(w) = pσ(z)s,

with σ(w) = σ(z)s. We get a contradiction since |fL(u, v)| > |p|.
The fact that |σ(u)fL(u, v)

−1| ≥ C directly follows from the assumption made on σ:
|σ(u)| ≥ 2|u| = 2C.

In what follows, our aim is to describe the extensions of a long enough word knowing the
extensions of its antecedent. We thus introduce the following notation.

Definition 17. Let u, v be words in A+. We set

1. gL(u, v) =
(

σ(u)(fL(u, v))
−1

)

[−C: ]
;

2. gR(u, v) =
(

(fR(u, v))
−1σ(u)

)

[ :C]
.

Corollary 18. Let w ∈ Sσ be a bispecial word of length at least C/2. For all (u1, v1), (u2, v2) ∈
BC,C(w) such that u1 and u2 have distinct last letter and v1 and v2 have distinct first letter,
the word w′ = fL(u1, u2)σ(w)fR(v1, v2) is a bisepcial word in Sσ.
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Furthermore, if |w′| ≥ 2C + 1, then w is the antecedent of w′ and we have

LC(w
′) = (σ(LC(w))fL(u1, u2)

−1)[−C: ]

RC(w
′) = (fR(u1, u2)

−1σ(RC(w)))[ :C]

BC,C(w
′) =

{

(x, y) ∈ AC ×AC | ∃ (x′, y′) ∈ BC,C(w) :

σ(x′) ∈ A∗xfL(u1, u2), σ(y
′) ∈ fR(v1, v2)yA

∗
}

.

Proof. Since (u1, v1), (u2, v2) ∈ BC,C(w), we have σ(u1wv1), σ(u2wv2) ∈ Sσ, with

σ(u1wv1) = gL(u1, u2)w
′gR(v1, v2) and σ(u2wv2) = gL(u2, u1)w

′gR(v2, v1).

Furthermore, gL(u1, u2) and gL(u2, u1) have distinct last letter by definition of fL(u1, u2) and
gR(v1, v2) and gR(v2, v1) have distinct first letter by definition of fR(u1, u2). The word w′

is thus bispecial. The second part of the result is a direct consequence of Lemma 14 and
Lemma 16.

Definition 19. Let w and w′ as in Corollary 18. We say that w′ is a bispecial extended image
of w.

Example 20. Let us consider again σF and S as in Examples 1 and 4.
The word w = aba is a bispecial word of S of length more than 4/2. The uniform

generalized extension graph of degree 4 of w is represented on the left of Figure 2. The only
bispecial extended image of w is the word w′ = abaababa aba. Indeed one has, for example,
(baab, abaa), (aaba, baab) ∈ E4,4(aba) with fL(baab, aaba) = ε and fR(abaa, baab) = aba. The
uniform generalized extension graph of degree 4 of w′ is represented on the center of Figure 2.

baab

baba

aaba

abaa

abab

baab

baab

baba

abab

baab

Figure 2: The graphs of E4,4(aba) on the left and G = E4,4(w
′) on the right.

4 Graph of extension graphs

In this section we build a finite graph G(Sσ) whose set of vertices is the set of extension graphs
of the bispecial words in Sσ. For this we first consider a larger graph and define G(Sσ) as a
subgraph of it.

Remark 21. In the second part of Corollary 18, the equalities between the sets of (left-,
right- and bi-) extensions depend only on the sets themselves, not on the bispecial words
w and w′. Roughly speaking, if w,w′ ∈ Sσ are long enough and such that EC,C(w) =
EC,C(w

′), then they give rise to the “same” bispecial extended images. More precisely, for
all pairs (u1, v1), (u2, v2) ∈ EC,C(w) such that u1 and u2 have distinct last letter and v1
and v2 have distinct first letter, the bispecial extended images fL(u1, u2)σ(w)fR(v1, v2) and
fL(u1, u2)σ(w

′)fR(v1, v2) have the same uniform generalized extension graph of degree C.
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The previous remark allows us to define a relation R on E(Sσ) × E(Sσ), where E(Sσ) is
the set of possible uniform generalized extension graph of degree C of a bispecial word in Sσ.
The relation associates such an extension graphs with the extension graph of any of the long
enough bispecial extended image that can occur. The following definition is rather long but
is just a formalization of this relation, using notation of Corollary 18.

Definition 22. We consider the set E(Sσ) of undirected bipartite graphs G = (V (G), E(G)),
or simply G = (V,E) when it is clear from the context, such that

1. V is a disjoint union of VLeft and VRight, where

(a) VLeft ⊆ AC and VRight ⊆ AC ;

(b) there exists u1, u2 ∈ VLeft with distinct last letter and there exist v1, v2 ∈ VRight

with distinct first letter;

2. E ⊆ VLeft × VRight is such that all vertices have positive degree;

We define the relation R ⊆ E(Sσ) × E(Sσ) by (G,H) ∈ R, whenever there exist two edges
(u1, v1), (u2, v2) in E(G) such that

1. u1 and u2 have distinct last letter and v1 and v2 have distinct first letter;

2. the vertices VLeft(H) and VRight(H) of H are defined by

VLeft(H) = (σ(VLeft(G))fL(u1, u2)
−1)[−C: ]

VRight(H) = (fR(u1, u2)
−1σ(VRight(G))[ :C]

3. the edges E(H) of H are defined by

E(H) =
{

(x, y) ∈ AC ×AC | ∃ (x′, y′) ∈ E(G) :

σ(x′) ∈ A∗xfL(u1, u2), σ(y
′) ∈ fR(v1, v2)yA

∗
}

.

Lemma 23. We have (G,H) ∈ R if and only if there exist two bispecial words w and w′ such
that |w′| ≥ 2C + 1, w′ is a bispecial extended image of w, G = EC,C(w) and H = EC,C(w

′).

Proof. This follows from Corollary 18 and from Remark 21.

Let us now define the graph G(Sσ).

Definition 24. Let K(Sσ) be the graph whose set of vertices is E(Sσ) ∪ IE(Sσ), where

IE(Sσ) = {(w,EC,C(w)) | w ∈ Sσ is an initial bispecial word}

and where the edges are defined as follows.

1. There is an edge from (u,EC,C(u)) ∈ IE(Sσ) to (v,EC,C(v)) ∈ IE(Sσ) whenever v is a
bispecial extended image of u.

2. There is an edge from (u,EC,C(u)) ∈ IE(Sσ) to G ∈ E(Sσ) whenever there exists v ∈ Sσ

such that v is a bispecial extended image of u, |v| ≥ 2C + 1 and G = EC,C(v). This
edge is labeled by (p, s) if p, s ∈ A∗ are such that v = pσ(u)s.
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3. There is an edge from G ∈ E(Sσ) to H ∈ E(Sσ) whenever (G,H) ∈ R. This edge is
labeled by (fL(u1, u2), fR(v1, v2)), where (u1, v1) and (u2, v2) are as in Definition 22.

The graph G(Sσ) is the subgraph of K(Sσ) whose set of vertices if the set of vertices of K
that are accessible from a vertex in IE(Sσ).

In other words, vertices in the graph G(Sσ) (as well as in K(Sσ)) could have two differ-
ent forms: either they are pairs of an initial bispecial word w together with its generalized
extension graph EC,C(w), or they are just generalized extension graphs of the form EC,C(u)
without the information of the word u.

Example 25. Let σF and S be as in Example 1. From Example 13 it follows that

IE(S) =
{(

ε,E4,4(ε)
)

,
(

a,E4,4(a)
)

,
(

aba,E4,4(aba)
)

,
(

abaaba,E4,4(abaaba)
)}

,

whith E4,4(ε) represented in Figure 1 on the right, E4,4(aba) in Figure 2 on the left and
E4,4(a), E4,4(abaaba) are represented in Figure 3.

The graphH represented on the right of Figure 3 (that has the same shape of E4,4(abaaba))
is an element of E(S). Indeed, H = E4,4(w

′′), with w′′ the only bispecial extended image of
abaaba.

abab

baab

baba

aaba

abaa

abab

baab

baba

baab

baba

abab

baab

baab

baba

abab

baab

Figure 3: The graphs of E4,4(a) (on the left), E4,4(abaaba) (on the center) and H (on the
right).

Theorem 26. The graph G(Sσ) is finite and computable. Moreover,

1. For any bispecial word w ∈ Sσ, there exists a vertex V ∈ G(Sσ) such that V = EC,C(w)
or V = (w,EC,C(w)).

2. For any vertex V of G(Sσ), there exists a bispecial word w ∈ Sσ such that V = EC,C(w)
or V = (w,EC,C(w)).

Proof. The graph G(Sσ) is finite since its set of vertices is a subset of IE(Sσ)∪E(Sσ) which is
finite. The subgraph of G(Sσ) involving vertices in IE(Sσ) is computable since it only involves
words of bounded length and this bound is computable by Theorem 5. For the same reason,
the set E(Sσ) and the relation R ⊂ E(Sσ)× E(Sσ) are computable. The graph K(Sσ) is thus
computable, hence so is G(Sσ).

Let w be a bispecial word in Sσ. If w is initial, then (w,EC,C (w)) is a vertex in IE(Sσ)
and we are done. If w is not initial, then EC,C(w) is a graph in E(Sσ), hence a vertex in
K(Sσ). This vertex is accessible from a vertex in IE(Sσ) by Corollary 11.

Let V be a vertex of G(Sσ). If V ∈ IE(Sσ), then V is associated with an initial bispecial
word in Sσ and we are done. If V /∈ IE(Sσ), then V is a vertex in K(Sσ) that is accessible
from a vertex in IE(Sσ). In other words, and using the definition of the edges of K(Sσ), there
exists a path (V1,V2, . . . ,Vk) in G(Sσ) such that
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1. V1 = (u,EC,C(u)) ∈ IE, Vk = V and Vi /∈ IE(Sσ) for all i > 1;

2. there exists a bispecial extended image w of u such that |w| ≥ 2C+1 and EC,C(w) = V2;

3. (Vi,Vi+1) ∈ R for all 2 ≤ i ≤ k − 1.

The result then follows from Lemma 23.

Example 27. Let σF and S be as in Example 1. The graph of graphs K(S) is represented
in Figure 4. The set IE(S) is defined in Example 25 and the initial vertices are colored in
blue in Figure 4. The other two vertices of K(S) are the graphs G of Example 20 and H of
Example 25.

(

ε, E4,4(ε)
) (

aba, E4,4(aba)
)

G

(

a, E4,4(a)
) (

abaaba, E4,4(abaaba)
)

H

(ε, aba) (ε, aba)
(ε, aba)

(ε, aba) (ε, aba)
(ε, aba)

Figure 4: Graph of graphs of the Fibonacci set S.

Since any extension graphs of a bispecial word in Sσ is obtained by projection of its
uniform generalized uniform graph, we have the following corollary.

Corollary 28. Given a primitive aperiodic morphism σ : A∗ → A∗, one can decide whether
Sσ is acyclic and whether it is connected. Therefore we can decide whether it is a tree set.

We can acutally decide any property of Sσ that depends only on the shape of the extension
graphs of words in Sσ. Given a particular extension graph, we can also decide whether there
exists some word in Sσ for which it is the extension graph and we can exactly describe all
words in Sσ for which this is the case.

Example 29. Let σF and S be as in Example 1. The only two possible extension graphs of a
bispecial word in S are showed in Figure 5: the graph on the left is obtained by projection of
the graphs E4,4(a), E4,4(abaaba) and H, while the graph of the right is obtained as projection
of the graphs E4,4(ε), E4,4(aba) and G (see Example 27).

b

a

a

b

b

a

a

b

Figure 5: The two possible extension graphs of a word of S.

By checking this two graphs we can see that the Fibonacci set S is a planar tree set with
respect to the orders a <1 b and b <2 a.
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