Generalized Pascal triangles for binomial coefficients of words: a short introduction

Joint work with Julien Leroy and Michel Rigo

Manon Stipulanti FRIA grantee

> Sage Days 82 : Women in Sage January 10,2017

Discrete Mathematics

Combinatorics on words

Study of discrete structures

Study of words and formal languages

					k				
		0	1	2	3	4	5	6	7
$*$	0	1	0	0	0	0	0	0	0
	1	1	1	0	0	0	0	0	0
	2	1	2	1	0	0	0	0	0
	3	1	3	3	1	0	0	0	0
	4	1	4	6	4	1	0	0	0
	5	1	5	10	10	5	1	0	0
	6	1	6	15	20	15	6	1	0
	7	1	7	21	35	35	21	7	1

Usual binomial coefficients of integers:

$$
\binom{m}{k}=\frac{m!}{(m-k)!k!}
$$

The Sierpiński gasket

A way to build the Sierpiński gasket:

The Sierpiński gasket

A way to build the Sierpiński gasket:

Link between those objects

- Grid: intersection between \mathbb{N}^{2} and $\left[0,2^{n}\right] \times\left[0,2^{n}\right]$

- Color the grid:

Color the first 2^{n} rows and columns of the Pascal triangle

$$
\left(\binom{m}{k} \bmod 2\right)_{0 \leq m, k<2^{n}}
$$

in

- white if $\binom{m}{k} \equiv 0 \bmod 2$
- black if $\binom{m}{k} \equiv 1 \bmod 2$
- Color the grid:

Color the first 2^{n} rows and columns of the Pascal triangle

$$
\left(\binom{m}{k} \bmod 2\right)_{0 \leq m, k<2^{n}}
$$

in

- white if $\binom{m}{k} \equiv 0 \bmod 2$
- black if $\binom{m}{k} \equiv 1 \bmod 2$
- Normalize by a homothety of ratio $1 / 2^{n}$
\rightsquigarrow sequence belonging to $[0,1] \times[0,1]$

The first six elements of the sequence

The tenth element of the sequence

Folklore fact

This sequence converges to the Sierpiński gasket.

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words. The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101$

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 1$ occurrence

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 2$ occurrences

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 3$ occurrences

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 4$ occurrences

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 5$ occurrences

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words.
The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001 \quad v=101 \quad 6$ occurrences

Binomial coefficient of finite words

Definition: A finite word is a finite sequence of letters belonging to a finite set called alphabet.

Binomial coefficient of words

Let u, v be two finite words. The binomial coefficient $\binom{u}{v}$ of u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword).

Example: $u=101001$

$$
v=101
$$

$$
\Rightarrow\binom{101001}{101}=6
$$

Remark:
Natural generalization of binomial coefficients of integers
With a one-letter alphabet $\{a\}$

$$
\binom{a^{m}}{a^{k}}=\binom{\overbrace{k \text { times }}^{m \cdots a}}{\overbrace{\cdots a}^{\text {times }}}=\binom{m}{k} \quad \forall m, k \in \mathbb{N}
$$

Idea: replace binomial coefficients of integers by binomial coefficients of words and

- study a similar link
- extract specific sequences from generalized Pascal triangles and study their structural properties (automaticity, regularity, synchronicity, etc.)

An example in base 2

A lot of computations to test our results
\rightsquigarrow usually Mathematica
Another way to test our results
\rightsquigarrow become an independent user of Sage

