
Generalized Pascal triangles and binomial coefficients of words
Manon STIPULANTI FRIA grantee University of Liège m.stipulanti@ulg.ac.be
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Pascal triangle and Sierpiński gasket

Pascal triangle Sierpiński gasket
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0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0
3 1 3 3 1 0 0 0 0
4 1 4 6 4 1 0 0 0
5 1 5 10 10 5 1 0 0
6 1 6 15 20 15 6 1 0
7 1 7 21 35 35 21 7 1

Link between these objects?

For each n ∈ N, consider the intersection of the lattice N2 with the region [0, 2n]× [0, 2n]:
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Color the unit square associated with the binomial
coefficient

(m
k

)

in white if
(m
k

)
≡ 0 mod 2

in black if
(m
k

)
≡ 1 mod 2.

If we normalize this region by a homothety of ratio 1/2n, we get a sequence of compacts in [0, 1]× [0, 1].

The elements of the latter sequence corresponding to n ∈ {0, . . . , 5}

Due to a folklore fact, this sequence converges, for the Hausdorff distance, to the Sierpiński gasket when n
tends to infinity.

Binomial coefficients of words

The binomial coefficient
(u
v

)
of two finite words u and v is the number of times v occurs as a subsequence

of u (meaning as a “scattered” subword). For example, if u = 101001 and v = 101, then
(u
v

)
= 6 since all

the occurrences of v inside of u are

101001, 101001, 101001, 101001, 101001, 101001.

This concept is a natural generalization of the binomial coefficients of integers. For an alphabet containing
only one letter a, we have (
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)
=
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)
∀m, k ∈ N.

Moreover, due to the following result, we have the analogue of the Pascal’s rule for binomial coefficients of
words.
Lemma (Chapter 6, [6]): Let Σ be a finite alphabet. For all words u, v ∈ Σ∗ and all letters a, b ∈ Σ,
we have (
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)
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)
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Generalized Pascal triangles

To define a new triangular array, we consider all the words over a finite alphabet {a1, . . . , a`} and we order
them by genealogical ordering (i.e. first by length, then by the classical lexicographic ordering for words of
the same length, assuming a1 < a2 < · · · < a`).

If we take the case of a 2-letter alphabet {0, 1}, we consider the language of the base-2 expansions of
integers, assuming without loss of generality that non-empty words start with 1:

L2 = rep2(N) = {ε} ∪ 1{0, 1}∗.
The first few values of the generalized Pascal triangle P2 are given in the following table.

ε 1 10 11 100 101 110 111
ε 1 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 2
10 1 1 1 0 0 0 0 0 3
11 1 2 0 1 0 0 0 0 3
100 1 1 2 0 1 0 0 0 4
101 1 2 1 1 0 1 0 0 5
110 1 2 2 1 0 0 1 0 5
111 1 3 0 3 0 0 0 1 4

If we consider the words of L2 that
only contain 1’s, we obtain the ele-
ments of the usual Pascal triangle (in
bold).

Using the same construction as before (namely coloring in black and white a grid containing binomial
coefficients of words and then normalizing each region by a homothety), we get a sequence of compacts in
[0, 1]× [0, 1].

The first six elements of the latter sequence

Theorem [3]: The sequence of compact sets defined previously converges, for the Hausdorff distance, to
a limit object L that can be characterized using simple combinatorial properties.

It is straightforward to adapt our reasonings, constructions and results to a more general setting, namely
we fix a prime number p and a rest r ∈ {1, . . . , p− 1} and we color the squares in the grid in black if the
corresponding binomial coefficient is congruent to r modulo p or white otherwise.

Counting positive binomial coefficients

For each n ∈ N0, we let s2(n) denote the number
of positive binomial coefficients on the nth row
of the generalized Pascal triangle P2. We also
set s2(0) := 1. The first few terms of s2 are

1, 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, 8, 7, 7, 8, 7, 5, 6,

9, 11, 10, 11, 13, 12, 9, 9, 12, 13, 11, 10, . . . .

The sequence (s2(n))n∈N between 0 and a power of 2

Definition: Let s = (s(n))n∈N be a sequence of integers and let k ≥ 2. The k-kernel of s is the set of
subsequence

Kk(s) = {(s(ki · n + j))n∈N | i ≥ 0 and 0 ≤ j < ki}.
A sequence s is k-automatic if its k-kernel is finite. A sequence s is k-regular if there exist a finite number of
sequences (t1(n))n∈N, . . . , (t`(n))n∈N such that each sequence (t(n))n∈N ∈ Kk(s) is a Z-linear combination
of the tj’s. A sequence s is k-synchronized if the language {repk(n, s(n)) | n ∈ N} is accepted by some
finite automaton.

Remark [2]: k-automatic ⊆ k-synchronized ⊆ k-regular.

Proposition [4]: The sequence s2 is 2-regular but not 2-synchronized.

Extension to other numeration systems

Instead of considering the language L2, we restrict ourselves
to words that contain no factor of the form 11. We are thus
left with the language

LF = ε ∪ 1{0, 01}∗

which is the language of the Zeckendorff numeration sys-
tem based on the Fibonacci numbers defined by F (0) = 1,
F (1) = 2 and F (n + 2) = F (n + 1) + F (n) for all n ∈ N.
We define a new generalized Pascal triangle PF using those
words.
For each n ∈ N, we let sF (n) denote the number of positive
binomial coefficients on the (n+1)th row of the generalized
Pascal triangle PF . The first few terms of sF are

1, 2, 3, 4, 4, 5, 6, 6, 6, 8, 9, 8, 8, 7, 10, 12,

12, 12, 10, 12, 12, 8, 12, 15, 16, 16, 15, . . . .

ε 1 10 100 101 1000 1001 1010
ε 1 0 0 0 0 0 0 0 1
1 1 1 0 0 0 0 0 0 2
10 1 1 1 0 0 0 0 0 3
100 1 1 2 1 0 0 0 0 4
101 1 2 1 0 1 0 0 0 4
1000 1 1 3 3 0 1 0 0 5
1001 1 2 2 1 2 0 1 0 6
1010 1 2 3 1 1 0 0 1 6

The sequence (sF (n))n∈N between 0 and a Fibonacci number

Extension of k-regularity [1, 7]: Let s = (s(n))n∈N be a sequence of integers and let k ≥ 2. The
k-kernel Kk(s) of s can be obtained under the following process. First, fix a word w ∈ {0, 1, . . . , k − 1}∗
and select all the nonnegative integers whose base-k expansions with leading 0’s end with this word w.
Then, evaluate s at those integers to create a specific subsequence of the k-kernel. Let w vary in w ∈
{0, 1, . . . , k − 1}∗ to obtain the entire k-kernel.

The F -kernel KF (s) of s can be obtained under the same technique. First, fix a word w ∈ {0, 1}∗ and select
all the nonnegative integers whose Fibonacci representations with leading 0’s end with this word w. Then,
evaluate s at those integers to create a specific subsequence of the F -kernel. Let w vary in w ∈ {0, 1}∗ to
obtain the entire F -kernel.

n rep2(n) s(n)
0 ε s(0)
1 1 s(1)
2 10 s(2)
3 11 s(3)
4 100 s(4)
5 101 s(5)

n repF (n) s(n)
0 ε s(0)
1 1 s(1)
2 10 s(2)
3 100 s(3)
4 101 s(4)
5 1000 s(5)

w = 0

Definition: A sequence s = (s(n))n∈N is F -automatic if its F -kernel is finite. A sequence s is F -
regular if there exist a finite number of sequences (t1(n))n∈N, . . . , (t`(n))n∈N such that each sequence
(t(n))n∈N ∈ KF (s) is a Z-linear combination of the tj’s.

Proposition [4]: The sequence sF is F -regular.

Asymptotic behavior of the summatory function of (s2(n))n∈N0

Definition: For each n ∈ N0, we define A(n) =
∑n

1 s2(n) and we set A(0) := 0. The sequence
(A(n))n∈N0

is the summatory function of the sequence (s2(n))n∈N0
. The first few terms of (A(n))∈N0

are

1, 3, 6, 9, 13, 18, 23, 27, 32, 39, 47, 54, 61, 69, 76, 81, 87, 96, 107, 117, . . . .

Theorem [5]: There exists a continuous function Φ over [0, 1) such that Φ(0) = 1, limα→1− Φ(α) = 1
and the sequence (A(n))n∈N0

satisfies, for all n ≥ 1,

A(n) = 3log2(n) Φ(relp2(n)) = N log2 3 Φ(relp2(n)).

The function Φ in [0, 1)
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