Generalized Pascal triangles and binomial coefficients of words

Pascal triangle and Sierpiński gasket
Pascal triangle
Classical binomial coefficient of integers
$\left({ }^{m}\right) \quad m, k \in \mathbb{N}$
$\binom{m}{k} \quad m, k \in \mathbb{N}$

Pascal's rule: $\binom{m}{k}=\binom{m-1}{k-1}+\binom{m-1}{k}$

	0	1	2	3	4	5	6	7
0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0
2	1	2	1	0	0	0	0	0
3	1	3	3	1	0	0	0	0
4	1	4	6	4	1	0	0	0
5	1	5	10	10	5	1	0	0
6	1	6	15	20	15	6	1	0
7	1	7	21	35	35	21	7	1

Link between these objects?
For each $n \in \mathbb{N}$, consider the intersection of the lattice \mathbb{N}^{2} with the region $\left[0,2^{n}\right] \times\left[0,2^{n}\right]$;

Color the unit square associated with the binomial oefficient $\binom{m}{k}$
in white if $\binom{m}{k} \equiv 0 \bmod 2$
in black if $\binom{m}{k} \equiv 1 \bmod 2$.

If we normalize this region by a homothety of ratio $1 / 2^{n}$, we get a sequence of compacts in $[0,1] \times[0,1]$.

Due to a folklore fact, this sequence converges, for the Hausdorff distance, to the Sierpiíski gasket when n tends to infinity

Binomial coefficients of words

The binomial coefficient $\binom{u}{v}$ of two finite words u and v is the number of times v occurs as a subsequence of u (meaning as a "scattered" subword). For example, if $u=101001$ and $v=101$, then $\binom{u}{v}=6$ since all the occurrences of v inside of u are

$$
\text { 101001, 101001, 101001, 101001, 101001, } 101001
$$

This concept is a natural generalization of the binomial coefficients of integers. For an alphabet containing only one letter a, we have $\quad\binom{a^{m}}{a^{k}}=\binom{m}{k} \quad \forall m, k \in \mathbb{N}$.

Moreover, due to the following result, we have the analogue of the Pascal's rule for binomial coefficients of words.
Lemma (Chapter 6, [6]): Let Σ be a finite alphabet. For all words $u, v \in \Sigma^{*}$ and all letters $a, b \in \Sigma$, we have

Generalized Pascal triangles

To define a new triangular array, we consider all the words over a finite alphabet $\left\{a_{1}, \ldots, a_{\ell}\right\}$ and we order them by genealogical ordering (i.e. first by length, then by the classical lexicographic ordering for words of the same length, assuming $a_{1}<a_{2}<\cdots<a_{\ell}$.

If we take the case of a 2 -letter alphabet $\{0,1\}$, we consider the language of the base- 2 expansions of integers, assuming without loss of generality that non-empty words start with 1 :

$$
\mathrm{L}_{2}=\operatorname{rep}_{2}(\mathbb{N})=\{\varepsilon\} \cup 1\{0,1\}^{*}
$$

The first few values of the generalized Pascal triangle P_{2} are given in the following table.

If we consider the words of L_{2} that only contain 1's, we obtain the elements of the usual Pascal triangle (in bold)

Using the same construction as before (namely coloring in black and white a grid containing binomial coefficients of words and then normalizing each region by a homothety), we get a sequence of compacts in $[0,1] \times[0,1]$.

Theorem [3]: The sequence of compact sets defined previously converges, for the Hausdorff distance, to a limit object \mathcal{L} that can be characterized using simple combinatorial properties.

It is straightforward to adapt our reasonings, constructions and results to a more general setting, namely we fix a prime number p and a rest $r \in\{1, \ldots, p-1\}$ and we color the squares in the grid in black if the corresponding binomial coefficient is congruent to r modulo p or white otherwise

Counting positive binomial coefficients

For each $n \in \mathbb{N}_{0}$, we let $s_{2}(n)$ denote the number of positive binomial coefficients on the nth row of the generalized Pascal triangle P_{2}. We also set $s_{2}(0):=1$. The first few terms of s_{2} are
$1,1,2,3,3,4,5,5,4,5,7,8,7,7,8,7,5,6$,
$9,11,10,11,13,12,9,9,12,13,11,10$, .

Definition: Let $s=(s(n))_{n \in \mathbb{N}}$ be a sequence of integers and let $k \geq 2$. The k-kernel of s is the set of subsequence

```
                                    \mathcal{K}
```

A sequence s is k-automatic if its k-kernel is finite. A sequence s is k-regular if there exist a finite number of sequences $\left(t_{1}(n)\right)_{n \in \mathbb{N}}, \ldots,\left(t_{\ell}(n)\right)_{n \in \mathbb{N}}$ such that each sequence $(t(n))_{n \in \mathbb{N}} \in \mathcal{K}_{k}(s)$ is a \mathbb{Z}-linear combination of the t_{j} 's. A sequence s is k-synchronized if the language $\left\{\operatorname{rep}_{k}(n, s(n)) \mid n \in \mathbb{N}\right\}$ is accepted by some finite automaton.
Remark [2]: k-automatic $\subseteq k$-synchronized $\subseteq k$-regular
Proposition [4]: The sequence s_{2} is 2-regular but not 2-synchronized.

Extension to other numeration systems

Instead of considering the language L_{2}, we restrict ourselves to words that contain no factor of the form 11. We are thus left with the language

$$
L_{F}=\varepsilon \cup 1\{0,01\}^{*}
$$

which is the language of the Zeckendorff numeration system based on the Fibonacci numbers defined by $F(0)=1$, $F(1)=2$ and $F(n+2)=F(n+1)+F(n)$ for all $n \in \mathbb{N}$. We define a new generalized Pascal triangle P_{F} using those words.
For each $n \in \mathbb{N}$, we let $s_{F}(n)$ denote the number of positive binomial coefficients on the $(n+1)$ th row of the generalized Pascal triangle P_{F}. The first few terms of s_{F} are
$1,2,3,4,4,5,6,6,6,8,9,8,8,7,10,12$,
$12,12,10,12,12,8,12,15,16,16,15$,

Extension of \boldsymbol{k}-regularity $[1,7]$: Let $s=(s(n))_{n \in \mathbb{N}}$ be a sequence of integers and let $k \geq 2$. The k-kernel $\mathcal{K}_{k}(s)$ of s can be obtained under the following process. First, fix a word $w \in\{0,1, \ldots, k-1\}^{*}$ and select all the nonnegative integers whose base- k expansions with leading 0's end with this word w. Then, evaluate s at those integers to create a specific subsequence of the k-kernel. Let w vary in $w \in$ $\{0,1, \ldots, k-1\}^{*}$ to obtain the entire k-kernel.
The F-kernel $\mathcal{K}_{F}(s)$ of s can be obtained under the same technique. First, fix a word $w \in\{0,1\}^{*}$ and select all the nonnegative integers whose Fibonacci representations with leading 0 's end with this word w. Then, evaluate s at those integers to create a specific subsequence of the F-kernel. Let w vary in $w \in\{0,1\}^{*}$ to obtain the entire F-kernel.

Definition: A sequence $s=(s(n))_{n \in \mathbb{N}}$ is F-automatic if its F-kernel is finite. A sequence s is F regular if there exist a finite number of sequences $\left(t_{1}(n)\right)_{n \in \mathbb{N}} \ldots,\left(t_{\ell}(n)\right)_{n \in \mathbb{N}}$ such that each sequence $(t(n))_{n \in \mathbb{N}} \in \mathcal{K}_{F}(s)$ is a \mathbb{Z}-linear combination of the t_{j} 's.
Proposition [4]: The sequence s_{F} is F-regular.

Asymptotic behavior of the summatory function of $\left(s_{2}(n)\right)_{n \in \mathbb{N}_{0}}$

Definition: For each $n \in \mathbb{N}_{0}$, we define $A(n)=\sum_{1}^{n} s_{2}(n)$ and we set $A(0):=0$. The sequence $(A(n))_{n \in \mathbb{N}_{0}}$ is the summatory function of the sequence $\left(s_{2}(n)\right)_{n \in \mathbb{N}_{0}}$. The first few terms of $(A(n))_{\in \mathbb{N}_{0}}$ are $1,3,6,9,13,18,23,27,32,39,47,54,61,69,76,81,87,96,107,117$,

Theorem [5]: There exists a continuous function Φ over $[0,1)$ such that $\Phi(0)=1, \lim _{\alpha \rightarrow 1^{-}} \Phi(\alpha)=1$ and the sequence $(A(n))_{n \in \mathbb{N}_{0}}$ satisfies, for all $n \geq 1$,

$$
A(n)=3^{\log _{2}(n)} \Phi\left(\operatorname{relp}_{2}(n)\right)=N^{\log _{2} 3} \Phi\left(\operatorname{relp}_{2}(n)\right) .
$$

[^0]Number Theory (C) Alomata and

[^0]: 1] J.-P. Allouche, K. Scheicher, R. F. Tichy, Regular maps in generalized number systems, Math. Slovaca 50 (2000),
 2] A. Carpi, C. Maggi, On synchronized sequences and their separators, Theor. Inform. Appl. 35 (2001), $513-524$.
 ${ }^{2}$ [3] J. Leroy, M. Rigo, M. Stipulanti. Generalized Pascal triangle for binomial coefficients. Ap words. 35 (2001 . 5 , 513 - 524 .
 T1 J. Lerov, M. Pigo M. Stipulantit Counting the number of non-ero coefficients in rows of generalized Pascal triangle 80 (2016), 24-47. (5 J. Leroy, M. Rigo, M. Stipulanti, Summatory function of sequences counting subwords occurrences, submitted ${ }^{61}$ M. Lothaire, Combinatorics on Words, Cambridge Mathematical Library, Cambridge University Press, (1997) . Siall, A semalic sequences, Theoret. Comp. Sci. 61 (1988), no. 1, 1-16.

