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ABSTRACT

Given a video sequence acquired with a fixed camera, the generation of the stationary background of
the scene is a challenging problem which aims at computing a reference image for a motionless back-
ground. For that purpose, we developed our method named LaBGen, which emerged as the best one
during the Scene Background Modeling and Initialization (SBMI) workshop organized in 2015, and
the IEEE Scene Background Modeling Contest (SBMC) organized in 2016. LaBGen combines a pix-
el-wise temporal median filter and a patch selection mechanism based on motion detection. To detect
motion, a background subtraction algorithm decides, for each frame, which pixels belong to the back-
ground. In this paper, we describe the LaBGen method extensively, evaluate it on the SBI 2016 dataset
and compare its performance with other background generation methods. We also study its computa-
tional complexity, the performance sensitivity with respect to its parameters, and the stability of the
predicted background image over time with respect to the chosen background subtraction algorithm.
We provide an open source C++ implementation at http://www.telecom.ulg.ac.be/labgen.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Given a scene viewed from a fixed viewpoint, the problem of
generating an image of the background is known as the back-
ground generation problem. The background is usually defined
as the set of elements that are motionless or subject to periodic
movements. An important particular case arises when the back-
ground is motionless for the duration of the whole sequence
(i.e. the background is stationary). This paper focuses on this
case, in which the background image is unique (see Fig. 1). The
background generation problem has many applications, includ-
ing the rendering of non-occluded views of monuments or land-
scapes that are difficult to capture in crowded places. The back-
ground subtraction problem is another application, well known
in computer vision, that can benefit from the background gen-
eration (Cristani et al., 2010).

Estimating the stationary background image is challenging,
especially when the background is occluded by moving objects
during long time periods. For example, a pixel-wise temporal
median filter (denoted as median method for convenience here-
after) will not be able to produce the expected result when the
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Fig. 1. The generation of a stationary background image is a challenging
task, especially when the background is never fully visible. The right image
is an example of a stationary background reference image produced from
a series of images (such as the ones on the left) by the LaBGen method.

background is visible for less than half of the time. Therefore,
more sophisticated methods have been proposed in the litera-
ture (see the review of Maddalena and Petrosino, 2014). To help
clarifying the efficacy of the background generation methods,
the SBMI workshop was organized by Maddalena and Bouw-
mans in 2015, and the first complete benchmarking framework
was provided. The original framework comprises a dataset,
known as the Scene Background Initialization (SBI) dataset,
with 7 video sequences and the corresponding ground truths,
an evaluation methodology, and a library to compute a set of
dedicated metrics.

Among the stationary background generation methods sub-
mitted to the SBMI workshop, our method (see Laugraud
et al., 2015b), named LaBGen, obtained the best performance;

http://www.telecom.ulg.ac.be/labgen
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LaBGen was also ranked as first during the IEEE Scene Back-
ground Modeling Contest (SBMC) organized in 2016. It com-
bines the principles of the median method with a mechanism to
select patches based on motion detection. More specifically, the
quantity of motion is estimated locally in each frame in order to
keep the patches that contains the lowest quantities of motion.

In this paper, we present the LaBGen method extensively,
evaluate it on the SBI 2016 dataset (which is an extension of the
original one), and compare its performance to other background
generation methods. We also study its computational complex-
ity and the performance sensitivity with respect to its parame-
ters. First, we provide an extended description of the method
in Section 2. Section 3 describes the experimental setup. Sec-
tion 4 presents the performance of the method with respect to
its parameters. As optimizing the parameters for a given se-
quence is time consuming, we establish two sets of parameter
values suitable for a wide range of applications. In Section 5,
we analyze the questions related to the choice of an appropri-
ate background subtraction algorithm, and the stability of the
computed background image over time. Section 6 concludes
the paper.

2. Description of the LaBGen method

The LaBGen method was first introduced in Laugraud et al.
(2015b). It comprises five steps:

1. To cope with difficulties due to short video sequences, the
length of the input sequence is increased. The number of
passes P is the parameter that controls the length of the
augmented video sequence.

2. A motion detection is performed, frame per frame, to de-
termine which pixels belong to the background. The pa-
rameterA identifies the used motion detection algorithm.

3. Based on the motion detection, the quantity of motion is
estimated locally inside of spatial areas whose size is de-
pendent on the parameter N .

4. The quantity of motion is then used to select locally the
subset Ω of patches with the least motion. The amount of
selected patches is given by the parameter S.

5. The stationary background image B is generated by apply-
ing the median method on the subsets of selected patches.

In the following sections, we detail these five steps.

2.1. Step 1: Increasing the length of a video sequence

The motion detection in the second step can be performed
by a background subtraction algorithm. To detect motion, most
background subtraction algorithms need a long series of im-
ages to be initialized and trained. During this period, whose
optimal duration is driven by the video content, the motion de-
tection is unreliable (e.g. presence of ghosts, as illustrated in
Fig. 2). Because of the presence of ghosts, bootstrapping, and
other effects, the LaBGen background generation method, rely-
ing on algorithms of background subtraction for motion detec-
tion, would be unsuccessful for short video sequences. There-
fore, it was suggested in Laugraud et al. (2015b) to increase the
length of any input video sequence artificially by performing P

(a) (b) (c)

(d) (e) (f)

Fig. 2. Running through the video sequence several times helps in remov-
ing ghosts with some background subtraction algorithms. In this example,
the ViBe algorithm has been initialized with frame 1 of the HighwayII se-
quence (a). Image (b) is the 446th image of the sequence. Images (c), (d),
(e), and (f) are the segmentation maps respectively returned during pass 1,
2, 3, and 5. As can be seen, several passes help to remove ghosts.

passes. An odd pass processes the input sequence in the for-
wards (chronological) order, while an even pass processes it in
the backwards (reverse) order to ensure smooth transitions be-
tween the end of a pass and the beginning of a new one. In gen-
eral, considering the input frames in a non-chronological order
does not necessarily decrease the performance of background
subtraction, and in some cases, it can improve the performance
with respect to the forwards order, as shown in Laugraud et al.
(2015a). In the current implementation, P is always chosen to
be odd to finish with a forwards pass.

Let T be the initial number of frames in the original se-
quence. The length of the augmented video sequence is given
by T ′ = P (T − 1) + 1. If the tth frame is denoted by F t, the
video sequence augmentation step lengthens the sequence in
the following way:

F1 · · · FT 7→ F1 · · · FT
(
FT−1 · · · F2F1 · · · FT

) P−1
2 . (1)

Note that the first frame of the augmented video is not processed
as no motion can be detected in this frame. However, it is used
to initialize the motion detection algorithms. For convenience,
the frames of the augmented video sequence are renumbered
F1 · · · FT ′ , with T ′ being the index of the last frame.

2.2. Step 2: Detecting motion

Different approaches exist to detect motion in a video se-
quence, such as optical flow or background subtraction. The
computational cost of the former makes it unattractive; that is
why we prefer to use background subtraction algorithms to de-
tect motion. These algorithms decide, for each pixel pt

x,y of
a given frame F t (with (x, y) being the pixel coordinates, and
t ∈ [2,T ′]), whether it belongs to the foreground or the back-
ground of the scene based on motion detection. Typically, they
maintain a model of the background, updated according to the
content of the current frame and an updating strategy. To per-
form a classification, a segmentation strategy is applied. For
each pixel, the features extracted from the current frame are
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compared to those stored in the model. This segmentation pro-
cess results in a segmentation map mt associated to the current
input frame F t with:

mt
x,y =

0 if pt
x,y is in the background,

1 if pt
x,y is in the foreground.

(2)

Note that, while most background subtraction algorithms use
an internal representation for the background, LaBGen does not
require any access to the model. Exploiting the internal model
to derive a spatially coherent background image appeared to be
complicated for some types of models. Moreover, the back-
ground generation method does not require the knowledge of
the difference value before the thresholding operation. In other
words, in the LaBGen method, the background subtraction al-
gorithms (or any other technique that could be used to detect
motion) are interchangeable for producing the required binary
segmentation map for each input frame. Consequently, any
background subtraction algorithm can be used, regardless of
its model, updating strategy, and segmentation strategy. In the
following, we use the parameterA to refer to the chosen back-
ground subtraction algorithm.

2.3. Step 3: Estimating locally the quantity of motion

To motivate the need for an estimation of the quantity of mo-
tion, let us underline that applying a pixel-wise median filter on
all the values classified in the background to generate a station-
ary background image would not work when the background is
rarely observable. Indeed, most background subtraction algo-
rithms are optimized to have a low false detection rate, even if
that leads to a high miss rate. Therefore, they do not guaran-
tee that at least half of the values classified in the background
belong to the background. In technical terms, there is no guar-
antee that the negative predictive value is larger than 0.5.

In order to adapt the inadequate behavior of background sub-
traction algorithms for our needs, we analyze the predictions
made by an algorithm in a spatial area fi ⊆ F (with i being
the index of the considered area), instead of considering a sin-
gle pixel. More precisely, we compute qt

i, the proportion of
pixels classified in the foreground by the background subtrac-
tion algorithm in a given area f t

i of a frame F t. This measure
represents the quantity of motion in the considered area, and it
estimates the probability of observing pixels corresponding to
moving objects in that area. In our implementation, we arbitrar-
ily divide the width w and height h of the image plane by the
parameter N ∈ N+ to create N × N non-overlapping patches,
denoted by fi ⊆ F (with i ∈

[
1,N2

]
and

⋃
i fi = F ), and whose

width/height ratio is approximately identical to the w/h ratio of
the original image. Then, we measure the quantity of motion in
each patch of each frame as follows:

qt
i =

∑
(x,y)∈Ψi

mt
x,y

#Ψi
with Ψi =

{
(x, y)

∣∣∣ px,y ∈ fi
}
. (3)

2.4. Step 4: Selecting subsets of patches

During the selection step, for every spatial area fi in the im-
age plane, we build a subset Ωi of maximum S ∈ N+ patches, S

being a parameter of the method. The patches in the subset Ωi

are selected among the set of candidate patches
{
f 2
i · · · f T ′

i

}
ac-

cording to the quantities of motion q2
i · · · q

T ′
i . It should be noted

that selecting a restricted number of patches is essential for two
reasons: (1) it bounds the memory usage, and (2) by keeping S
patches, we avoid the problems related to a bias in determining
qt

i and finding an adequate threshold.
The selection mechanism builds the subset Ωi iteratively, Ωt

i
being the subset of patches that are selected after processing t
frames. We define the initial subset Ω1

i = ∅. While t ≤ S + 1,
the patches fi of the first processed frames (starting from the
second one) are all selected:

Ωt
i = Ωt−1

i ∪
{
f t
i

}
for t ∈ [2,S + 1] . (4)

After that, when t > S+1, we incorporate the candidate patch f t
i

into the subset Ωt
i if a selection criterion is satisfied. Note that,

to keep constant the cardinality of Ωt
i, a patch is removed when

a new one is selected. The selection criterion checks whether
the quantity of motion qt

i associated to the candidate patch f t
i is

less or equal to at least one quantity of motion qαi associated to
a patch f αi ∈ Ωt−1

i . When it is satisfied, the patch f βi ∈ Ωt−1
i with

the highest quantity of motion qβi is removed from Ωt
i. If two or

more patches in Ωt−1
i share this quantity, we always remove the

oldest patch. In summary, we build the subsets Ωt
i as follows:

Ωt
i =

Ωt−1
i ∪

{
f t
i

}
\
{
f βi

}
if t > S + 1 ∧ qt

i ≤ qβi ,
Ωt−1

i otherwise.
(5)

Note that the final set of selected patches Ωi is the subset of
patches ΩT ′

i constructed for frame FT ′ . Thus, Ωi = ΩT ′
i .

2.5. Step 5: Generating the background image

With our method, an estimation of the stationary background
Bt can be generated after the processing of each frame F t. Once
the sets of selected patches Ωt

i have been built for every spatial
area fi in the image plane, Bt is constructed by applying a pixel-
wise median filter on the selected patches:

Bt
x,y = median

({
pt′

x,y

∣∣∣ px,y ∈ fi ∧ f t′
i ∈ Ωt

i

})
. (6)

In particular, the final background image B corresponds to the
stationary background generated after the processing of frame
FT ′ . In other words, B = BT ′ . For multi-channel images, we
arbitrarily compute the median on each channel independently.

2.6. Implementation of the method

Fig. 3 provides an implementation of the LaBGen method in
pseudo code. In this code, the sets of selected patches Ωi are
lists of selected patches f t

i , stored with their associated quan-
tity of motion qt

i, and sorted by ascending order of quantities
of motion. This helps to insert and remove selected patches ef-
ficiently. Furthermore, the stationary background is generated
only once, when the selection step has been performed on the
final frame FT ′ , although we could output a background image
for each time index. We provide an open source C++ imple-
mentation at http://www.telecom.ulg.ac.be/labgen.

http://www.telecom.ulg.ac.be/labgen
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for pass p← 1 to P do
while frames are available do

if pass p % 2 = 1 then
F ← get next frame in forwards order;

else
F ← get next frame in backwards order;

if F is the first processed frame then
initialize model of algorithmA with frame F ;
continue;

m ← segmentation map of frame F returned byA;
update model of algorithmA with frame F ;
foreach i ∈ [1,N2] do

fi ← patch in spatial area i of frame F ;
mi ← patch in spatial area i of segmentation map m;

qi ←
# foreground classifications in mi

# pixels in fi
;

foreach pair ( f ′
i
, q′

i
) ∈ list of selected patches Ω

i
do

if quantity of motion q
i
≤ q′

i
then

insert ( fi, qi) into list Ωi before ( f ′i , q
′
i);

if #Ω
i
> S then remove last pair of list Ωi;

break;
if #Ω

i
< S and pair ( f

i
, q

i
) < list Ω

i
then

insert ( fi, qi) at the end of list Ωi;
foreach list of selected patches Ω

i
do

apply pixel-wise median filter on selected patches f ′i ∈ Ωi;

Fig. 3. An implementation of the LaBGen method in pseudo code.

2.7. Classification of the method
According to the taxonomy introduced in the survey by Mad-

dalena and Petrosino (2014), the method is:

• Hybrid as we combine classifications made at the pixel-
level by a background subtraction algorithm with a region-
level selection process extracting patches with the lowest
quantities of motion.

• Non-recursive as our method stores patches observed in
the previous frames in sets during one or more passes, and
directly derives the estimated background image by the ap-
plication of a pixel-wise median filter.

• Selective as the pixel-wise median filter is applied on sets
of selected patches.

3. Experimental setup

In this section, we present the experimental setup for our ex-
periments. It consists in the SBI 2016 dataset presented in Sec-
tion 3.1, and metrics used for the evaluation presented in Sec-
tion 3.2. We also discuss the choice of 13 different background
subtraction algorithms in Section 3.3.

3.1. The SBI 2016 dataset
The 2016 version of the SBI dataset (http://sbmi2015.

na.icar.cnr.it/SBIdataset.html), provided by Mad-
dalena and Petrosino (2015), comprises 14 sequences listed in
Table 1. They originate from various other datasets and are pro-
vided with a ground truth image considered as the perfect sta-
tionary background estimation. Matlab code is also provided to
compute the six metrics presented in Section 3.2.

Table 1. Description of the sequences of the SBI 2016 dataset. Each se-
quence (1st column) is provided with the resolution (2nd column), the num-
ber of frames (3rd column), the number of frames Without Foreground
objects (WF; 4th column), the Mean Quantity of Motion (MQM; 5th col-
umn) estimated from the segmentation maps returned by the oracle (see
Section 3.3), and the ability of the median method to provide a background
estimation that is acceptable visually (6th column).

Sequence Resolution Frames WF MQM Median
Board 200 × 164 228 0 0.341 8

Candela_m1.10 352 × 288 350 0 0.038 8

CAVIAR1 384 × 256 610 0 0.055 8

CAVIAR2 384 × 256 460 0 0.009 4

CaVignal 200 × 136 258 0 0.103 8

Foliage 200 × 144 394 5 0.507 8

Hall&Monitor 352 × 240 296 0 0.039 8

HighwayI 320 × 240 440 0 0.167 4

HighwayII 320 × 240 500 0 0.052 4

HumanBody2 320 × 240 740 0 0.107 4

IBMtest2 320 × 240 90 0 0.068 4

People&Foliage 320 × 240 341 0 0.421 8

Snellen 144 × 144 321 1 0.585 8

Toscana 800 × 600 6 0 0.218 8

3.2. Metrics to assess the results
Maddalena and Petrosino (2015) suggest to use six metrics to

evaluate background generation methods. The metrics to mini-
mize (resp. maximize) are indicated by a ↓ (resp. ↑) symbol:

1. Average Gray-level Error (AGE, ↓, [0, 255]): average of
the absolute difference between the gray-scale values of an
input image and a ground truth image.

2. Percentage of Error Pixels (pEPs, ↓): considers that a dif-
ference of gray-scale values larger than 20 is an error.

3. Percentage of Clustered Error Pixels (pCEPs, ↓): if a
gray-scale value and its 4-connected neighbors are consid-
ered as errors according to pEPs, then the corresponding
pixel is erratic.

4. Peak-Signal-to-Noise-Ratio (PSNR, ↑): defined by Eq. 7,
with MSE being the Mean Squared Error between an input
gray-scale image and a ground truth gray-scale image:

PSNR = 10 log10
2552

MSE
dB. (7)

5. Multi-Scale Structural Similarity Index (MS-SSIM, ↑,
[−1, 1]): metric defined by Wang et al. (2003) using struc-
tural distortion as an estimation of the perceived visual dis-
tortion.

6. Color image Quality Measure (CQM, ↑, dB): metric de-
fined by Yalman and Ertürk (2013) combining per-channel
PSNRs computed on an approximated reversible RGB to
YUV transformation.

Except for CQM, all the metrics are designed for monochro-
matic images. In practice, colors images are only evaluated on
the luminance component Y. In this paper, we arbitrarily chose
pEPs as our reference metric.

3.3. Background subtraction algorithms
In our experiments, we tested 13 background subtraction al-

gorithms. As a huge number of algorithms are available these

http://sbmi2015.na.icar.cnr.it/SBIdataset.html
http://sbmi2015.na.icar.cnr.it/SBIdataset.html
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days (Bouwmans, 2014), we decided to test a large panel of
different models. The simplest algorithm, commonly called as
frame difference (F. Diff.), thresholds the distance of colors be-
tween consecutive frames. As the noise is not temporally uni-
form, some algorithms use a probabilistic model estimating a
statistical distribution of the background colors adapted over
time. Thus, by supposing a Gaussian noise, the Pfinder (Wren
et al., 1997) modeled the background with a Gaussian distri-
bution whose mean and variance are adapted over time. In-
stead of estimating the mean, the Σ − ∆ algorithm (Manzanera
and Richefeu, 2004) approximates the median using a behav-
ior close to Σ − ∆ estimators. Stauffer and Grimson (1999)
extended the idea of using a Gaussian distribution to exclude
dynamic backgrounds from the foreground. By using a mixture
of Gaussians, several modes can be combined and more than
one background can be handled (MoG G.). Zivkovic (2004)
improved this extension by adapting the number of distribu-
tions needed over time (MoG Z.). Goyat et al. (2006) presented
VuMeter, which is a non parametric method estimating a prob-
ability mass function of the background colors from a temporal
color histogram. A different approach, described by Heikkilä
and Pietikäinen (2006), leverages the idea of Stauffer et al. by
using a mixture of LBP textures.

As an alternative, sample-based algorithms build their model
by collecting features sampled over time. The KDE algorithm
(Elgammal et al., 2000) collects a set of past color samples and
estimates a non parametric statistical distribution by applying
Parzen windows with a Gaussian kernel. The ViBe algorithm
(Barnich and Van Droogenbroeck, 2011) uses a pure sample-
based approach and random policies to sample observed back-
ground colors. Moreover, it incorporates a spatial propagation
mechanism to ensure spatial consistency. Among others, some
variants of ViBe have been developed by Hofmann et al. (2012)
with PBAS which adapts the decision thresholds and update
rates using controllers, and by St-Charles et al. (2015) with
SuBSENSE (SuBS.) by associating the addition of adaptive pa-
rameters with the sampling of LBSP strings.

A different approach, based on self organization through ar-
tificial neural networks, has been proposed by Maddalena and
Petrosino (2008). Their algorithm, named SOBS, builds a neu-
ral map that associates each pixel to several HSV weight vec-
tors. Its updating strategy is based on a spatio-temporal selec-
tive weighted running average.

For completeness, we designed an oracle algorithm leading
to a perfect segmentation, according to the pEPs metric, by clas-
sifying a pixel in the foreground when the difference of lumi-
nance with the ground truth is larger than 20.

Regarding the implementations, the ViBe algorithm has been
provided by its authors. The implementations of the other algo-
rithms are in the BGSLibrary maintained by Sobral (2013) and
have been used with their default set of parameters. We wrote
the code of the oracle algorithm.

4. Performance evaluation

In order to assess the LaBGen method for a large set of pa-
rameters, an estimation of the background has been generated

for each sequence of the SBI 2016 dataset using each com-
bination of P = {1, 3, 5, ..., 29}, N = {1, 2, 3, ..., 50}, S =

{1, 3, 5, ..., 201}, and the background subtraction algorithms A
presented Section 3.3. Remember that, by construction, P is
always an odd positive integer. Moreover, S is also chosen to
be odd to avoid interpolated values in the median filter. The
four parameters of our method (P, N , S, A) provide enough
flexibility to obtain an almost perfect background estimation for
any input video sequence. Therefore, in Section 4.1, we discuss
the achievable performance when we choose a particular back-
ground subtraction algorithmA and optimize the (P,N ,S) pa-
rameters. Then, we discuss the optimization of all four param-
eters (P,N ,S,A) on a per sequence basis in Section 4.2. In
Section 4.3, we compare the performances of LaBGen with that
of other background generation methods. We analyze the com-
putational complexity in Section 4.4 and provide a sensitivity
analysis with respect to the parameters in Section 4.5. Note
that LaBGen has been assessed on the SBMnet category-driven
dataset (http://www.scenebackgroundmodeling.net) in
Laugraud et al. (2016).

4.1. Determination of the best average performance
To evaluate our method, we first tuned the parameters to

achieve the best average performance. Table 2 provides the best
set of (P,N ,S) parameters, given a background subtraction al-
gorithmA. These sets of parameters have been found by mini-
mizing the pEPs score averaged over the sequences. Except for
the oracle, all the metrics agree to rank the simple frame dif-
ference background subtraction algorithm as first. Moreover, it
should be noted that, except for the MS-SSIM of some meth-
ods, all the results have been improved compared to the ones
reported in Laugraud et al. (2015b) for the SBMI workshop.
The reason is that a larger parameter space has been explored
on an increased number of sequences.

If the results of the oracle are attractive, they are not achiev-
able in practice as it uses the ground truth. Thus, to achieve the
best average performance, we advise to use the frame difference
algorithm with the following default set of parameters:

(P,N ,S,A)default = (29, 4, 57,F. Diff.) . (8)

Even though the use of the frame difference algorithm is sur-
prising, we believe that it is particularly efficient in our context
due to its total insensibility to its initialization (i.e. its insen-
sibility to bootstrap). Because it returns the same motion in-
formation for any couple of frames at each pass, doubling both
S and P keeps the median of the selected patches unchanged.
Therefore, for a given N , the ratio S/P is the main factor influ-
encing the performance when the frame difference algorithm is
used. Noting that S and P are two odd positive integers, we
might need to take large values of S and P to reach the optimal
S/P ratio (especially if the optimal ratio is close to an even inte-
ger). This explains why we obtained P , 1 in the default set of
parameters.

For experimenting with other background subtraction algo-
rithms (e.g. to compare the contribution of an untested back-
ground subtraction algorithm with the tested ones), we suggest
the following universal set of parameters:

(P,N ,S)universal = (1, 2, 19) , (9)

http://www.scenebackgroundmodeling.net
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Fig. 4. Performance boost, in terms of averaged pEPs on the 14 SBI 2016 sequences, due to various parameters optimization steps of our method. We
consider the simple median method as the baseline �. The performance of LaBGen with an unspecified background subtraction algorithm and the
universal set of parameters (see Eq. 9) is better on average �. An improvement is obtained with a suitable background subtraction algorithm (here, the
frame difference with the default set of parameters; see Eq. 8) �. A further improvement is obtained by keeping the frame difference and tuning the
parameters for each sequence (see Table 3) �. The best performance is reached when all the parameters are tuned for each sequence (see Table 3) �.

Table 2. Mean performance on the SBI 2016 dataset with respect to each background subtraction algorithm A by using the universal set of parameters
(left table; see Eq. 9), and parameters tuned for each algorithmA (right table). The best sets of (P,N ,S) parameters in the right table have been obtained
by minimizing the pEPs score averaged over sequences. The algorithms A are ranked according to the pEPs metric. Note that the best performance
appears in the right table.

Universal set of parameters
A Rank pEPs ↓

Oracle - 1.4650%
F. Diff. 1 2.6678%
MoG G. 2 3.6599%
VuMeter 3 4.7470%

KDE 4 6.1272%
PBAS 5 6.7072%
LBP 6 7.1875%

MoG Z. 7 7.2937%
Pfinder 8 7.5703%

Σ-∆ 9 7.5751%
SuBS. 10 8.2697%
ViBe 11 8.7449%
SOBS 12 12.7843%
Median method 14.0500%

Best parameters Averaged metrics
A Rank P N S AGE ↓ pEPs ↓ pCEPs ↓ PSNR ↑ MS-SSIM ↑ CQM ↑

Oracle - 17 49 15 2.3200 0.0148% 0.0006% 38.7113 0.9918 49.7474
F. Diff. 1 29 4 57 2.9945 1.3972% 0.9246% 35.2028 0.9764 47.2946
MoG G. 2 17 2 41 4.1857 2.4494% 1.9742% 33.9778 0.9472 45.1503
SuBS. 3 17 3 3 4.1848 2.6674% 1.7270% 33.0554 0.9646 45.0498
PBAS 4 1 2 1 4.8934 3.4566% 2.2524% 30.3995 0.9448 41.0873

VuMeter 5 1 2 27 4.9965 3.9232% 3.1150% 31.5587 0.9362 44.6622
KDE 6 5 2 177 4.5624 4.3616% 3.5576% 32.3596 0.9519 45.5814

MoG Z. 7 29 50 7 5.8876 5.1848% 3.6553% 29.0150 0.9342 41.3826
LBP 8 1 1 39 4.9960 5.2596% 3.9821% 30.6226 0.9381 44.3876
Σ-∆ 9 3 2 7 6.6502 6.1998% 5.1822% 30.9743 0.9202 43.1996
ViBe 10 21 50 7 7.0353 6.2812% 4.0358% 27.8026 0.8996 40.2080

Pfinder 11 1 2 23 7.2657 7.3764% 6.0646% 30.7581 0.9219 43.4202
SOBS 12 7 1 19 8.6817 9.6740% 7.8359% 27.1229 0.8726 40.7849

Median method 10.5889 14.0500% 11.2883% 28.1082 0.8570 42.6332

Table 3. Best set of parameters per SBI 2016 sequence using the frame difference background subtraction algorithm (left table), and the best background
subtraction algorithmA (right table). Each set of (P,N ,S) and (P,N ,S,A) parameters has been obtained by minimizing the pEPs score. Note that the
best performance appears in the right table.

A = F. Diff.
Sequence P N S pEPs ↓

Board 3 23 201 0.4543%
Candela_m1.10 1 10 3 0.0049%

CAVIAR1 1 2 199 0.1465%
CAVIAR2 1 13 5 0.0000%
CaVignal 1 2 1 0.0147%
Foliage 1 1 1 0.0000%

Hall&Monitor 1 1 11 0.0320%
HighwayI 3 1 85 0.0768%
HighwayII 1 1 15 0.0195%

HumanBody2 1 17 113 0.1523%
IBMtest2 3 2 185 0.0117%

People&Foliage 1 3 1 0.0013%
Snellen 1 1 1 0.0048%
Toscana 3 1 5 4.7644%

Best parameters Metrics
Sequence P N S A AGE ↓ pEPs ↓ pCEPs ↓ PSNR ↑ MS-SSIM ↑ CQM ↑

Board 1 5 99 KDE 4.2793 0.3201% 0.0274% 32.6703 0.9443 51.5876
Candela_m1.10 1 4 1 Σ-∆ 1.5051 0.0000% 0.0000% 41.6544 0.9954 49.6929

CAVIAR1 3 17 149 KDE 3.3136 0.0661% 0.0102% 36.1502 0.9933 52.2087
CAVIAR2 1 2 1 Pfinder 1.4388 0.0000% 0.0000% 42.3633 0.9976 52.5509
CaVignal 1 2 1 F. Diff. 0.5749 0.0147% 0.0000% 44.7687 0.9978 55.1346
Foliage 1 1 1 F. Diff. 1.8351 0.0000% 0.0000% 39.2288 0.9975 45.5876

Hall&Monitor 1 15 111 SOBS 2.0775 0.0178% 0.0000% 38.8801 0.9937 47.1858
HighwayI 1 1 37 MoG G. 1.3731 0.0612% 0.0013% 41.0358 0.9928 59.7805
HighwayII 1 1 23 KDE 1.7793 0.0143% 0.0000% 39.8206 0.9960 48.4193

HumanBody2 23 5 51 PBAS 3.1293 0.0521% 0.0000% 36.2525 0.9975 47.9972
IBMtest2 1 3 5 MoG Z. 2.9613 0.0000% 0.0000% 35.3513 0.9934 48.7203

People&Foliage 1 3 1 F. Diff. 0.9638 0.0013% 0.0000% 43.5511 0.9983 48.4398
Snellen 1 1 1 F. Diff. 0.3776 0.0048% 0.0000% 49.0233 0.9995 55.8155
Toscana 3 13 7 SuBS. 1.3666 0.4850% 0.2281% 35.8936 0.9872 46.9299
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Fig. 5. Results obtained for the sequences of the SBI 2016 dataset (an arbitrary frame is shown on the 1st row) with the median method (2nd row), our
method with the default (3rd row; see Eq. 8) and per sequence optimized (4th row; see Table 3) sets of parameters, and the ground truth (5th row).

that minimizes the average pEPs metric (' 6.52%) on the 14
sequences of the SBI 2016 dataset and with the 13 tested back-
ground subtraction algorithms. We compare the performance of
the LaBGen method using the universal set of parameters and
the default set of parameters in Fig. 4 and Table 2.

Fig. 5 shows the background images generated for the SBI
2016 dataset using the default set of parameters (see Eq. 8).
Although several results are visually almost perfect (even for
the highly cluttered sequences Foliage and People&Foliage),
a few imperfections appear for some sequences. For exam-
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ple, shadows occur in the Board and Snellen sequences, and
some patches differ by being darker than other ones in the back-
ground images. This suggests that selecting patches without
any temporal constraint or appropriate blending paradigm is
problematic to handle shadows and illumination changes prop-
erly. The robustness to stationary foreground objects is chal-
lenged with the four sequences CaVignal, Hall&Monitor, Can-
dela_m1.10, and CAVIAR1. Our method applied on CaVig-
nal and Hall&Monitor produces results that are visually per-
fect. For the Candela_m1.10 and CAVIAR1 sequences, a sil-
houette is still partially visible in the estimated background. In
fact, LaBGen used with the frame difference is not always able
to remove foreground objects that remain static for a long pe-
riod of time. Another background subtraction algorithm, able
to keep such objects in the foreground, is needed to avoid their
inclusion into the estimated background. For the HighwayI se-
quence, camera jitter creates some patch misalignments since
our method lacks of a motion compensation mechanism. Fi-
nally, as the frame difference algorithm is unable to handle large
changes, the LaBGen method fails to produce a usable back-
ground estimation for the very short Toscana sequence. Despite
of these drawbacks, our method with the default set of param-
eters succeeds where more complicated methods, such as those
assessed by Maddalena and Petrosino (2015), fail.

4.2. Optimizing the performance per sequence
Although the default set of parameters of Eq. 8 leads to a

good performance in average (pEPs ' 1.40%), we can produce
almost perfect results on a per sequence basis.

Table 3 provides, given a video sequence of the SBI 2016
dataset, the best set of (P,N ,S,A) parameters according to
the pEPs metric. Except for the AGE, PSNR and CQM metrics
evaluated on the Hall&Monitor sequence, all the metrics have
been improved compared to the results reported in Laugraud
et al. (2015b) for the SBMI workshop. Moreover, it is interest-
ing to observe that the (P,N ,S) = (1, 1, 1) set of parameters
is the best suited for Foliage and Snellen, as these sequences
are the only ones containing frames never occluded with fore-
ground objects (see Table 1). Finally, as using the frame differ-
ence algorithm provides the best performance in average (see
Section 4.1), one can compare the performance of the LaBGen
method used with the sets of (P,N ,S,A) parameters optimized
per sequence, and the sets of (P,N ,S,F. Diff.) parameters op-
timized per sequence, in Fig. 4 and Table 3.

4.3. Comparison to other background generation methods
To complete the performance evaluation of our method, we

compared LaBGen to 6 state-of-the-art background generation
methods. Among these methods, Photomontage (Agarwala
et al., 2004) combines a series of images with respect to an ob-
jective function optimized with graph-cuts; for the background
generation problem, the objective is the maximum likelihood.
RSL2011 (Reddy et al., 2011) estimates the background in a
Markov Random Field framework, where the optimal labeling
solution is computed iteratively. Instead of formulating an op-
timal labeling problem, the WS2006 (Wang and Suter, 2006)
method looks for the most reliable sub interval of stable in-
tensities for each pixel, and takes its mean as the background

value. In comparison to SOBS (see Section 3.3), SC-SOBS
(Maddalena and Petrosino, 2012) adds a spatially coherent up-
dating strategy providing further robustness against false detec-
tions; the background of a given pixel is extracted by choosing
the closest weight vector to the ground truth. BGWiS (De Gre-
gorio and Giordano, 2015) uses a weightless neural network,
called WiSARDrp, based on a network of memory nodes com-
posed of several cells. For each pixel, the stimulated cells are
increased by a reward while the other ones are decreased by
a punishment. The background is then reconstituted from the
cells associated to the greatest values. Finally, Sobral et al.
(2015) apply a matrix completion algorithm on areas that are
in motion. According to these authors, the LRGeomCG matrix
completion algorithm performs the best for their method.

Table 4 reports the pEPs scores achieved by LaBGen and the
background generation methods described above. Note that we
provide results for the subset of 7 sequences composing the SBI
2015 dataset as no data is available for the whole SBI 2016
dataset yet. One can observe that LaBGen used with sets of
parameters optimized per sequence is ranked first, and above
RSL2011, which was the main challenger of our method dur-
ing the SBMI workshop. Moreover, LaBGen achieves the best
scores for 5 sequences, with an equality with RSL2011 for
CaVignal, and Photomontage for Foliage. Although SC-SOBS
performs better on the HighwayI and HighwayII sequences, it
should be noted that this method uses the ground truth as an
input. Except for the SC-SOBS method, LaBGen is better for
these two sequences too.

When it uses its default set of parameters, LaBGen is ranked
third. Although it is ranked below RSL2011, LaBGen performs
better for 4 sequences, equally for CaVignal, but it is penalized
by its score on the Snellen sequence. Remarkably, LaBGen
with the default set of parameters achieves the best score for 4
out the 7 sequences, compared to other state-of-the-art methods.
In addition, only SC-SOBS is better than our method for the
HighwayII sequence. Note that for the CaVignal and Foliage
sequences, the default set of parameters suffices to reach the
best achievable score.

4.4. Computational complexity
The computational complexity of the LaBGen method can be

derived by considering its different steps:

1. The first frame is only used to initialize the background
subtraction algorithmA. The complexity of this operation
is O(CAi ), with CAi being the initialization cost ofA.

2. The motion detection (see Eq. 2) is applied for each frame.
Its complexity is O(PTCAs ), with P being the number of
passes, T the number of frames of the input sequence, and
CAs the cost for algorithmA to segment one frame.

3. The local estimation of the quantity of motion (see Eq. 3)
requires to work with each pixel of each frames. There-
fore, its complexity is O(PThw), with h (resp. w) being
the height (resp. width) of the input sequence.

4. In the worst case, selecting subsets of patches requires S
comparisons for each area of the encountered frames (see
Eq. 5). Thus, the computational complexity of this step is
O(PTSN2).
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Table 4. Comparison of the pEPs scores achieved by LaBGen and other background generation methods on the SBI 2015 dataset. The results of SC-SOBS,
WS2006, RSL2011, and Photomontage are taken from Maddalena and Petrosino (2015), and the other ones from the corresponding papers. The methods
are ranked according to the pEPs score averaged over the 7 sequences. LaBGen is first using sets of parameters optimized per sequence, and third with its
default set of parameters.

Rank Average Per sequence pEPs ↓
pEPs ↓ Hall&Monitor HighwayI HighwayII CaVignal Foliage People&Foliage Snellen

B
ac

k.
G

en
.M

et
ho

d

LaBGen (per seq.) 1 0.0163% 0.0178% 0.0612% 0.0143% 0.0147% 0.0000% 0.0013% 0.0048%
RSL2011 2 0.5753% 0.8321% 0.3477% 1.2448% 0.0147% 0.1493% 0.7969% 0.6414%

LaBGen (default) 3 1.0320% 0.1302% 0.4362% 0.3034% 0.0147% 0.0000% 0.0026% 6.3368%
WS2006 4 4.6885% 0.5563% 0.6849% 0.4883% 1.5000% 2.8507% 3.5716% 23.1674%

Photomontage 5 6.5827% 0.3610% 0.4076% 0.5885% 11.2206% 0.0000% 0.0039% 33.4973%
SC-SOBS 6 8.0175% 0.9801% 0.0039% 0.0091% 3.1949% 0.5556% 14.0234% 37.3553%
BGWiS 7 14.1857% 0.5200% 0.1400% 0.4600% 0.0900% 10.6200% 32.8600% 54.6100%
Median 8 22.5583% 0.9789% 0.1628% 0.3320% 10.4853% 47.7049% 36.0091% 62.2348%

LRGeomCG 9 35.8343% 0.2200% 0.2500% 0.3500% 13.9300% 62.7600% 83.5300% 89.8000%

Table 5. Run times of LaBGen on five SBI 2016 sequences using the default
set of parameters (see Eq. 8), and the same set but with a constrained pa-
rameter P = 1, N = 1, or S = 1. The times have been averaged over 100
executions on an Intel Core i7-4790K of an implementation that can still
be sped up. Note that P is the main parameter influencing the run time.

Time (in ms)

Sequence Resolution Frames Default Default Default Default
P = 1 N = 1 S = 1

Snellen 144 × 144 321 718 83 449 462
IBMtest2 320 × 240 90 624 222 613 366

HumanBody2 320 × 240 740 7836 530 3219 3258
CAVIAR1 384 × 256 610 19721 938 6988 3731
Toscana 800 × 600 6 1220 66 1142 135

5. In our implementation (see Section 2.6), the pixel-wise
median filter (see Eq. 6) is applied only once, at the end of
the process. Using a selection algorithm, the cost to find
the median among S values is linear in average O(Shw).

Considering this decomposition, the overall complexity of
LaBGen, in the worst case, can be expressed as:

O
(
CAi + PT

(
CAs + hw + SN2

)
+ Shw

)
. (10)

In practice, with an Intel Core i7-4790K, a mean pixel
throughput of 239×106 pixels/s has been measured according to
100 executions on each SBI 2016 sequence using the default set
of parameters. Table 5 provides examples of run times which
are better than real-time for most sequences.

4.5. Sensitivity analysis
To have a better insight on the performance of the LaBGen

method, we study its sensitivity according to pEPs, when the
parameters vary around the best sets of (P,N ,S) parameters
tuned for each background subtraction algorithm A (see Ta-
ble 2). This sensitivity is illustrated graphically in Fig. 6. We
observe that the augmentation step described in Section 2.1, and
the local estimation of the quantity of motion described in Sec-
tion 2.3 are critical elements of LaBGen. Indeed, for most back-
ground subtraction algorithms, the best average performance
is reached after several passes (when P > 1), and when the
quantities of motion are estimated inside large patches (when
N is small) rather than for pixels individually (when N is very
large). More specifically, the N value leading to the best per-
formance in average is comprised between 1 and 4. The fact
that, as long as N increases and the patch size reduces to a

pixel, the oracle performs better, tends to prove that an imper-
fect motion detection needs a spatial compensation mechanism,
and that LaBGen tends to an almost perfect performance if a
flawless motion detection is used. Regarding the parameter S,
the stability of the performance can be significantly different
from one background subtraction algorithm to another. For in-
stance, the performance remains stable on large ranges using
the frame difference, while a step away from the local optimum
is severely penalized with other algorithms such as ViBe. Note
that in addition to the algorithm being used, the parameter S
is strongly dependent on the scene as S = 1 implies that the
full background can be observed, free of foreground objects, at
least once for each patch. However, S > 1 means that several
patches must be combined in order to generate the background
in the different spatial areas.

For some parameters, a trade-off between performance and
computational cost is possible. For instance, using A =

F. Diff., the number of passes can be dropped from P = 29
to 5 with no significant performance loss (' 0.36%). This can
be useful for embedded devices as, according to Section 4.4, a
high number of passes is the main bottleneck of the run time.
Trade-offs are also possible between the selected background
subtraction algorithm and the S parameter. For example, us-
ing KDE, the number of selected patches can be dropped from
S = 177 to 95 with no significant performance loss (' 0.21%).
However, a decrease of S is unacceptable using the SOBS al-
gorithm. Such trade-offs seem impossible for the parameter N
since the performance quickly drops for a non optimal value.

5. On the choice of a background subtraction algorithm

Selecting the best background subtraction algorithm to pro-
duce a valuable motion detection for the LaBGen method is
a difficult task for different reasons. One problem is that, as
shown in Fig. 7, there is no negative correlation between the F1
performance of a background subtraction algorithm (which is
the favored metric in the field of background subtraction) and
the pEPs performance of LaBGen using this algorithm.

Another important characteristic to consider for the choice
of a background subtraction is the resulting stability of the pre-
dicted background image over time. To study that stability for
a given video sequence of the SBI 2016 dataset, we compute
the pEPs score for all the predicted background images Bt after

http://ark.intel.com/fr/products/80807/Intel-Core-i7-4790K-Processor-8M-Cache-up-to-4_40-GHz
http://ark.intel.com/fr/products/80807/Intel-Core-i7-4790K-Processor-8M-Cache-up-to-4_40-GHz
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Fig. 6. Sensitivity of the performance, according to pEPs averaged over the 14 SBI 2016 sequences, when the parameters vary around the best sets of
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Fig. 7. Comparison between the performance of a background subtraction
algorithm on the baseline of the CDnet 2014 dataset (Wang et al., 2014),
and the mean performance of the LaBGen method using the best sets of
(P,N ,S) parameters tuned for each algorithm A (values are taken from
the right table of Table 2). As can be seen, there is no obvious relationship
between the increase of the F1 score and the decrease of the pEPs.

each number of frame comprises between 2 and T ′ (see Eq. 6).
By doing so, we observed that some background subtraction al-
gorithms require the presence of precise events in the video se-
quence to help in finding a correct background image (e.g. the
observation of frames free of foreground objects). However, as
soon as one new frame is processed, this estimation is directly
degraded. Fig. 8a illustrates the evolution of the pEPs score for
three background subtraction algorithms applied on the Board
sequence. One observes that while LaBGen quickly converges
towards a good and stable background estimation with the or-
acle and the frame difference, it never stabilizes its result with
VuMeter. This observation raises several questions such as: is
a result stable or related to a precise event appearing at the end
of a sequence? If events are reorganized in a sequence, will the
result be as good as the original one? Or simply, can we trust
a result? To provide an insight on theses questions, we made a
box plot illustrating the mean variation of the pEPs score over
time, for each background subtraction algorithm presented in
Section 3.3. As shown in Fig. 8b, it turns out that VuMeter,
PBAS, and SuBSENSE tend to lead to unstable background
images. Note that even though the stability of the frame dif-
ference, KDE, MoG Z., and ViBe algorithms is close to zero in

average, there exist some outliers showing that these algorithms
are unsuited for at least one sequence.

Finally, we observed in Table 3 that the best background sub-
traction to be used in our method depends on the considered
video sequence. However, the precise relationship between
the properties of the video sequences and the characteristics of
the background subtraction algorithms is still to be understood
(Piérard and Van Droogenbroeck, 2015). Relating to the ques-
tion of the selection of the background subtraction algorithm, a
blind approach that tests several background subtraction algo-
rithms, is the only option in this work.

6. Conclusion

In this paper, we present the LaBGen stationary background
generation method, first introduced in Laugraud et al. (2015b).
This method is simple, flexible, fast, and it performs almost per-
fectly on the video sequences provided in the SBI 2016 dataset.
Moreover, we provide an open source C++ implementation at
http://www.telecom.ulg.ac.be/labgen.

An essential component of LaBGen is its flexible motion de-
tection mechanism, based on interchangeable background sub-
traction algorithms. Comparisons with 13 background sub-
traction algorithms show that, although it is counterintuitive,
there is no obvious correlation between the known performance
of an algorithm and the quality of the background estimation
based on it. In particular, one of the most obvious background
subtraction algorithm, namely the frame difference, provides a
more valuable information for our method than many state-of-
the-art algorithms. Another point to consider is that only some
background subtraction algorithms guarantee a stable back-
ground image with respect to the length of the sequence or the
number of passes.

While our results show the importance of tuning the selection
of the background subtraction algorithm as well as the other pa-
rameters of our method, we suggested two sets of parameters:
a default set of parameters, and a universal set of parameters
when one wants to test the contribution of an untested back-
ground subtraction algorithm.

http://www.telecom.ulg.ac.be/labgen
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(a) Evolution of the pEPs score obtained for the Board sequence when
an estimation of the background is generated after each frame using the
frame difference —, VuMeter —, and oracle — algorithms.
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(b) Mean variation of the pEPs score over time. For each sequence of the
SBI 2016 dataset, max

(
pEPs

)
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(
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)
has been computed for each

pass (starting from the second one) and averaged.

Fig. 8. With some background subtraction algorithms, the generated background image might not converge while processing the frames of the augmented
video sequence. These results were obtained with the parameters optimized per sequence (minimizing the pEPs score).
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