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Abstract

The aim of this work is to study the thermo-elastic quality factor (Q) of micro-resonators with a stochastic

multi-scale approach. In the design of high-Q micro-resonators, thermo-elastic damping is one of the major

dissipation mechanisms, which may have detrimental effects on the quality factor, and has to be predicted

accurately. Since material uncertainties are inherent to and unavoidable in micro-electromechanical systems

(MEMS), the effects of those variations have to be considered in the modeling in order to ensure the

required MEMS performance. To this end, a coupled thermo-mechanical stochastic multi-scale approach is

developed in this paper. Thermo-mechanical micro-models of polycrystalline materials are used to represent

micro-structure realizations. A computational homogenization procedure is then applied on these statistical

volume elements to obtain the stochastic characterizations of the elasticity tensor, thermal expansion, and

conductivity tensors at the meso-scale. Spatially correlated meso-scale random fields can thus be generated

to represent the stochastic behavior of the homogenized material properties. Finally, the distribution of

the thermo-elastic quality factor of MEMS resonators is studied through a stochastic finite element method

using as input the generated stochastic random field.

Keywords: Thermo-elasticity, Quality factor, Stochastic Multi-scale, MEMS, polycrystalline

1. Introduction

In the micro-electromechanical systems (MEMS) community, there are increasing demands in developing

reliable micro-structures with very high quality factors (Q). These micro-structures constitute the essential

active part of applications such as resonant sensors and RF-MEMS filters, for which increasing the sensitivity

and resolution of the devices is a critical issue. In order to obtain high-Q micro-resonators, all dissipation

mechanisms that contribute to decreasing the quality factor have to be identified and well considered at the
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design stage. The energy dissipation mechanisms of micro-resonators can be classified into two categories

[46]. On the one hand, the majority of dissipation mechanisms are extrinsic, which means that they can

be minimized by a proper design and operating conditions, such as by minimizing the air damping effect.

Intrinsic losses, on the other hand, cannot be controlled as easily as extrinsic ones. Thermo-elastic damping

has been identified as one kind of important intrinsic loss in high-Q micro-resonators [8, 15].

Thermo-elastic damping is an intrinsic energy dissipation which occurs through heat conduction. In a

thermo-elastic solid, the thermal and mechanical fields have a strong coupling through the thermal expansion

effect. MEMS resonators generally contain elements which vibrate in flexural modes and can be approximate

by beams. In a vibrating beam, the two opposite sides undergo opposite deformations. When one side is

compressed and its temperature increases consequently, the other side is stretched with the decrease of

temperature. Thus, temperature gradients are generated and an energy dissipation occurs. However, this

dissipation has a measurable influence only when the vibration frequency is of the order of the thermal

relaxation rate. On the one hand, when the vibration frequency is much lower than the thermal relaxation

rate, the vibrations are isothermal since the solid is always in thermal equilibrium. On the other hand, when

the vibration frequency is much larger than the thermal relaxation rate, the vibrations are adiabatic since the

system has no time for thermal relaxation. In MEMS, due to the small dimensions, the relaxation times of

both the mechanical and thermal fields have similar order of magnitude and hence, thermo-elastic damping

becomes important. Therefore, accurate modeling and prediction of energy loss due to the thermo-elastic

effects become key requirements in order to improve the performance of high-Q resonators.

The early studies of thermo-elastic damping were mainly based on analytical models, which were derived

for very simple structures and are subject to very restrictive assumptions. Zener [48] has developed a so-called

Zener’s standard model to approximate thermo-elastic damping for flexural vibrations of thin rectangular

beams. Based on an extension of Hooke’s law to the “Standard Anelastic Solid”, which involves the stress σ,

strain ε as well as their first time derivatives σ̇, ε̇, the vibration characteristics of the solid is analyzed with

the harmonic stress and strain. However Zener’s theory does not provide the estimation of the frequency

shift induced by thermo-elastic effects. For this purpose, Lifshitz and Roukes (LR) [21] have developed the

thermo-elastic equations of a vibrating beam based on the same fundamental physics than Zener, which

model more accurately the transverse temperature profile. The analytical models can be used to obtain

the complex thermo-elastic resonant pulsation $n and its corresponding quality factor Q for simplified

cases only. The limitation of analytical models and the complexity of the real micro-structures (i.e. non

rectangular geometry, complex 3-D structures, anisotropic material,...) have motivated the development

of numerical models [20, 35], and the application of the finite element method to study the thermo-elastic

damping has been validated by the comparisons of numerical results with analytical results.

However, deterministic finite element models are not accurate enough to obtain a reliable analysis of

the performance of micro-resonators, as stressed in [20]. Indeed, MEMS are subject to inevitable and
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inherent uncertainties in their dimensional parameters and material properties which lead to variability in

their performance and reliability. Due to the small dimensions of MEMS, manufacturing processes leave

substantial variability in the shape and geometry of the device, while the material properties of a component

are inherently subject to scattering. The effects of these variations have to be considered and a stochastic

modeling methodology is needed in order to ensure the required MEMS performance under uncertainties.

Along this line, the perturbation Stochastic Finite Element Method (SFEM) was used in [20] to predict

the variance of the thermo-elastic quality factor by considering isotropic and homogeneous material prop-

erties -Young’s modulus, conductivity, and density- which uncertainties were represented through assumed

variances. A pseudo-geometric variable was adopted to consider the geometric uncertainty. However, be-

cause of the reduced size of MEMS, the structural material appears anisotropic and non-homogeneous at

this scale. The physically sensible description of the uncertainties should thus be obtained from the study of

the heterogeneous nature of the material, while the rational modeling of geometric uncertainty should rely

on the knowledge of the real manufacturing processes.

To account for the material heterogeneities, a direct finite element analysis, also called Monté-Carlo

Simulation (MCS) method, can be used to analyze the structural response variability. This method was

adopted in the fracture analysis of MEMS under shock in [26]. However the MCS method can lead to an

overwhelming computation cost as it involves the finite-element discretization of all the heterogeneities. If

the local response, as a crack initiation [26] is sought, such an approach is required, but if the concerned

performance is a global response, such a level of discretization should be avoided. To circumvent the need

for the discretization of the sub-microscopic structure, the uncertainty due to the material heterogeneities

can be described as the spatial variability of the material properties in the structure through a random field.

In the context of stochastic finite element analyzes, this random field is discretized in accordance with the

structure finite element mesh; therefore finite element sizes smaller than the correlation length are required

to ensure the accuracy of the analysis results as shown in [11]. In all generalities, the correlation length

of the random material property depends on the characteristic length of the material heterogeneity, such

as the size of the grains for polycrystalline materials. Thus the rather small correlation length results in

a very expensive structural analyses in terms of computational resources. Besides the issue related to the

computational cost, a finite element model based on the explicit micro-heterogeneities discretization leads

to a noise field [3] instead of a smooth one [27], which prevents the use of a stochastic finite element method,

such as the Neumann expansion [44] or the perturbation approximation [36]. Therefore, in order to solve

the problem of structural stochasticity of heterogeneous materials, such as polycrystalline materials, at a

reasonable computation cost, a stochastic multi-scale approach is required as discussed in [22].

The interest in multi-scale methods was renewed with the rise of structural applications made of hetero-

geneous materials such as composite materials, metal alloys, polycrystalline materials... As a particular case

of multi-scale methods, homogenization methods relate the macroscopic strain tensor to the macroscopic
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stress tensor through the resolution of a meso-scale Boundary Value Problem (BVP) defined on a Represen-

tative Volume Elements (RVE), which represents the micro-structure and the micro-structural behavior in

a statistically representative way. However, for a multi-scale analysis to be accurate, the scales separation

criteria should be satisfied. Firstly, the size of the meso-scale volume element on which the homogenization

is applied should be smaller than the characteristic length on which the macro-scale loading varies in space

[9]. This criterion should always be satisfied. Secondly, to be statistically representative and thus to qualify

to be a RVE, the meso-scale volume element should be much larger than the micro-structural size [12]. The

size of the meso-scale volume element leading to statistical representativity can be determined based on

statistical considerations of the homogenized properties [16, 13].

However, when the structural-size is not several orders of magnitude larger than the micro-structural size,

the second criterion cannot be satisfied while respecting the first one, and the meso-scale volume element

size should be reduced, leading to Statistical Volume Element (SVE) as discussed in [32]. Since an SVE is

not statistically representative by definition, the homogenized meso-scale responses change with the SVE

size, with the applied Boundary Conditions (BCs) on the SVE, but also for different SVE realizations of

the same size. This last property of SVEs has been used to up-scale the uncertainties at the micro-scale

to the meso-scale, for example to define the probability convergence criterion of RVE for masonry [10], to

study the scale-dependency of homogenization for random composite materials [42], to obtain the property

variations of poly-silicon film [25], to extract effective properties of random two-phase composites [39], or

again to capture the stochastic properties of the parameters in a constitutive model [47]. The problem of

finite elasticity was also considered through the resolution of composite material elementary cells in [4, 24],

which allows defining a meso-scale potential as proposed in [4].

In [22], the authors, have applied the computational homogenization on a spatial sequence of SVEs to

extract spatially correlated meso-scale statistical properties. A meso-scale random field of the homogenized

material properties could thus be generated to feed the stochastic finite element method performed at the

structural scale. As a result, the statistical distribution of the MEMS properties, for example the analysis

of the micro-beams eigen-frequency, could be extracted. In this work, it was shown that the definition of a

spatially correlated meso-scale random field is the key ingredient of the stochastic multi-scale approach; in

order for the stochastic finite element method to converge, the size of the elements at the structural scale

should remain lower than the spatial correlation length of the meso-scale random field, which in turn depends

on the SVE size. This approach was also applied in [23] to study the effect of the geometric uncertainties

resulting from the surface roughness, together with material uncertainties, on the vibration of micro-beams.

To this end, a stochastic second-order homogenization process was coupled with structural shell stochastic

finite elements to take the variation of surface geometry into account.

In these works, only the elastic material properties were considered. However, as the thermo-elastic

damping results from the coupling of the thermal and mechanical processes, the extraction of the homoge-
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nized thermo-mechanical properties of the heterogeneous materials is required in the analysis of the quality

factor of MEMS. In this paper, we extend the stochastic multi-scale methodology presented in [22] to account

for the material uncertainties in a fully coupled thermo-mechanical homogenization process. As a result, a

meso-scale random field of the material properties, which include the elasticity tensors, conductivity ten-

sors, and thermal expansion tensors, can be generated to perform multi-physics stochastic finite element

simulations in order to extract the variability of the thermo-elastic quality factor for micro-resonators.

The paper is organized as follows. In Section 2, after having recalled the governing equations of thermo-

elasticity coupling, (macro-scale) thermo-mechanical stochastic finite elements are described in order to

study the thermo-elastic damping effect in a probabilistic way. In order to define the random fields of the

meso-scale thermo-mechanical properties required by the stochastic finite elements, a thermo-mechanical

stochastic homogenization scheme is first developed in Section 3, before building a stochastic model based

on a combination of a spectral generator and of a non-Gaussian mapping. The particular case of poly-

silicon is then considered in the following three sections. First the micro-scale is studied in Section 4.

Based on experimental measurements reported in [23], the micro-scale structure, such as grain size and

orientation distribution, is studied in terms of the Low Pressure Chemical Vapor Deposition (LPCVD)

process temperature. The micro-scale thermo-mechanical properties are then defined in order to build

the SVE realizations. Then, the meso-scale probabilistic material properties obtained from the stochastic

homogenization process are compared to the ones generated by the defined stochastic model in Section

5. Finally, using the meso-scale random field realizations of the meso-scale thermo-mechanical properties,

the structural behavior of MEMS resonator is studied in a probabilistic way in Section 6. Because of the

efficiency of the method, it is possible to study several resonator geometries, and the effect of the boundary

conditions and of the deposition temperatures, on the resonance quality factors of the resonators.

2. Thermo-elasticity

In this section, the governing equations of thermo-elasticity coupling, the corresponding weak formula-

tion, and its finite element discretization, are first recalled. Thermo-mechanical stochastic finite elements

are then described with a particular emphasis on the thermo-elastic damping effect in vibration analyses.

2.1. Finite element formula for thermo-elasticity

2.1.1. Governing equations for thermo-elastic solids

The equations that govern the motion of thermo-elastic solids include the balance laws for mass, momen-

tum, and energy [43]. The weak form for linear coupled thermo-elastic problems can be derived from two

governing equations. The first governing equation is the linear momentum balance equation. The second

governing equation is derived from the balance of energy and the Clausius-Duhem inequality. Here we just

give some resulted equations, more details are given in [20, 43] and in Appendix A.

5



The first governing equation is the linear momentum balance equation, which reads

ρü−∇ · σ − ρb = 0 , (1)

where ρ is the mass density, u is the displacement vector, σ is the Cauchy stress tensor, and b is the body

force density vector. The dot on top of a variable refers to its time derivative.

The second governing equation is obtained based on the balance of energy and the Clausius-Duhem

inequality, which is stating the irreversibility of a natural process when energy dissipation is involved. When

the only dissipation mechanism involved is heat conductivity, and no heat source is considered in the body,

the balance of energy and the Clausius-Duhem relation lead to

Ṡ = −∇ · q
T

, (2)

where S is the entropy per unit volume of the body, T is the absolute temperature, and q is the thermal

flux vector, as detailed in Appendix A. In a general form, the Helmholtz free energy F of the body per

unit volume is expressed in terms of the elastic potential ψ(ε) per unit volume and satisfies

σ(ε, T ) =

(
∂F
∂ε

)
T

and S(ε, T ) = −
(
∂F
∂T

)
ε

, (3)

where ε is the Cauchy strain tensor.

In the case of the absence of external force and of heat source, and at a temperature T different from

the reference temperature T0, the Helmholtz free energy F accounting for the thermal expansion reads

F(ε, T ) = F0(T )− ε :
∂2ψ

∂ε∂ε
: α(T − T0) + ψ(ε) , (4)

where α = ∂ε
∂T is the thermal expansion tensor assumed to be constant with the temperature. From Eqs.

(3), we have

σ(ε, T ) =

(
∂F
∂ε

)
T

=
∂2ψ

∂ε∂ε
: ε− ∂2ψ

∂ε∂ε
: α(T − T0) , (5)

and

S(ε, T ) = −
(
∂F
∂T

)
ε

= S0(T ) + ε :
∂2ψ

∂ε∂ε
: α , (6)

where S0(T ) = −∂F0/∂T is the entropy at ε = 0, i.e. at zero-deformation. Moreover, we can write

∂S0/∂t = (∂S0/∂T ) · (∂T/∂t), where the derivative (∂S0/∂T ) = ρCv/T with Cv the heat capacity per unit

mass at constant volume. Taking the derivative with respect to time t of Eq. (6) and using Eq. (2) lead to

the second governing equation, which reads

ρCv
∂T

∂t
+ Tα :

∂2ψ

∂ε∂ε
:
∂ε

∂t
= κ :

∂2T

∂x∂x
, (7)

where κ is the second order tensor called thermal conductivity assumed to be constant with the temperature,

which satisfies q = −κ · ∇T .
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2.1.2. Finite element discretization

We assume that the temperature change corresponding to the mechanical loading is relatively small

compared to the reference temperature T0. Then we define ϑ = T − T0 and rewrite the two governing

equations as

ρü−∇ · σ − ρb = 0 , (8)

ρCvϑ̇+ T0α : C : ε̇− κ :
∂2ϑ

∂x∂x
= 0 , (9)

where C = ∂2ψ
∂ε∂ε and we use the approximation T ≈ T0 in the second term Tα : C : ε̇ of the second

governing equation for the purpose of linearization. Indeed, as we intend to perform modal analyzes, linear

equations are required. This set of equations is completed by the mechanical boundary conditions enforced

on Γ = Γu ∪ ΓT

u = ū on Γu ,

σ · n = T on ΓT , (10)

and by the thermal boundary conditions enforced on ΓT = ΓTT ∪ ΓTq

T = T̄ on ΓTT ,

∇T · κ · n = −q · n = −Q on ΓTq , (11)

where ū is the constrained displacement field, T is the constrained surface traction, T̄ is the constrained

temperature, Q is the constrained thermal surface flux, and where n is the outward unit normal vector.

The weak form of the set of governing equations is established using suitable weight functions defined in

the n+ 1 dimensional spaces:

wu ∈ [C0]n The weight function of the displacement field ,

wϑ ∈ [C0] The weight function of the temperature field . (12)

Multiplying the governing equation (8) by the displacement weight function wu and integrating the result

over the domain Ω yields ∫
Ω

wwwu · [ρü−∇ · σσσ − ρbbb]dΩ = 0 . (13)

Applying the divergence theorem, the natural boundary conditions on ΓT , the essential boundary conditions

on Γu, and the symmetry property of the Cauchy stress tensor leads to∫
Ω

{wu · ρü+ [∇wu]T : σ}dΩ =

∫
Ω

ρwu · bdΩ +

∫
ΓT

wu · T dΓ . (14)

The same method is used to treat the second PDE (9), which results in∫
Ω

{ρCvϑ̇wϑ + T0α : C : ε̇wϑ +∇wϑ · κ · ∇ϑ}dΩ = −
∫

ΓTq

QwϑdΓT . (15)

7



The third term on the left-hand side of Eq. (15), i.e.
∫

Ω
∇wϑ ·κ ·∇ϑdΩ, is responsible for the thermo-elastic

damping when the thermal relaxation time tχ =
ρCvl

2
χ

‖κ‖∞π2 is close to the deformation period. In this relation

lχ is the length characterizing the conduction process, typically the device thickness. When the thermal

relaxation time tχ is much smaller (larger) than the deformation period, the process is quasi-isothermal

(quasi-adiabatic) and the the thermo-elastic damping is negligible.

The finite element discretization is straightforwardly formulated using the Galerkin approach. Toward

this end, the displacement field u and the relative temperature field ϑ can be interpolated in each element

Ωe using traditional shape function matrices Nu and Nϑ as follows:

u = Nuu, and ϑ = Nϑϑ , (16)

where the vectors u and ϑ contain the assembled nodal values of the displacements and of the relative tem-

perature field, respectively. Similarly, the weight functions are interpolated using the same shape functions

wu = Nudu, and wϑ = Nϑdϑ , (17)

where du and dϑ are arbitrary values fulfilling the essential boundary conditions.

The strain tensorial field and the gradient field of the relative temperature can easily be deduced, in

terms of the problem unknowns, from

ε = BBBuu, and ∇ϑ = ∇NNNϑϑ = BBBϑϑ , (18)

whereBBBu andBBBϑ represent the matrix strain operator and the matrix operator for the temperature gradient,

respectively. The related derivatives with respect to time are

ü = Nuü, ε̇ = BBBuu̇ and ϑ̇ = NNNϑϑ̇ . (19)

We recall the expression of stress, Eq. (5), in linear thermo-elasticity

σ = C : ε− C : αϑ . (20)

Therefore, using the arbitrary nature of du and dϑ, the equations (14) and (15) become∫
Ω

{ρNT
uNuü +BBBT

uCCCBBBuu−BBBT
uCCCαNϑϑ}dΩ =

∫
Ω

NT
u ρbdΩ +

∫
ΓT

NT
u T dΓ , (21)∫

Ω

{ρCvNNNT
ϑNNNϑϑ̇+ T0NNN

T
ϑαCCCBBBuu̇ +BBBT

ϑκBBBϑϑ}dΩ = −
∫

ΓTq

NNNT
ϑQdΓT , (22)

where CCC is the matrix form of the fourth order tensor C.

The equations above can be stated in the following matrix form:MMM 0

0 0

ü

ϑ̈

+

 0 0

DDDϑu DDDϑϑ

u̇

ϑ̇

+

KKKuu KKKuϑ

0 KKKϑϑ

u

ϑ

 =

FFFu
FFFϑ

 , (23)

where the definitions of all the sub-matrices can be found in Appendix B.
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2.2. Stochastic formulation of thermo-elastic problems

We consider the uncertainties resulting from the heterogeneous micro-structure, which in turn result in

uncertainties in the material properties. We recall the main equations in finite element analysis, equations

(21), (22) and their matrix form (23). The material property items are the elastic tensorCCC, heat conductivity

tensor κ, and thermal expansion tensor α which can be represented under the form of a random field.

Using the Voigt notation for the different tensors, we have the random fields of the elasticity tensor, heat

conductivity tensor, and thermal expansion tensor CCC (x, θθθ) : Ω×P →MMM+
6 (R), κ (x, θθθ) : Ω×P →MMM+

3 (R),

and α (x, θθθ) : Ω × P →MMM3(R) respectively, over the spatial domain Ω, which are functions of the spatial

coordinate x. θθθ ∈ P denotes the elements in the sample space involving random quantities, MMM+
N (R) refers

to the set of all symmetric positive-definite real matrices of size N ×N , and MMMN (R) refers to the set of all

symmetric real matrices of size N ×N in order to keep α (x, θθθ) more general (negative thermal expansion

is possible for some materials).

Because all these three tensors relate to the heterogeneities or micro structures of materials, it is not

proper to write them as three uncorrelated random fields. Using the symmetric properties of CCC, κ, and α,

we can assemble all the entries of their low triangular matrices into a vector V of dimension 33, in which

there are 21 entries for the elastic tensor CCC, 6 for the conductivity tensor κ, and 6 for the thermal expansion

tensor α. Then, we define a random field V (x, θθθ) : Ω× P → S with1

S =
{
v ∈ R33 : CCC (v) ∈MMM+

6 (R),κ (v) ∈MMM+
3 (R),α (v) ∈MMM3(R)

}
. (24)

As a result, the finite element formulation (23) is restated in the probabilistic form asMMM 0

0 0

ü

ϑ̈

+

 0 0

DDDϑu (v) DDDϑϑ (v)

u̇

ϑ̇

+

KKKuu (v) KKKuϑ (v)

0 KKKϑϑ (v)

u

ϑ

 =

FFFu
FFFϑ

 , (25)

where the definitions of all the sub-matrices can be found in Appendix B.

An accurate SFEM analysis with the simple point discretization of the random field requires that the

mesh elements must be small enough compared to the correlation length [6]. In 1D, the correlation length

of a stationary random field is defined by [37]

lC =

∫∞
−∞R(τ)dτ

R(0)
, (26)

where R(τ) is the correlation function of the considered random value.

In Section 3, we will introduce an intermediate scale, the meso-scale, and detail how to extract the

meso-scale random field of vector V from the finite element resolution of meso-scale volume elements. The

1We use the notation V to refer to the random field, and the notation v to refer to a sample or realization of the random

field V
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obtained smooth random field description for the material properties has thus a correlation length larger

than the characteristic length of micro structure, and allows the use of coarser elements in the SFEM at the

structural-scale.

2.3. Numerical evaluation of the Quality-factor

In a wide variety of MEMS devices, such as in accelerometers, gyrometers, sensors, charge detectors,

radio-frequency filters, magnetic resonance force microscopes, or again torque magnetometers, the resonator

part is a critical component for which a high quality factor Q is sought[20]. The Q factor is defined by the

ratio of the stored energy in the resonator W and the total dissipated energy ∆W per cycle of vibration

Q = 2π
W

∆W
. (27)

The thermo-elastic damping represents the energy loss associated to an entropy rise caused by the

coupling between the heat transfer and strain rate. In solids with a positive thermal expansion effect, an

increase of temperature induces a dilatation and inversely, a decrease of temperature produces a compression.

Similarly, a dilatation lowers the temperature and a compression raises it. Therefore, when a thermo-elastic

solid is in motion and taken out of equilibrium, the energy dissipates through the irreversible flow of heat

driven by local temperature gradients that are generated by the strain field through its coupling with the

temperature field.

Thermo-elastic coupling induces damping whose effect is characterized by a resonance frequency shift

[21]. The quality factor can be computed through solving the eigenvalues of the coupled problem using the

finite element method. The dissipation of the resonating beam is measured by the fraction of energy loss

per cycle, which is the inverse of the quality factor, Q−1, and can be expressed in terms of the imaginary

and real parts of the pulsation as

Q−1
i =

2|Im($i)|√
Re2($i) + Im2($i)

, (28)

where $i is the thermo-elastic resonant pulsation of the ith mode. As the imaginary part of the resonant

pulsation considered is much smaller than the real part, and as the first mode carries most of the energy,

the approximated inverse of the quality factor is associated to the first mode and reads

Q−1 ≈ 2

∣∣∣∣ Im($1)

Re($1)

∣∣∣∣ . (29)

Equation (25) can be rewritten in general as

Mv̈ + D (v) v̇ + K (v)v = F , (30)

where v = {u,ϑ}T. To calculate the effect of thermo-elastic coupling on the vibrations of a structure, we

solve the coupled thermo-elastic equations (30) for the case of harmonic vibrations, and we set

v = v0e
i$t , (31)
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in order to obtain the normal modes of vibration and their corresponding frequencies. In general the

frequencies are complex, the real part Re($) giving the new eigenvalue frequencies of the structure in the

presence of thermo-elastic coupling, and the imaginary part Im($) giving the attenuation of the vibration.

The quality factor, Eq. (29), can be computed from the eigenvalue of the coupled problem as

Q =
1

2

∣∣∣Re($1)

Im($1)

∣∣∣ . (32)

The general quadratic eigenvalue problem to solve results from Eq. (30) without considering external force

and external heat exchange. For simplicity, we rewrite λ = i$. Submitting Eq. (31) into Eq. (30) and

setting its right hand side to be zero results in(
Mλ2 + D (v)λ+ K (v)

)
v = 0 . (33)

A generation transformation is applied to convert the original quadratic problem into a first-order problem

as −K (v) 0

0 I

v
v̇

 = λ

D (v) M

I 0

v
v̇

 . (34)

Expending all the entries of this compact allows this last equation to be written under the form
−KKKuu (v) −KKKuϑ (v) 0 0

0 −KKKϑϑ (v) 0 0

0 0 I 0

0 0 0 I




u

ϑ

u̇

ϑ̇

 = λ


0 0 MMM 0

DDDϑu (v) DDDϑϑ (v) 0 0

I 0 0 0

0 I 0 0




u

ϑ

u̇

ϑ̇

 , (35)

where the eigenvalues associated with the fourth matrix equation are independent of the three other ones

and can be eliminated without affecting the eigenvalue problem. The problem that needs to be solved is

thus 
−KKKuu (v) −KKKuϑ (v) 0

0 −KKKϑϑ (v) 0

0 0 I




u

ϑ

u̇

 = λ


0 0 MMM

DDDϑu (v) DDDϑϑ (v) 0

I 0 0




u

ϑ

u̇

 , (36)

which can be written under the simpler form

AAA (v)p = λBBB (v)p , (37)

where p = {u,ϑ, u̇}T. The details on how to solve this eigenvalue problem were discussed in [20] and [18].

After solving this eigenvalue problem, the quality factor realizations can thus be computed from equation

(32) using the relation of $ and λ, which gives

Q (v) =
1

2

∣∣∣ Im(λ1)

Re(λ1)

∣∣∣ . (38)
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3. Stochastic homogenization: from the micro-scale to the meso-scale

In order to formulate the problem (25), the meso-scale random vector field V needs to be defined. In this

section we explain how to generate the meso-scale random vector field V by, first performing computational

homogenization on meso-scale volume element –or SVE– realizations, and then developing a stochastic

generator using the homogenized properties realizations as input.

3.1. Evaluation of the apparent meso-scale properties tensors

The apparent –or homogenized– meso-scale material tensors can be estimated from the finite element

resolution of a meso-scale boundary value problem. The homogenized elastic material operator was extracted

from the stiffness matrix of the FE model in [17, 30]. More recently, the problem of thermo-elasticity

was formulated and discussed in [33, 40]. In the following we rewrite the thermo-elasticity scale transition

equations, with a particular emphasis on the extraction of the material operators of the homogenized thermo-

elastic properties using the multiple-constraint projection method described in [1].

3.1.1. Definition of scales transition

The homogenization of thermo-elastic problems is summarized hereafter. First of all, in the homoge-

nization process of the thermo-mechanical problem, the two requirements which state the separation of the

macro- and meso-scales and the thermal steady-state in the SVE read:

1. The SVE ω should be small enough for the time of the strain wave to propagate in the SVE to

remain negligible, so that the equivalence of the micro-strain to the macro-strain is instantaneous.

This assumption allows writing

∇m · σm = 0 in ω , (39)

where the subscript ’m’ refers to the local value at the micro-scale.

2. The SVE should be small enough for the time variation of heat storage to remain negligible. This

assumption corresponds to the thermal steady-state of micro-scale, which is expressed as

∇m · qm = 0 in ω . (40)

These two scale-separation requirements hold in the vibration problem of micro resonator as the SVEs

are by definition of reduced sizes. Therefore, the finite element formulation of the meso-scale BVP is similar

to Eq. (23), but stated in a steady state, and readsKKKuu KKKuϑ

0 KKKϑϑ

u

ϑ

 =

FFFu
FFFϑ

 . (41)
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Within a multi-scale framework, macro-scale values can be defined as the volume average of a micro-scale

field on the meso-scale volume-element ω, following

aM =< am >=
1

V (ω)

∫
ω

amdV , (42)

where the subscript ’M’ refers to the homogenized value on the SVE, 〈•〉 is the volume average, and V (ω)

is the volume of the meso-scale volume element ω. The following homogenized values on the SVE need to

be consistent with their micro values:

• The mass density:

ρM =< ρm > . (43)

• The heat capacity at constant volume Cv, which has to satisfy the consistency of heat capacity at the

different scales:

ρMCvM =< ρmCvm > and CvM =
< ρmCvm >

< ρm >
. (44)

• The stress and strain tensors:

σM = < σm >=< Cm : εm − Cm : αmϑm >

= CM : εM − CM : αMϑM , (45)

and

εM =

(
∇M ⊗ uM + (∇M ⊗ uM)

T

2

)
=< εm > . (46)

• The heat flux and temperature gradient:

qM =< qm > , (47)

and

∇MϑM =< ∇mϑm > . (48)

In order to respect the energy consistency at the different scales, the following conditions have also to

be respected:

• The consistency of deformation energy at the different scales:

σM : δεM = δεM : CM : εM − δεM : CM : αMϑM

= < δεm : Cm : εm − δεm : Cm : αmϑm > , (49)

for any temperature ϑM or deformation field εM.
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• The consistency of entropy change at the different scales is obtained for infinitesimal temperature

changes2:

qM · ∇MδϑM =< qm · ∇mδϑm > . (50)

• The consistency of heat storage at the micro- and macro-scales:

ρMCvMϑM =< ρmCvmϑm > . (51)

Considering a first order homogenization process, the micro-scale fields are defined as

um(x) = (uM ⊗∇M) · (x− xref) + u′(x) , (52)

ϑm(x) = ϑref +∇MϑM · (x− xref) + ϑ′(x) , (53)

where u′ and ϑ′ are the perturbation fields. To satisfy Eqs. (46) and (48), the following respective conditions

should be satisfied

0 = < ∇mu
′(x) >=

1

V (ω)

∫
∂ω

u′ ⊗ ndS , (54)

0 = < ∇mϑ
′(x) >=

1

V (ω)

∫
∂ω

ϑ′ndS , (55)

where n is the normal of the boundary ∂ω.

Finally, in order to satisfy the energy and entropy change consistency conditions, using Eqs. (52) and

(53) in respectively Eqs. (49) and (50), integrating by parts and using the equilibrium Eqs. (39) and (40),

lead to

0 =

∫
∂ω

(σm · n) · δu′dS , (56)

0 =

∫
∂ω

(qm · n) δϑ′dS . (57)

Under the conditions (54-55) and (56-57), the homogenized elastic tensor CM, thermal conductivity

tensor κM and thermal expansion tensor αM of SVE need to be sought out by solving the BVP on SVE.

3.1.2. Definition of the constrained micro-scale finite element problem

The specified kinematic admissible boundary conditions applied on a finite element discretization (41) of

the SVE in this work are the Periodic Boundary Conditions (PBCs) of displacement um and temperature

ϑm, which read

um(x+)− um(x−) = (uM ⊗∇M) · (x+ − x−) ,

ϑm(x+)− ϑm(x−) = ∇MϑM · (x+ − x−) ,

∀x+ ∈ ∂ω+ and corresponding x− ∈ ∂ω− , (58)

2for finite temperature changes, this last relation is an approximation of qM·∇MδϑM
TM

=
〈

qm·∇mδϑm
Tm

〉
14



where the parallelepiped SVE faces have been separated in opposite surfaces ∂ω− and ∂ω+. These boundary

conditions are completed by the consistency condition (51).

Other kinds of boundary conditions can be considered in order to satisfy (54-55) and (56-57), such as

the Kinematically Uniform Boundary Conditions or KUBCs (u′(x) = 0 and δϑ′ = 0 on ∂ω), the Static

Uniform Boundary Conditions or SUBCs (σm · n = σM · n and qm · n = qM · n on ∂ω)), or a suitable

combination of those under the form of Mixed Boundary Conditions or MBCs. Compared to PBCs, while

KUBCs correspond to a more constrained system, leading to a stiffer response, SUBCs correspond to a

less constrained system, leading to a more compliant response. Therefore PBCs are usually considered

during the homogenization process, including for non-periodic micro-structures [16, 19, 41]. An alternative

to PBCs for non-periodic micro-structures is the use of MBCs in which a part of the displacement field is

kinematically constrained and the other part is statically constrained. However in the present case, as the

thermal field involves only one degree of freedom, the MBCs cannot be applied. In order to apply the PBCs

on non-periodic micro-structures as for polycrystalline materials, and thus on a non-periodic mesh, we have

recourse to a polynomial interpolation of the unknowns fields on the boundary, as detailed in [31].

The kinematics constraints are defined by FM = uM ⊗∇M the macroscopic displacement gradient, with

FFFM the nine components of FM written under a vectorial form, by ∇MϑM the macroscopic temperature

gradient, and by ϑM the macroscopic temperature. These kinematics constraints can be grouped under the

vector KT
M =

[
FFFT

M ∇Mϑ
T
M ϑM

]
.

Dropping the subscript ’m’ for simplicity, the degrees of freedom (dofs) are separated in constrained

dofs, such as the nodal displacements uc at the corner nodes, in dependent dofs, which relates to the

periodic boundary conditions (58) and to the heat consistency (51), such as the nodal displacements ub

at the boundary, the nodal temperatures ϑc at the corners, ϑb at the boundary, and ϑi inside the volume

element, and in independent dofs as the nodal displacements ui inside the volume element, see Appendix C.

Therefore, on the one hand, the micro-structural problem (41) is organized in terms of the nodal unknowns

ϕ =
[
uT
c ϕT

b uT
i

]T
, (59)

with ϕT
b =

[
uT
b ϑ

T
c ϑ

T
b ϑ

T
i

]
. On the other hand, the boundary conditions (58) and the heat consistency (51)

are expressed as

0 = uc −SSSϕcKKKM , (60)

0 = CCCϕcuc +CCCϕbϕb −SSSϕbKM , (61)

where the constraints matrices CCC and SSS are detailed in Appendix C. Note that these expressions remain

valid for non-periodic meshes when using the interpolant method developed in [31].
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3.1.3. Resolution of the constrained micro-scale finite element problem

The resolution of the constrained micro-scale BVP follows the multiple-constraint projection method

described in [1] and the condensation method developed in [30]. The functional related to the constrained

micro-scale problem (41) completed by the conditions (60-61) reads

Ψ =
1

2
ϕTKKKϕ− [uc −SSSϕcKKKM]

T
λuc − [CCCϕcuc +CCCϕbϕb −SSSϕbKM]

T
λϕb , (62)

where the Lagrange multipliers λuc and λϕb are respectively related to the corner displacement constraints

(60) and to the dependent unknowns constraints (61).

The solution of the problem corresponds to the stationary point of Eq. (62) with respect to the nodal

unknowns, leading to the expression of the Lagrange multipliers λϕb and λuc , see Appendix C.2.

The homogenized stress tensor (45) and the homogenized thermal flux vector (47) can then be evaluated

in the vectorial form as

ΣM =
1

V (ω)

(
∂Ψ

∂FM

)
=

1

V (ω)

[
I9×9 09×3 09×1

] {
SSST
ϕcλuc +SSST

ϕb
λϕb

}
,

(63)

qM =
1

V (ω)

(
∂Ψ

∂∇MϑM

)
=

1

V (ω)

[
03×9 I3×3 03×1

] {
SSST
ϕcλuc +SSST

ϕb
λϕb

}
, (64)

respectively, see Appendix C.3 for details.

To compute the material operators, the stationary point of (62) is linearized with respect to the kinematics

constraints KM, yielding the variations of the Lagrange multipliers δλϕb and δλuc in terms of the variation

δKM, see Appendix C.3 for details. The variations of the homogenized stress (63) and of the homogenized

heat flux (64) thus yield the apparent elasticity tensor CCCM = ∂ΣM

∂FM
in the matrix form following

CCCM =
1

V (ω)

[
I9×9 09×3 09×1

]{
SSST
ϕc

∂λuc
∂KM

+SSST
ϕb

∂λϕb
∂KM

}
I9×9

03×9

01×9

 , (65)

the homogenized conductivity tensor κM = − ∂qM
∂∇MϑM

in the matrix form following

κM = − 1

V (ω)

[
03×9 I3×3 03×1

]{
SSST
ϕc

∂λuc
∂KM

+SSST
ϕb

∂λϕb
∂KM

}
09×3

I3×3

01×3

 , (66)

and the apparent thermal expansion tensor αM in the vector form using −CCCMAM = ∂ΣM

∂ϑM
following

−CCCMAM =
1

V (ω)

[
I9×9 09×3 09×1

]{
SSST
ϕc

∂λuc
∂KM

+SSST
ϕb

∂λϕb
∂KM

}
09×1

03×1

I1×1

 . (67)
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3.2. Random field description of meso-scale material properties

We have discussed how the apparent material tensor can be evaluated from finite element discretizations

of the SVEs. Then, we can consider different SVE realizations, from which the distributions of the apparent

meso-scale material tensors and their spatial correlations can be extracted. The detailed process to extract

the random field description of the meso-scale material properties has been presented in [22] in the case of

linear elasticity. This process is now extended to the thermo-mechanical random fields (24).

3.2.1. SVE and random field realizations

The purpose of this work is to evaluate the random field (24) of the meso-scale material tensors. To this

end, a sufficient number of random field realizations is required, and each of these random field realizations

is built up by a series of ordered SVE realizations obeying to a specified spatial relation. Taking the 3D case

as an example, to obtain one random field realization, a volume which contains the information of the micro

structure is first created. This volume should be large enough in order to be able to capture a complete

spatial correlation, i.e. enough for all the spatial correlations to reach zero. Then, from this volume, a

complete series of SVEs, which are indexed by the coordinates (x1, x2, x3) of their centers, is extracted,

see Fig. 1(a). After evaluating the apparent meso-scale material properties on these SVEs, together with

the spatial relation (the central coordinates) of these SVEs, a realization of the required random field is

obtained. We need to note that the distance between the neighboring SVEs, which is defined by the distance

between their centers, needs to be small enough to obtain the descriptions for the decline process of the

spatial correlation functions.

 

x1 

x2 
x3 

SVE(0,0,0) SVE(l1,0,0) 

SVE(0,l2,0) 

SVE(0,0, l3) 

SVE(l1, l2, l3) 

.  .  . 

.  
.  

. SVE(x1, x2, x3) 

(a) 3-Dimensional case

 

SVE(x1,x2) 

SVE(l1,0) SVE(0,0) 

SVE(l1, l2) SVE(0, l2) 

SVE(x’1,x’2) 

τ   

x1 

x2 

(b) 2-Dimensional case (Poisson-Voronöı

tessellation)

Figure 1: Extraction of a series of SVEs

According to the discussion in Section 2.2, the required random field is the random vector field V (x,θ)

(24), which contains the information of the elastic tensor CCCM, thermal conductivity tensor κM, and thermal
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expansion tensor αM at the meso-scale. With a sufficient number of random field realizations, the spatial

cross-correlation matrix RRRV (x, τ ), of the field V (x,θ) of the apparent meso-scale material properties, is

evaluated as follows

R
(rs)
V (x, τ ) =

E
[(
V (r)(x)− E

[
V (r)(x)

]) (
V (s)(x+ τ )− E

[
V (s)(x+ τ )

])]
σV (r)(x)σV (s)(x+ τ )

∀ r, s = 1, ..., 33 , (68)

where τ is a spatial vector between the centers of two SVEs, see Fig. 1(b), V (r)(x) is the rth element out of

the 33 relevant elements of the material property vector V evaluated on the SVE with the center position

x, E is the expectation operator, and where σV (r) =

√
E
[(
V (r) − E

[
V (r)

])2]
is the standard deviation of

V (r). The requirement of a large enough volume can be expressed as R
(rs)
V (l) = 0,∀ r, s = 1, ..., 33, see Fig.

1. In this work, we assume that the micro-structure distribution does not change with the position x, i.e.

the material structure is not graded. As a result, the random field is homogeneous and the cross-correlation

matrix does not depend on the position x: RRRV (x, τ )=RRRV (τ ).

Poisson-Voronöı tessellations are generated to represent a columnar polycrystalline material, as illus-

trated in Fig. 1(b). The grain structures obtained by the Low Pressure Chemical Vapor Deposition (LPCVD)

process are not strictly columnar. Indeed, small grains form at the lower side of the deposition, and while

some of them stop growing, the remaining ones keep growing toward the top surface and dominate along

the thickness. We thus assume in this work that a columnar structure represents the MEMS behavior. In

this columnar structure, each grain possesses a different orientation, which is a source of uncertainty besides

the grain geometry. As columnar SVEs are considered, the random field of poly-silicon layers is reduced to

a 2D case, and the following procedure is considered. For a given SVE size, several SVEs of the same size

can be extracted from a tessellation following the technique illustrated in Fig. 1. The detailed operations

to extract the SVEs from a Poisson-Voronöı tessellation were discussed in [22, Appendix A]. A sufficient

number of large Poisson-Voronöı tessellations is required for the description of the random field to converge.

As it has been discussed in [22], as a homogeneous meso-scale random field is assumed, a set of tessellation

realizations –such a realization is illustrated in Fig. 1(b)– is enough to characterize the meso-scale random

field of the whole macro-structure, and the size of the tessellations is not related to the size of the macro-

structure.

3.2.2. Random field generator

Once the meso-scale random field is characterized using the realizations of the micro-meso homogeniza-

tion, a random field generator can be built to provide as many realizations as required for the macro-scale

SFEM analyzes. As generating new realizations using the generator is much less computationally costly than

solving the SVE finite-element models, this approach is more computationally efficient to study different

structural probabilistic problems.

In order for the random field generator to provide physically meaningful random material tensors, some
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pre-processes of the original data are carried out to ensure that the generated CCCM and κM tensors remain

positive definite, and that the expectations of their inverse exist. Therefore, respective lower bounds CCCL

and κL of those tensors are explicitly enforced3. The way of defining the lower bounds CCCL and κL depends

on the nature of the problem under consideration (inclusion reinforced-matrix, polycrystalline materials...)

and is presented in Section 4 in the case of poly-silicon materials. Depending on the heterogeneous material

system, some constrains can also be applied on thermal expansion tensor αM. For positive/negative thermal

expansion material, the diagonal entries of αM need to be positive/negative, or the trace of αM need to

be positive/negative. The constrain on thermal expansion tensors is out of the scope of this work, and the

generation of this tensor will be discussed in Section 4.2.3 for the application of poly-silicon.

By introducing the lower bounds, CCCL and κL, the realizations of the random elasticity tensor and thermal

conductivity tensor can be rewritten as

CCCM = CCCL + ∆CCC , (69)

κM = κL + ∆κ , (70)

where ∆CCC and ∆κ are positive definite matrices [22]. The Cholesky decomposition algorithm [44] can be

used directly to obtain the positive definite matrices, which are expressed as

∆CCC = AAT , (71)

∆κ = BBT , (72)

where A and B are 6×6 and 3×3 lower triangular matrices, respectively, and superscript ’T’ refers to their

transpose.

For each large micro structure realization, such as illustrated in Fig.1, we write the 21 entries of A, 6

entries of B and 6 entries of the diagonal and symmetric part of αM of each SVE into a vector V to obtain

the realizations of the random vector field V(x,θ). Let V̄ and V ′ be respectively the mean and fluctuation

of the random vector field, with V = V̄ +V ′. We assume that the random vector field V can be described as

a homogeneous random field. Therefore V̄ is constant with respect to x and V ′ is a homogeneous zero-mean

random field. This required random field V ′ (x, θθθ) can be generated through the spectral representation

method suggested in [38] and based on the known cross-correlation matrix RRRV′(τ ) (68), see Section 3.2.1.

Finally, samples of meso-scale material properties can be obtained from Eqs. (69-72) as

CCCM (x, θθθ) = CCCL +
(
Ā + A′ (x, θθθ)

) (
Ā + A′ (x, θθθ)

)T
, (73)

κM (x, θθθ) = κL +
(
B̄ + B′ (x, θθθ)

) (
B̄ + B′ (x, θθθ)

)T
, (74)

3A lower (upper) bound AAAL (AAAU) of a matrix AAA is such that uuuT(AAA−AAAL)uuu > 0 (uuuT(AAAU −AAA)uuu > 0) for any vector uuu ∈ Rn,

with n = 6 and where we have used the Voigt notations for AAA representing the elastic operator CCCM, and with n = 3 for AAA

representing the thermal conductivity tensor κM.
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and

αMij (x, θθθ) = V̄(t) + V ′(t) (x, θθθ) , (75)

where i, j = 1, 2, 3 and V(t) are the entries related to the thermal expansion component αMij .

In the case of poly-silicon layers with preferred grain orientations, the marginal distribution of V ′(r)

obtained from the micro-sampling process, i.e. from the computation homogenization applied on the SVEs,

turns out to be non-Gaussian and highly skewed. The spectral representation method developed in [38] is

not directly applicable to generate non-Gaussian fields, and an iterative mapping process is thus required as

suggested in [45, 34, 5]. In this iterative mapping process, the target spectrum S
(rs)
Target(ω) is obtained through

the Fourier transform of the auto/cross-correlation R
(rs)
V′ (τ ), where r, s = 1, 2, ..., n are the indices of the

entries in the random vector V ′, according to Wiener-Khintchine relationship. A Gaussian stochastic vector

field is first generated using the spectral representation method [38] and then mapped to a non-Gaussian

field. Afterward, the spectrum of the resulting non-Gaussian field S
(rs)
NG (ω) is calculated and compared with

the target spectrum S
(rs)
Target(ω); if they are different, the spectrum S

(rs)
G (ω) used to generate the Gaussian

field is corrected by the ratios between the entries of the spectrum of the resulting non-Gaussian field

S
(rs)
NG (ω) and of the target spectrum S

(rs)
Target(ω). This updated value of the spectrum S

(rs)
G (ω) is used in the

next iteration to generate a new Gaussian field. Iterations are performed until S
(rs)
NG (ω) ≈ S(rs)

Target(ω). The

flow chart of this method is shown in Fig. 2, and the process is detailed in Appendix D.

4. The micro-scale model

Micro-structure uncertainties of polycrystalline materials, such as grain size and grain orientations, may

result in a scatter of their mechanical properties, thermal conductivity, and thermal expansion. With a

view toward the study of a MEMS resonator, we consider micro-structures made of silicon organized in

a polycrystalline structure. Silicon is one of the most common material present in MEMS. Normally, the

columnar polycrystalline material is obtained by LPCVD, and its micro structure, such as grain orientation

and size, varies with the deposition temperature and time.

4.1. The micro-structure characteristics of poly-silicon in MEMS

The characteristic of poly-silicon micro structures can be determined using the measurements reported

in [23].

4.1.1. Grain size

Scanning Electron Microscope (SEM) is a typical measurement device used to characterize MEMS. For

the deposition thickness of 2.0 µm obtained at different deposition temperatures [23], the average grain sizes

in terms of the diameter d̄ corresponding to the SEM measurements are reported in Table 1.
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Target spectrum of Non-Gaussian vector field: 𝑺Target
(𝑟𝑠) (𝝎),   r, s = 1, 2,…, n 
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′(𝒓)    

Target marginal Non-Gaussian distribution function: 𝐹𝒱 
′(𝒓) 

Yes  

𝑺G,0
(𝑟𝑠)(𝝎) = 𝑺Target

(𝑟𝑠) (𝝎), 𝑖 = 0 
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𝒱G 
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Figure 2: Flow chart of the non-Gaussian stochastic vector field generation

Table 1: Average grain sizes for different LPCVD temperatures [23]

Temperature 580◦C 610◦C 630◦C 650◦C

Average grain diameter d̄ (µm) 0.210 0.447 0.720 0.830

4.1.2. Grain orientations

In order to simplify the modeling of the micro structure in this work, we assume that the crystallinity

is 100%. The grain orientations in poly-silicon can be measured by X-ray Diffraction (XRD). According

to the XRD measurements on 2.0 µm-thick poly-silicon layers [23], the different orientations of the grains

and their respective volume ratio are presented in the Table 2 for different deposition temperatures. The

different directions corresponding to the normal to the surface of the sample are indicated with respect to

the local crystal basis using Miller indexes.

4.2. The physical properties of poly-silicon in MEMS

The mechanical properties, thermal conductivity tensors, and thermal expansion tensors of the silicon

grains are discussed and presented in this section, which allow defining the corresponding bounds for the

scattering tensors either by using theoretical computation or physically based assumptions.
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Table 2: The percentages of grains in the different orientations for different LPCVD temperatures (%) [23]

Orientation 580◦C 610◦C 630◦C 650◦C

< 111 > 12.57 19.96 12.88 11.72

< 220 > 7.19 13.67 7.96 7.59

< 311 > 42.83 28.83 39.08 38.47

< 400 > 4.28 5.54 3.13 3.93

< 331 > 17.97 18.14 21.32 20.45

< 422 > 15.16 13.86 15.63 17.84

4.2.1. Mechanical properties of a single silicon crystal

Silicon material is anisotropic, with a cubic symmetry, and the properties of a silicon grain depend on

its orientation with respect to the crystal lattice. For the silicon crystal oriented with [100], [010] and [001]

along the Cartesian coordinates [14], the crystal elasticity tensor CCCS reads, in GPa,

CCCS =



165.7 63.9 63.9 0 0 0

63.9 165.7 63.9 0 0 0

63.9 63.9 165.7 0 0 0

0 0 0 79.6 0 0

0 0 0 0 79.6 0

0 0 0 0 0 79.6


. (76)

Based on the elasticity tensor CCCS of the silicon crystal, the elasticity tensors of poly-silicon SVEs, CCCM,

can be determined following the homogenization process presented in Section 3.1. The methodology to

determine the lower bound CCCL required by the generator, see Section 3.2.2, was developed in [22]: the lower

bound CCCL for the polycrystalline material is defined as the isotropic tensor CCC iso solution of

min
E, ν∈R+

‖CCC iso −CCCR
S ‖ subject to uuuT(CCCR

S −CCC iso)uuu > 0 for any vector uuu ∈ R6

and for any rotation CCCR
S of CCCS , (77)

where E is the Young’s modulus and ν the Poisson coefficient of the isotropic material. The lower bound is

thus obtained by solving the optimization problem (77) leading to CCCL = CCC iso(E = 130.0 GPa, ν = 0.278).

4.2.2. Thermal conductivity tensor of poly-silicon

The thermal conductivities for thin films of poly-silicon are substantially different from those of the

bulk silicon. Depending on the applications of MEMS, different deposition and doping techniques, which

affect the micro structure of poly-silicon, will be adopted and different thermal conductivities of the resulting
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materials are observed. The thermal conductivities of poly-silicon layers depend on the grain size and shape,

and the concentration and type of dopant atoms as shown in [29].

In dielectric materials, heat transport in both amorphous and crystalline solids occurs by elastic vi-

brations of the lattice; phonons are the energy quanta of lattice vibration waves and are the main energy

carriers. This transport mode is limited by the elastic scattering of phonons due to the lattice defects. The

effect of boundary scattering of phonons on thermal conductivities in single-crystal silicon layers have been

previously investigated in [2], and the thermal conductivities of poly-silicon are found to be lower than those

of single-crystal silicon layers due to phonon scattering at the grain boundaries. For doped silicon layers,

such as phosphorus and boron-doped silicon layers, with impurity concentrations, the impurity scattering

causes a further reduction in the thermal conductivity as compared to pure silicon layers. Because of the dif-

ficulties in the modeling of phonon scattering at grain boundaries, the theoretical prediction of the thermal

conductivity for a given impurity concentration and micro structure is still not possible [29].

Based on theoretical models and the experimental measurements, the thermal conductivity of poly-silicon

layer was given in a simplified closed-form expression in [29]. This closed-form expression which relates the

room-temperature thermal conductivity to the grain size and to the impurity concentration and type, reads

κ(d̄, ci) =
1

3
CSvs

(
A1

d̄
+A2ci

)−1

, (78)

in which the obtained thermal conductivity has the unit of W/(m ·K), d̄ is the average grain size in unit of

nm, ci is the impurity concentration in unit of cm−3, vs = 6166 m/s is the averaged phonon group velocity

in silicon, and CS = 1.654×106 J/m
3
K is the phonon specific heat at 300K in silicon. The constants A1 and

A2 depend on the dopant atoms, which are known from the fabrication process. In this work, we assume

that the poly-silicon is boron-doped, which gives A1 = 2.887 × 1010 and A2 = 3.200 × 10−13 m2, and a

measured impurity concentration ci = 1.6× 1019 cm−3 is chosen for our applications.

The conductivities obtained from Eq. (78) are related to the average grain size and take into account

the grain boundaries present along the 3 directions (in-plane and out-of-plane directions of the poly-silicon

layer). As using these results in the meso-scale (SVEs) simulations, in which only few grains exist in each

SVE, is not feasible, we assume that Eq. (78) also holds for only one grain with the effect of its boundaries

included. Hence, because of the cubic symmetric of silicon crystal, a thermal conductivity and an isotropic

thermal conductivity tensor are computed for this grain, depending on the size of a grain, which results in

κmij(d̄) = δijκ(d̄) , (79)

where δij is the Kronecker symbol. We need to note that it would also be possible to define an anisotropic

thermal conductivity tensor according to the grain’s geometry which includes the information of the grain

shape and boundaries. However, in this work, we consider an isotropic thermal conductivity tensor for each

grain to keep the problem simple.

23



Since the apparent thermal conductivity tensors of SVEs are combined results of a few grains, it is

possible to define a low/high bound from Eq. (78) by using a grain size much smaller/higher than the

generated grain size of the considered poly-silicon SVEs. For example, when we consider the poly-silicon

layer deposited at the temperature of 610◦C, the average grain size d = 210 nm at the deposition temperature

of 580◦, see Table 1, can be used to define a low bound for the thermal conductivities of SVEs, and one has

κSVE > κL, and κL = κ(210 nm) . (80)

The lower bound defined in this way is shown to be valid, for the SVEs samples of the poly-silicon layer

deposited at the temperature of 610◦C, in Section 5.

4.2.3. Thermal expansion tensor of a single silicon crystal

The thermal expansion tensor is a structure sensitive property and reflects any change in the micro

structure. For crystalline materials, the number of independent thermal expansion components varies with

the type of crystal system [7]. The tensor for polycrystalline materials is more complicated and has a wide

divergence. However the thermal expansion tensors of different grains differ only by their orientation.

For cubic symmetric crystal systems, the thermal expansion tensor has a simple form as αij = δijαT ,

where the linear thermal expansion coefficient, α, at temperature T expressed in K, can be calculated from an

empirical equation. Around TR = 273 K and above, this empirical equation for a wide range of temperatures

is given by

αT = A+B(T − TR) + C(T − TR)2 , (81)

in terms of the coefficients A, B, and C, respectively expressed in K−1, K−2, and K−3.

For silicon crystal, at TR = 273 K the different factors are identified as A = 3.084× 10−6/K (T : 293 ∼

970 K) and A = 2.327× 10−6/K (T : 298 ∼ 314 K) according to different references, B = 1.957× 10−9/K2

and C = 0 [7]. The value of A = 3.084× 10−6/K is adopted in this work.

Although in all generalities, the apparent thermal expansion tensor αM of an SVE can be computed

through equation (67) following the homogenization process described in Section 3.1, because of the cubic

symmetry of the silicon crystal, the poly-silicon SVEs all have the same isotropic thermal expansion tensor

αMij = δijαm , (82)

where αm = 3.084×10−6 +1.957×10−9(T −TR) in K−1. In the conducted modal analyzes the equations are

linearized and the material parameters are considered as constant with respect to the temperature (T ' T0).

4.3. Generation of poly-silicon SVEs

Considering poly-silicon layers fabricated through LPCVD at 610◦C and 630◦C as the references to

create the micro structures, the average grain diameters d̄ of 447 nm and 720 nm accordingly to the SEM
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measurements reported in Table 1, are respectively used to generate the Voronöı tessellations. Since the

considered MEMS structures are fabricated through LPCVD, similar micro material structures (at the grain

scale) will be obtained on the whole MEMS-structure, which justifies the use of a homogeneous random field.

The SVEs are extracted from the 2D Voronöı tessellations, see Fig. 1(b), and extruded into 3D under

the assumption that the poly-silicon layers are columnar polycrystalline materials. The SVE size is selected

according to the size of grains. In [22], it was shown that when using macro-scale SFEM, the results converge

with respect to the macro-scale mesh size, for any size of the underlying SVEs, as long as the resulting

correlation length of the meso-scale random field is larger than the distance between the integration points

of the macro-scale SFEM. However, this implies for the meso-scale random field to be correctly defined.

The SVEs thus need to include (parts of) a few grains so that the spatial correlation is correctly captured.

Indeed, if the SVEs include only a part of a single grain the result is no longer a homogenized one, and

the meso-scale field becomes a noise field [3], leading a non-smooth spatial correlation. The size of the

SVEs is also upper bounded by the requirement of length-scale separation between the macro-scale and the

meso-scale: the SVEs size should be one order lower than the macro-scale characteristic length. Moreover

increasing the SVEs size increases the computational time required to define the meso-scale random field,

although it allows using coarser SFEM at the macro-scale as the correlation length increases.

We chose the SVE sizes of 0.5 µm and 0.8 µm for the poly-silicon layers deposited at 610◦C and 630◦C,

respectively, and the examples of SVE finite element discretizations are given in Fig. 3. The SVEs contain

parts of several grains and it will be shown in Section 5.2 that the extracted meso-scale random field spatial

correlation remains smooth. The mesh size of the macro-scale SFEM will be chosen so that the distance

between the integration points remains lower than the meso-scale random field correlation length, which

results from this SVE size, as it will be discussed in Section 6.

In order to build the meso-scale random fields using the window technique as illustrated in Fig. 1(b), 200

(140) large Voronöı tessellations are built for the poly-silicon layers deposited at 610◦C (630◦C, respectively),

from which 100 SVEs are extracted per tessellation by progressing by a distance of 0.25 µm (0.4 µm,

respectively). The resulting number of SVEs, 20 000 (140 000) SVEs for the poly-silicon layers deposited at

610◦C (630◦C, respectively), ensures the convergence of the extracted meso-scale random fields.

5. Mesoscopic scale: elasticity tensor and heat conductivity tensor generation

In this section, the elasticity tensor and heat conductivity tensor distributions, which are obtained directly

from micro-sampling, i.e. from the homogenization on SVE realizations, are presented and compared with

the ones obtained from the non-Gaussian random vector field generator. Compared to our previous work

[22], the spectral generator is now combined to a non-Gaussian mapping in order to be able to generate

random fields characterized by skewness and/or Kurtosis values different from Gaussian distributions. The
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lSVE = 0.8µm 

(b) LPCVD at 630◦

Figure 3: Examples of SVE

purpose of this section is to discuss the accuracy of the resulting non-Gaussian random field generator, in

particular for lowly, mildly, and highly correlated material parameters. For illustration purpose, only the

results for the poly-silicon layers deposited at 610◦C are presented here for comparison. In Section 6, the

elasticity tensors and heat conductivity tensors of the poly-silicon layers deposited at 630◦C will also be

used to predict the thermo-elastic quality factor distribution of MEMS resonators to reveal the effect of

fabrication on the structural response.

5.1. Random vector field of V ′

We consider the poly-silicon layers deposited at 610◦C with the thickness of 2.0 µm. The average grain

size is 447 nm, and the SVE size of 0.5 µm (see Fig. 3(a)) is used in the homogenization process. According

to the homogenized results, the obtained thermal conductivity tensor has three different non-zero entries,

κMii, (i = 1, 2, 3), therefore, the random vector V ′ has totally 24 entries with V ′(1)
, ..., V ′(21)

relating to

the random meso-scale elastic tensors CCCM and V ′(22)
, V ′(23)

and V ′(24)
relating to the random meso-scale

thermal conductivity tensors κκκM (see Section 3.2.2).

Because a mapping process is used in the non-Gaussian generator, the distributions of the generated

V ′(r), (r = 1, 2, ..., 24) recover the exact distributions of the micro-samples, which are obtained from

the homogenization on SVE realizations. In Fig. 4, the histograms obtained by micro-sampling and by

the generator are compared for V ′(6)
and V ′(9)

, which have a highly skewed distributions. The generated

random variables represent well their distributions obtained from the homogenization on SVEs.

Auto-correlation functions R
(rr)
V′ (r = 1, 2, ..., 24) are also well recovered by the non-Gaussian random

vector generator, as illustrated by Fig. 5, which depicts the 3D-view of the normalized auto-correlation

function R
(1, 1)
V′ . Since the 2-dimensional correlation functions are symmetric with respect to the planes

x = 0 and y = 0, only one quarter of the function is displayed. More comparisons of auto-correlation curves,
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Figure 4: Comparison of histograms of V ′(r) between the micro-samples and the generated samples

in the y = 0-plane, are presented in Fig. 6, for which the entries of V ′ are picked randomly from those

related to the material tensor, Figs. 6(a)-6(c), and to the thermal conductivity tensor, Fig. 6(d).

For the cross-correlation functions, their trends are well preserved by the random field generator, as

demonstrated by Fig. 7, which shows the 3D-view of the normalized cross-correlation function R
(1, 2)
V′ . More

cross correlations are compared in Fig. 8. On the one hand, when the two random variables are not

correlated, the cross-correlation R
(rs)
V′ = 0 is obtained for both micro-samples and generated samples, see

Fig. 8(a) and Fig. 8(b) for the comparison of cross-correlation curves in the y = 0-plane. On the other

hand, when the two variables are highly correlated, the cross-correlations are accurately recovered by the

non-Gaussian random vector field generator, see Fig. 8(c). However, when the two random variables are

moderately correlated, the cross-correlations obtained by the generator are less accurate and only their

trends are preserved, see Fig. 8(d).

5.2. Random field of material properties CCCM and κM

Using equations (73) and (74), the random field of the material properties CCCM(X,θ) and κM(X,θ) can

be computed for further probabilistic macro-scale structural analyses. The histograms of some entries of

CCCM and κM, which are obtained from the generated V ′, are presented in Fig. 9, in which the results from

the micro-samples are also presented for comparison purpose. When using Eq. (73) to compute CCCM, for

different CMij , (i, j = 1, 2, ..., 6), different numbers of entries of V ′ will be used: for C11 only V ′(1)
is used,

but for CM66, the entries from V ′(16)
to V ′(21)

are required. As expected, for the components of CCCM and

κM computed using only one entry of V ′, their distributions are well recovered by the generator, see Figs.

9(a) and 9(d). However, for the components of CCCM using more entries from V ′, the distributions of their

generated samples have more discrepancy with the distributions of their micro-samples, see Fig. 9(b). The

worst case is found for CM66, Fig. 9(c), in which the maximum number of entries V ′(r) is involved. This
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Figure 5: Comparison of a normalized auto-correlation function between the micro-samples and the generated samples (3D-

view)

problem can be explained by the reduced accuracy of the cross-correlation obtained by the non-Gaussian

generator: when more random variables V ′(r) are used to compute a component of CCCM, the effect of a loss

of accuracy in the cross-correlation becomes more obvious.

Although the non-Gaussian random field generator gives a less accurate distribution for a few entries in

CCCM, those entries are related to the shearing behavior of the material, which is not an important property

in our application, while the material properties related to the tension and compression, which are the most

important properties to estimate the thermo-mechanical damping are accurately represented. However, this

inaccuracy can lead to some physically unreasonable values for those entries. In order to keep all the entries

in a physically admissible range, an extra mapping process can be applied on the entries with inaccurate

distribution, following

CM
C
ij = FCM ij

−1
[
FCNG

M ij

(
CMij

)]
, (83)

where CMij and CM
C
ij are the generated components respectively without and with the mapping correction,

FCM ij
−1 is the inverse marginal distribution function of the component CMij obtained from the micro-

samples and FCNG
M ij

the marginal distribution function of the component CMij obtained from the non-

Gaussian generator. In Fig. 10, the marginal distributions of CM55 obtained from the generated samples are

presented before (Fig. 10(a)) and after (Fig. 10(b)) the mapping correction. However, the proper solution

to address the inaccurate shearing properties is to use a more accurate non-Gaussian vector field generator,

which is out of the scope of this work.

Finally, some realizations of the random field are presented in Fig. 11 for the components picked as

examples. For both the 2D view, Fig. 11(a) and Fig. 11(b), and the 3D view, Fig. 11(c) and Fig. 11(d),
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Figure 6: Comparison of normalized auto-correlation functions between micro-sampling and generated samples in the y = 0-

plane (2D-view)

of the random field, a similar correlation of the material properties among the neighboring material points

can be seen between the micro-samples and the generated ones.

6. Macro-scale: stochastic study on the thermo-elastic quality factor of MEMS resonator

In this section, we study the thermo-elastic quality factor of micro-resonators which are fabricated at

two different temperatures, 610◦C and 630◦C, respectively.

The Finite element analysis which is presented in Section 2 is applied on the micro-resonator. The

micro-resonator is simplified as a micro-cantilever beam with the dimension of L× w × t, see Fig. 12. The

material properties at each integration point are given by the random field generator as described in Section

5.2, which is based on the stochastic homogenization of meso-scale SVEs presented in Section 4.3. The

discretization of the random field is in agreement with the finite element discretization. However in order

to obtain a converged stochastic finite element analysis, the spacing of the discretized random field, i.e. the
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Figure 7: Comparison of a normalized cross-correlation function between micro-samples and generated samples (3D-view)

spacing between the integration points, must be lower than the correlation length lC of the random field,

as this has been demonstrated by the convergence study performed in [22]. According to the homogenized

results at the meso-scale, the correlation length of the random field of the material properties CCCM(x,θ)

and κM(x,θ) can be calculated by equation (26) and corresponds to l610
C ≈ 0.73 µm for the poly-silicon

layer deposited at 610◦C and with the SVE size of 0.5 µm, and to l630
C ≈ 1.23 µm for the poly-silicon layer

deposited at 630◦C and with the SVE size of 0.8 µm. In the conducted Finite Element analyses, we use

quadratic elements with 3×3×3 Gauss integration points. The largest finite elements that are considered in

this section are of size 1×1×1µm3, leading to a maximum distance between the integration points of about

0.387µm, which is smaller than the correlation length of the meso-scale random fields.

The generated random field is evaluated at the different positions of the Integration Gauss Points (IP)

in order to define the SFEM problem. However care must be taken of when the integration points are close

to the geometry boundary as the heterogeneities number can then be overestimated as the centered SVE

has part of his domain outside of the macro-scale mesh as depicted in Fig. 13. To circumvent this issue,

the associated SVE center is moved inward the domain to represent the correct amount of heterogeneities

as described in Fig. 13. This issue can also be solved by using a different kind of random field discretization

than the point discretization method.

Besides the random fields considered for the material properties CCCM(x,θ) and κM(x,θ), the necessary

deterministic properties for the analyses are the density ρ, the thermal expansion coefficient α, and the heat

capacity per unit mass at constant volume Cv for poly-silicon. The adopted values in this work are

ρM = 2330 Kg/m3, αM = 3.084−6/K and CvM = 712 J/(Kg ·K) . (84)

30



0.0 0.5 1.0 1.5 2.0
Distance in µm

0.4

0.2

0.0

0.2

0.4

No
rm

al
ize

d 
R

(7
,1

4)

V′
Cross-correlation

Micro-Samples
Generator

(a) V ′(7) and V ′(14)

0.0 0.5 1.0 1.5 2.0
Distance in µm

0.4

0.2

0.0

0.2

0.4

No
rm

al
ize

d 
R

(1
2,

24
)

V′

Cross-correlation
Micro-Samples
Generator

(b) V ′(12) and V ′(24)

0.0 0.5 1.0 1.5 2.0
Distance in µm

0.2

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
R

(2
2,

24
)

V′

Cross-correlation
Micro-Samples
Generator

(c) V ′(22) and V ′(24)

0.0 0.5 1.0 1.5 2.0
Distance in µm

1.0

0.8

0.6

0.4

0.2

0.0

0.2
No

rm
al

ize
d 
R

(1
,2

1)

V′
Cross-correlation

Micro-Samples
Generator

(d) V ′(1) and V ′(21)

Figure 8: Comparison of normalized cross-correlation functions between micro-samples and generated samples in plane y = 0

(2D-view)

6.1. Idealized cantilever

First a clamped cantilever beam is studied following the schematics of Fig. 12(a). At clamp, the boundary

conditions read

u = 0 and T = T0 . (85)

We consider different beam geometries and different deposition temperature cases following the notation

“L × w × t, Tdepos”, where L, w, and t are the beam length, width, and thickness respectively, and where

Tdepos is the deposition temperature. More than 10 thousands samples have been computed for each case,

which ensures the convergence of the Monté-Carlo simulations. Indeed it can be seen in Fig. 14 that

the distributions of both the resonance frequency and quality factor have converged after a few thousands

resolutions.

The resulting statistical moments of the first resonance frequency and of the quality factor are reported

in Table 3, and selected distributions of the first resonance frequency and of the quality factor are reported
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Figure 9: Comparison of the histograms of CMij and κMll (no sum on l) between micro-samples and generated samples

Table 3: Statistical moments of the first resonance frequency f1 and of the quality factor Q for the different cases

E[f1] [MHz] σf1 [MHz] COVf1 [%] E[Q] σQ COVQ [%]

15×3×2, 610◦C 11.91 0.051 0.43 7771 82.95 1.067

10×3×2, 610◦C 26.47 0.136 0.512 8634 93.35 1.081

7.5×3×2, 610◦C 46.20 0.254 0.551 10851 151.81 1.399

15×3×1, 610◦C 6.02 0.026 0.437 31855 481.9 1.513

10×3×1, 610◦C 13.53 0.071 0.523 15130 266.75 1.763

5×3×1, 610◦C 53.40 0.381 0.714 7145 116.20 1.626

15×3×2, 630◦C 11.89 0.068 0.575 9074 153.71 1.694

15×3×2, 610◦C, anchor 10.63 0.037 0.349 7164 57.47 0.802

10×3×2, 610◦C, anchor 22.38 0.088 0.393 7820 60.45 0.773
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Figure 10: Comparison of marginal distributions of CM55 between micro-samples and generated samples

in Fig. 15.

As predicted by other theories, the effect of the thickness on the quality factor is the most important

geometrical one. When comparing the effect of the deposition temperature during the manufacturing process,

the distribution of the eigen-frequency f1 for a deposition temperature of 610◦C, Fig. 15(a), is similar to

the distribution of the eigen frequency f1 for a deposition temperature of 630◦C, Fig. 15(g). However, its

effect on the quality factor Q is more sensitive, see Figs. 15(b) and 15(h). This is mainly due to the effect

of the grain size on the thermal conductivity.

6.2. Cantilever with anchor

To account for the effect of the boundary condition, we also consider a geometry with the anchor as

displayed in Fig. 12(b). The boundary condition at the anchor clamp corresponds to Eq. (85).

We refer to the beam geometry and deposition temperature following the notation “L × w × t, Tdepos,

anchor”, where L, w, and t are the beam length, width, and thickness respectively, and where Tdepos is

the deposition temperature. The anchor geometry is 4×12×(2+t)µm3. The MEMS is studied at room

temperature. More than 2 thousands samples have been computed for this case.

The resulting statistical moments of the first resonance frequency and of the quality factor are reported

in Table 3, and the distributions of the first resonance frequency and of the quality factor are reported in

Fig. 16 for the 15× 3× 2, 610◦C, anchor case.

As compared to the perfect clamping condition, Figs. 15(a) and 15(b), it can be seen that both the

eigen frequency and quality factor means are lower when considering the anchor. Moreover, the coefficient

of variation COV –the standard deviation normalized by the expectation– of the statistical distributions

are lower with the anchor directly modeled, see Table 3. An illustration of the first vibration mode, with a

temperature distribution is reported in Fig. 17.
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Figure 11: Comparison of realizations of the random field between micro-samples and generated samples
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Figure 12: Schematics of the studied cantilevers (a) with a perfect clamp, (b) with a more realistic anchor

6.3. Comparison with analytical models

In this section we compare the predictions of the stochastic multi-scale method to the deterministic

Lifshitz and Roukes (LR) [21] thermo-elastic model. In this model, the length characterizing the conductivity
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Figure 14: Convergence of distribution statistical moments of (a) the resonance frequency and (b) of the quality factor of the

perfectly clamped micro-resonator for the 7.5×3×2, 610◦C case

is assumed to be the beam thickness, and both the quality factor and the shift of the eigen-frequency of the

resonator can be evaluated.

For a resonator, without considering damping, the resonant pulsations are equal to

$0,i =
k2
i

L2

√
Et2

12ρ
, (86)

where ki is the mode coefficient, E is the Young’s modulus along the beam length L, t is the beam thickness,
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Figure 15: Histograms of the resonance frequency (left column) and of the quality factor (right column) of the perfectly clamped

micro-resonator: (a) and (b) for the 15×3×2, 610◦C case, (c) and (d) 10×3×2, 610◦C case, (e) and (f) 5×3×1, 610◦C case,

and (g) and (h) 15×3×2, 630◦C case
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Figure 16: Histograms of the (a) resonance frequency and of (b) the quality factor of the micro-resonator with the idealized

anchor (15×3×2, 610◦C, anchor case)

 

Figure 17: Illustration of the first vibrating mode with the temperature distribution (at a multiplicative constant) of the

15× 3× 2, 610◦C, anchor case

the subscript 0 refers to the absence of damping, and where the subscript i refers to the eigen mode number.

For the first mode of a cantilever, we have k1 = 1.8751.

Considering the conductivity across the thickness, let χ = κ
ρCv

be the thermal diffusivity, with κ the

conductivity along the beam thickness, and let ∆E = Eα2T0

ρCv
be the relaxation strength, with E and α

respectively the Young’s modulus and thermal expansion coefficient along the beam length.

Neglecting corrections of order ∆2
E , the thermo-elastic damping due to the conductivity across the

thickness t is thus characterized by the non-dimensional parameter

ζ = t

√
$0,1

2χ
. (87)

According to LR model, the quality factor Q and the shifted eigen pulsation $1 of the first mode are thus

37



respectively given by

1

Q
= ∆E

(
6

ζ2
− 6

ζ3

sinh ζ + sin ζ

cosh ζ + cos ζ

)
, and (88)

$1 = $0,1

(
1 +

∆E

2

(
1− 6

ζ3

sinh ζ − sin ζ

cosh ζ + cos ζ

))
. (89)

Besides the properties (84), we assume the following deterministic material properties for the LR model:

EM = 160 GPa, κM = 55W/(m ·K) , (90)

respectively the Young’s modulus and the thermal conductivity.
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Figure 18: Comparison between the LR model and the stochastic 3-scale predictions (99% confidence intervals) for the micro-

resonator (deposition temperature at 610◦C): resonance frequency (left column) and quality factor (right column) of the (a)

and (b) 1 µm-thick resonators, and (c) and (d) 2 µm-thick resonators

The predictions of the LR model are compared to the stochastic 3-scale predictions in Fig. 18. On the

one hand, for the 1 µm-thick resonators, see Figs. 18(a) and 18(b), the mean values of both the resonance

frequency and of the quality factor follow the LR theory. Of course while the LR model is deterministic, the

3-scale predictions exhibit an uncertainty. On the other hand, when considering the 2 µm-thick resonators,
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the mean values obtained with the stochastic 3-scale predictions do not follow the LR model anymore, see

Figs. 18(c) and 18(d). Indeed, for the perfectly clamped conditions, if the mean resonance frequency is

in good agreement with the LR theory, see Fig. 18(c), the mean quality factor is not in agreement with

the LR model. This is due to the thermal conductivity along the beam length, which cannot be neglected

anymore as what is done in the LR model. For the longer beam the boundary condition (85) induces an

increase of the quality factor as we are getting close to isothermal conditions, while when the beam becomes

shorter, the quality factor predicted with the 3D simulations becomes significantly lower than with the LR

model because of the axial conductivity. Finally, when considering the effect of the clamping conditions,

it can be seen that the simulations with the modelized anchor exhibit a lower resonence frequency due to

the compliance of the boundary condition, but also a lower quality factor as the effect of the axial thermal

conductivity becomes more important.

7. Conclusions and perspectives

A stochastic 3-scale thermo-mechanical approach was developped to propagate uncertainties from the

micro-structure to the meso-scale through the characterization of a (meso-scale) random field, and then to a

macro-scale quantity of interest by using as input of a SFEM the (meso-scale) random field. The phenomenon

of thermo-elastic damping, which has an important effect on the dynamic behavior of micro-resonators,

could thus be studied in a probabilistic way through the proposed three-scale process, by considering the

uncertainties in the grain geometries and orientations of polycrystalline materials.

Toward this end, Stochastic Volume Elements were first generated under the form of columnar Voronöı

tessellations, with a grain size and orientation distributions following experimental measurements obtained

on poly-silicon layers deposited at two different temperatures.

A stochastic coupled thermo-mechanical homogenization was conducted to extract meso-scale thermo-

mechanical properties realizations. A stochastic model was then built upon those realizations by combining

a spectral generator with a non-Gaussian mapping. As a result, (spatially) correlated meso-scale random

fields of the thermo-mechanical properties can be generated in an efficient computational way.

From the generated meso-scale random fields, thermo-mechanical stochastic finite elements were then

used to study the probabilistic behavior of MEMS resonators. In particular the thermo-mechanical damping

effect on the quality factor of micro-resonators was analyzed and compared to analytical models. Besides

accounting for the uncertainties, the 3D model allows to account for the axial conductivity, contrarily to the

analytical models.

Because of the efficiency of the method, it was possible to study in a probabilistic way several resonator

geometries, the effect of the boundary conditions, and of the deposition temperatures, on the device vibration

behavior.
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Appendix A. Thermo-mechanical formulation

In the thermo-mechanics context, besides the linear momentum Eq. (1), the deformable solid behavior

is governed by the (localized) energy balance per unit volume [28]

ρė− ρs− σ : ε̇+∇ · q = 0 , (A.1)

where e is the internal energy per unit mass, σ is the Cauchy stress tensor, ε is the Cauchy strain tensor, s

is the heat source per unit mass, and q is the thermal flux vector.

The (localized) Clausius-Duhem inequality reads

ρη̇ +∇ ·
( q
T

)
− ρs

T
≥ 0 , (A.2)

where η is the entropy per unit mass and T is the absolute temperature. This last relation can be rewritten

as

ρη̇ − 1

T
(ρs−∇ · q)− 1

T 2
q · ∇T ≥ 0 . (A.3)

Multiplying this last equation by T and subtracting it from (A.1) yields

ρ (ė− T η̇)− σ : ε̇+
1

T
(q · ∇T ) ≤ 0 . (A.4)

Defining the specific free energy φ = e− Tη allows writing

φ̇ = ė− T η̇ − Ṫ η , (A.5)

and Eq. (A.4) allows defining the dissipation per unit volume D as

−D = ρ
(
φ̇+ Ṫ η

)
− σ : ε̇+

1

T
(q · ∇T ) ≤ 0 . (A.6)

The thermodynamics forces are set to be(
∂φ

∂T

)
ε

= −η and ρ

(
∂φ

∂ε

)
T

= σ , (A.7)

and are completed by the condition q · ∇T ≤ 0. By differentiation of the specific free energy one thus has

ρφ̇ = σ : ε̇− ρηṪ , (A.8)

which, combined to Eq. (A.5), leads to the so-called Gibbs relation

ρė = σ : ε̇+ ρT η̇. (A.9)

Combining this relation to Eq. (A.1) leads to the expression of the entropy rate

ρT η̇ = ρė− σ : ε̇ = ρs−∇ · q . (A.10)
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Eventually, using Eqs. (A.5), the entropy relation (A.10), and the energy balance (A.1) in the dissipation

expression (A.6) yields

D = −ρė+ ρs−∇ · q + σ : ε̇− 1

T
(q · ∇T ) = − 1

T
(q · ∇T ) . (A.11)

Let us now consider thermo-elasticity with S = ρη the entropy per unit volume, ρe = ρCvT with Cv the

heat capacity per unit mass, and F (T, ε) = ρφ = ρCvT − TS the Helmholtz free energy defined in Eq. (4)

for constant material parameters. The framework reported here above thus reduces to the set of equations

reported in Section 2.1.1.

Appendix B. The definition of sub-matrices in finite element formula

The sub-matrices in Eq. (23) are defined by

MMM =

∫
Ω

ρNNNT
uNNNudΩ , (B.1a)

DDDϑu = T0

∫
Ω

NNNT
ϑαCCCBBBudΩ , (B.1b)

DDDϑϑ =

∫
Ω

ρCvNNN
T
ϑNNNϑdΩ , (B.1c)

KKKuu =

∫
Ω

BBBT
uCCCBBBudΩ , (B.1d)

KKKuϑ = −
∫

Ω

BBBT
uCCCαNNNϑdΩ , and (B.1e)

KKKϑϑ =

∫
Ω

BBBT
ϑκBBBϑdΩ . (B.1f)

The external force vectors are easily obtained from

FFFu =

∫
Ω

NNNT
uρbdΩ +

∫
ΓT

NNNT
uTTT dΓ , (B.2a)

FFFϑ = −
∫

ΓTq

NNNT
ϑQdΓT . (B.2b)

Appendix C. The constrained micro-scale finite element formulation

Appendix C.1. Definition of the constraints

The specified kinematic admissible boundary conditions applied on the finite element discretization

(41) of the SVE in this work are the Periodic Boundary Conditions (PBCs) (58) of displacement um and

temperature ϑm, completed by the consistency condition (51).

The degrees of freedom of the micro-scale problem (we drop the subscript ’m’ for conciseness) are

organized in terms of uc, ub, and ui, respectively the corner nodal displacements, the boundary nodal
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displacements, and the internal nodal displacements, and in terms of ϑc, ϑb, and ϑi, respectively the corner

nodal temperatures, the boundary nodal temperatures, and the internal nodal temperatures.

The kinematics constraints are defined by FM = uM ⊗∇M the macroscopic displacement gradient, with

FFFM the nine components of FM written under a vectorial form, by ∇MϑM the macroscopic temperature

gradient, and by ϑM the macroscopic temperature.

The periodic boundary conditions (58) are first used to define the constraints on the displacement field

at the corner nodes p, leading to

upc =


xpT 01×3 01×3

01×3 xpT 01×3

01×3 01×3 xpT

FFFM = SSSpucFFFM , (C.1)

or after assembly

uc −SSSucFFFM = 0 . (C.2)

The periodic boundary conditions (58) are then used to define the constraints on the displacement field on

two opposite boundary nodes p+ and p−, leading to

up
+

b − u
p−

b =


xp

+T
− xp−

T
01×3 01×3

01×3 xp
+T
− xp−

T
01×3

01×3 01×3 xp
+T
− xp−

T

FFFM = SSSpubFFFM , (C.3)

or after assembly

CCCubub −SSSubFFFM = 0 . (C.4)

In case of a non-periodic mesh, the use of the interpolation method developed in [31] yields a similar relation

which involves the corner nodes as well

CCCucuc +CCCubub −SSSubFFFM = 0 . (C.5)

Concerning the temperature field, the rigid mode is constrained by the condition (51), and not by a constraint

similar to (C.2). The thermal part of the periodic boundary conditions (58) thus involves both corner and

boundary nodal temperatures, which results in

ϑp
+

b(c) − ϑ
p−

b(c) =

[
xp

+T
− xp

−T
]
∇ϑM = SSSpϑb(c)∇ϑM , (C.6)

or after assembly

CCCϑcϑc +CCCϑbϑb −SSSϑb∇ϑM = 0 , (C.7)

which remains valid in case of a non-periodic mesh when using the interpolation method. Finally, the last

condition (51) is discretized by considering the corner, boundary, and internal nodal temperatures as

1

V (ω)

∫
ω

ρmCvmN
p
ϑdV ϑp(bci) = CCCpΘ(bci)

ϑp(bci) = ρMCvMϑM = SΘbϑM , (C.8)
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or again

CCCΘcϑc +CCCΘbϑb +CCCΘiϑi − SΘbϑM = 0 . (C.9)

As the constraints (C.5), (C.7), and (C.9), have the same structure, the related nodal fields are groups

together into the vector ϕT
b =

[
uT
b ϑ

T
c ϑ

T
b ϑ

T
i

]
, and the micro-structural problem (41) is thus organized in

terms of the nodal unknowns

ϕ =
[
uT
c ϕT

b uT
i

]T
, (C.10)

which are the constrained, dependent, and independent unknowns respectively, of the nodal forces

F =
[
FT
uc FT

ϕb
FT
ui

]T
, (C.11)

and of the stiffness matrix

KKK =


KKKucuc KKKucϕb KKKucui

KKKϕbuc KKKϕbϕb KKKϕbui

KKKuiuc KKKuiϕb KKKuiui

 . (C.12)

The constraints (C.2), (C.5), (C.7), and (C.9) are reorganized, leading to

0 = uc −SSSucFFFM = uc −SSSϕcKKKM , (C.13)

0 = CCCϕcuc +CCCϕbϕb −SSSϕbKM , (C.14)

where

SSSϕb =


SSSub 000Nub

2 ×3
000Nub

2 ×1

000Nϑc+Nϑb
2 ×9

SSSϑb 000Nϑc+Nϑb
2 ×1

0001×9 0001×3 SΘb

 , SSST
ϕc =


SSST
uc

0003×Nuc

0001×Nuc

 , (C.15)

CCCϕb =


CCCub 000Nub

2 ×Nϑc
000Nub

2 ×Nϑb
000Nub

2 ×Nϑi

000Nuc+Nub
2 ×Nub

CCCϑc CCCϑb 000Nuc+Nub
2 ×Nϑi

0001×Nub CCCΘc CCCΘb CCCΘi

 , (C.16)

CCCϕc =


CCCuc

000Nuc+Nub
2 ×Nuc

0001×Nuc

 , KM =


FFFM

∇MϑM

ϑM

 , (C.17)

with Nuc ... referring to the number of constraints per type (constrained or dependent degrees of freedom).
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Appendix C.2. Resolution of the constrained micro-scale finite element problem

The resolution of the constrained micro-scale BVP follows the multiple-constraint projection method

described in [1] and the condensation method developed in [30]. The functional related to the constrained

micro-scale problem is defined, using the conditions (C.13-C.14), by

Ψ =
1

2
ϕTKKKϕ− [uc −SSSϕcKKKM]

T
λuc − [CCCϕcuc +CCCϕbϕb −SSSϕbKM]

T
λϕb , (C.18)

with the Lagrange multipliers λuc and λϕb which are respectively related to the corner displacement con-

straints and to the dependent unknowns constraints.

First, the minimization of (C.18) with respect to the nodal unknowns yields

0 =
∂Ψ

∂ui
= Fui , (C.19)

0 =
∂Ψ

∂ϕb
= Fϕb −CCCT

ϕb
λϕb , (C.20)

0 =
∂Ψ

∂uc
= Fuc − λuc −CCCT

ϕcλϕb . (C.21)

Defining RRRT
ϕb

=
(
CCCϕbCCC

T
ϕb

)−1
CCCϕb , the solution of the system (C.19-C.21) reads

λϕb = RRRT
ϕb
Fϕb , (C.22)

λuc = Fuc −CCCT
ϕcRRR

T
ϕb
Fϕb . (C.23)

Appendix C.3. Homogenized stress and flux

The homogenized stress tensor (45) is evaluated in the matrix form as

ΣM =
1

V (ω)

(
∂Ψ

∂FM

)
=

1

V (ω)

[
I9×9 09×3 00×1

] {
SSST
ϕcλuc +SSST

ϕb
λϕb

}
. (C.24)

Similarly, the homogenized thermal flux (47) is evaluated as

qM =
1

V (ω)

(
∂Ψ

∂∇MϑM

)
=

1

V (ω)

[
03×9 I3×3 03×1

] {
SSST
ϕcλuc +SSST

ϕb
λϕb

}
. (C.25)

Appendix C.4. Homogenized material properties

To compute the material operators, the stationary point of (C.18) is linearized with respect to the

kinematics constraints KM. Linearizing Eqs. (C.19-C.21) respectively yields

KKKuiuiδui +KKKuiucδuc +KKKuiϕbδϕb = 0 , (C.26)

KKKϕbuiδui +KKKϕbucδuc +KKKϕbϕbδϕb = CCCT
ϕb
δλϕb , (C.27)

KKKucuiδui +KKKucucδuc +KKKucϕbδϕb = δλuc +CCCT
ϕcδλϕb . (C.28)

As Eq. (C.26) implies

δui = −KKK−1
uiuiKKKuiucδuc −KKK−1

uiuiKKKuiϕbδϕb , (C.29)
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the two remaining equations (C.27-C.28) are rewritten as

(
KKKϕbuc −KKKϕbuiKKK

−1
uiuiKKKuiuc

)
δuc +

(
KKKϕbϕb −KKKϕbuiKKK

−1
uiuiKKKuiϕb

)
δϕb = CCCT

ϕb
δλϕb , (C.30)(

KKKucuc −KKKucuiKKK
−1
uiuiKKKuiuc

)
δuc +

(
KKKucϕb −KKKucuiKKK

−1
uiuiKKKuiϕb

)
δϕb = δλuc +CCCT

ϕcδλϕb . (C.31)

This system can be written in the matrix form

K̃KK

 δuc

δϕb

 =

 K̃KKucuc K̃KKucϕb

K̃KKϕbuc K̃KKϕbϕb

 δuc

δϕb

 =

 IIINuc×Nuc CCCT
ϕc

000Nϕb×Nuc CCCT
ϕb

 δλuc

δλϕb

 , (C.32)

and can be simplified by reducing its second equation, yielding

δϕb = K̃KK
−1

ϕbϕb
CCCT
ϕb
δλϕb − K̃KK

−1

ϕbϕb
K̃KKϕbucδuc , (C.33)

δλuc =
˜̃
KKKucucδuc −

[
CCCT
ϕc − K̃KKucϕbK̃KK

−1

ϕbϕb
CCCT
ϕb

]
δλϕb (C.34)

with

˜̃
KKKucuc = K̃KKucuc − K̃KKucϕbK̃KK

−1

ϕbϕb
K̃KKϕbuc . (C.35)

In order to extract the dependency on the kinematics constraints KM, Eqs. (C.13-C.14) are linearized

as

δuc = SSSucδFFFM = SSSϕcδKKKM , (C.36)

CCCϕcδuc +CCCϕbδϕb = SSSϕbδKM . (C.37)

Using Eq. (C.33), this last result is rewritten as(
CCCϕc −CCCϕbK̃KK

−1

ϕbϕb
K̃KKϕbuc

)
δuc +CCCϕbK̃KK

−1

ϕbϕb
CCCT
ϕb
δλϕb = SSSϕbδKM , (C.38)

which becomes with the help of Eq. (C.36)

CCCϕbK̃KK
−1

ϕbϕb
CCCT
ϕb
δλϕb = SSSϕbδKM −

(
CCCϕc −CCCϕbK̃KK

−1

ϕbϕb
K̃KKϕbuc

)
SSSϕcδKKKM , (C.39)

or again, defining

˜̃
SSSϕbϕb = −CCCϕbK̃KK

−1

ϕbϕb
CCCT
ϕb
, and (C.40)

˜̃
SSSϕbϕc = SSSϕb −

(
CCCϕc −CCCϕbK̃KK

−1

ϕbϕb
K̃KKϕbuc

)
SSSϕc , (C.41)

which becomes

δλϕb = − ˜̃
SSS−1
ϕbϕb

˜̃
SSSϕbϕcδKM . (C.42)

Finally using this last result and Eq. (C.36) in Eq. (C.34) leads to

δλuc =
[

˜̃
KKKucucSSSϕc +

[
CCCT
ϕc − K̃KKucϕbK̃KK

−1

ϕbϕb
CCCT
ϕb

]
˜̃
SSS−1
ϕbϕb

˜̃
SSSϕbϕc

]
δKM . (C.43)

45



The variation of the homogenized stress (C.24) yields the apparent elasticity tensor CCCM = ∂ΣM

∂FM
in the

matrix form following

CCCM =
1

V (ω)

[
I9×9 09×3 09×1

]{
SSST
ϕc

∂λuc
∂KM

+SSST
ϕb

∂λϕb
∂KM

}
I9×9

03×9

01×9

 ,

=
1

V (ω)

[
I9×9 09×3 09×1

]{
˜̃
SSSϕcϕc −

˜̃
SSSϕcϕb

˜̃
SSS−1
ϕbϕb

˜̃
SSSϕbϕc

}
I9×9

03×9

01×9

 , (C.44)

with

˜̃
SSSϕcϕc = SSST

ϕc
˜̃
KKKucucSSSϕc , and (C.45)

˜̃
SSSϕcϕb = SSST

ϕb
−SSST

ϕc

[
CCCT
ϕc − K̃KKucϕbK̃KK

−1

ϕbϕb
CCCT
ϕb

]
. (C.46)

The homogenized conductivity tensor κM = − ∂qM
∂∇MϑM

is directly obtained from Eq. (C.25) as

κM = − 1

V (ω)

[
03×9 I3×3 03×1

]{
˜̃
SSSϕcϕc −

˜̃
SSSϕcϕb

˜̃
SSS−1
ϕbϕb

˜̃
SSSϕbϕc

}
09×3

I3×3

01×3

 . (C.47)

Finally, the apparent thermal expansion tensor αM can be extracted in the vector form using −CCCMAM =

∂ΣM

∂ϑM
. Using the variation of the homogenized stress (C.24) yields

−CCCMAM =
1

V (ω)

[
I9×9 09×3 09×1

]{
˜̃
SSSϕcϕc −

˜̃
SSSϕcϕb

˜̃
SSS−1
ϕbϕb

˜̃
SSSϕbϕc

}
09×1

03×1

I1×1

 . (C.48)

Appendix D. Generation of the non-Gaussian random vector field VVV ′ (x, θθθ)

This section details the generation of a non-Gaussian random vector field using the spectral representation

method developed in [45, 34, 5], which is applied to generate the required random field VVV ′ (x, θθθ), see Section

3.2.2. We assume in this paper that the random field VVV ′(x, θθθ) is a zero-mean homogeneous field. Its

(normalized) cross-correlation matrix RRRV′(τ ) (68) has been obtained through Eqs. (69), (70), (71), and

(72), the definition of VVV ′, and using the samples of the SVE elasticity tensors and thermal conductivity

tensors. Since the homogenized thermal conductivity tensors have only three non-zero entries, together

with the 21 independent entries of the elastic tensors, the vector VVV ′ has 24 entries, and is written as

[V ′(1)(x), V ′(2)(x), ..., V ′(24)(x)]. Its auto/cross-correlation matrix RRRV′(τ ) has thus a size of 24× 24 entries

R
(rs)
V′ (τ ), r, s = 1, 2, ..., 24.
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In order to use the Discrete Fourier Transform (DFT), the auto/cross-correlation RRRV′(τττ) is computed

on evenly spaced discrete points for a given distance at which it has already reached zero. Then RRRV′(τττ)

is periodized, details can be found in [22, Appendix C], and the result is denoted by RRRP
V′(τττ). The target

spectrum is thus evaluated by

S
(rs)
Target(ω) = (∆τx∆τy∆τz)S

(rs)
Target[ω] = (∆τx∆τy∆τz)

lll∑
τ=0

R
P(rs)
V′ (τ )e−2πiτ ·ω , (D.1)

where S
(rs)
Target(ω) is the continuous form of the spectrum and S

(rs)
Target[ω] is its discrete form, τ = [τx, τy, τz]

and l = [lx, ly, lz] are respectively the coordinates of the discrete points and the size of sampling field of

RRRP
V′(τττ) in the 3D case, and where [∆τx, ∆τy, ∆τz] is the coordinates increment.

The non-Gaussian vector field can now be generated following the steps:

Step 1. Set the random variables in the spectral representation formula for the generation of Gaussian field,

and set S
(rs)
G,0 (ω) = S

(rs)
Target(ω); Iteration index is initiated at i = 0;

Step 2. Generate the Gaussian field VVV ′G(x) with S
(rs)
G,i (ω), following the process detailed in [22, Appendix C];

Step 3. Compute the variance σV′(r)G

of each component V ′(r)G (x), and map the Gaussian field to a non-Gaussian

field by [5]

V ′(r)NG (x) = FV′(r)
−1
[
FV′(r)G

(
V ′(r)G (x)

)]
, (D.2)

where FV′(r)G

(∗) is a Gaussian distribution function with zero mean and variance σV′(r)G

, and F−1
V′(r) is

the inverse of the marginal distribution function of random variable V ′(r), which is obtained from the

micro-sampling of SVEs;

Step 4. Compute the Fourier transform of V ′(r)NG (x) by

V̂VV
′(r)
NG(ω) =

lll∑
x=0

V ′(r)NG (x)e−2πix·ω ; (D.3)

and evaluate the spectrum of VVV ′NG(x) by

S
(rs)
NG (ω) =

1

N
¯̂VVV ′(r)NG(ω)V̂VV

′(s)
NG(ω) , (D.4)

where N is the total number of discrete points of the generated field, and
¯̂VVV ′(r)NG(ω) is the conjugate of

V̂VV
′(r)
NG(ω);

Step 5. Compare S
(rs)
NG (ω) with S

(rs)
Target(ω), the error being calculated by [34]

err =

∫
Ωω
|S(rr)

NG (ω)− S(rr)
Target(ω)|dω∫

Ωω
|S(rr)

Target(ω)|dω
, (D.5)

where Ωω refers to the frequency domain;
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Step 6. If the error is lower than the given tolerance, err < Tol, stop the iteration and VVV ′NG(x) is the required

random field; Else, if err > Tol, update the spectrum by4

S
(rr)
G,i+1(ω) = S

(rr)
G,i (ω)

S
(rr)
Target(ω)

S
(rr)
NG (ω)

, (D.6)

S
(rs)
G,i+1(ω) = S

(rs)
G,i (ω)

(
S

(rr)
Target(ω)S

(ss)
Target(ω)

S
(rr)
NG (ω)S

(ss)
NG (ω)

) 1
2

; (D.7)

set i = i+ 1; and go back to step 2.

In our application, because the sample points of each random field are not enough to calculate the

converged spectrum S
(rs)
NG (ω), thousands of random fields are generated at once to calculate the converged

spectrum S
(rs)
NG (ω). After iterations, the final spectrum S

(rs)
G (ω) is obtained. In the real applications, the

obtained final spectrum S
(rs)
G (ω) is used to generate the Gaussian random vector fields which will be mapped

to the required non-Gaussian vector field following the process described in Step 3.

Since the final spectrum is given in its continuous form, we can decrease the frequency increments, such

as setting ∆ωi = 1/2li, (i = x, y, z), in the spectral domain when a large random field l is required. We

need to note that the obtained spectrum corresponds to periodical auto/cross-correlation function RRRP
V′(τττ),

therefore, only half the size of the generated field can be used. More details on this point can be found in

[22, Appendix C].
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