Numerical properties of a Discontinuous Galerkin formulation for Electro-Thermal coupled problems

Lina Homsi, Christophe Geuzaine, Ludovic Noels
LTAS/CM3, University of Liège
Belgium

Université de Liège

Applications of Electro-Thermal materials

Electro-thermal materials convert electricity into heat and vice versa

Applications:

- Thermo-Electric Generator (TEG)
 - > e.g. production of electricity from waste heat on an automobile
 - Cooling applications
 - > e.g. Electronic, medical...
- Heat applications
 - ➤ e.g. Activation of fiber reinforced shape memory polymer composite [1].

Shape recovery process of a prototype of solar array actuated by SMPC hinge

Outline

- Introduction
 - Constitutive equations
 - Main concept and equation of Discontinuous Galerkin (DG)
- DG Formulation for Electro-Thermal coupled problem
 - Weak form of equations
 - Numerical properties i.e. solution uniqueness, convergence rate...
- Numerical examples
- Conclusions & Perspectives

Governing equations for Electro-Thermal coupling

$$\forall V, T \in H^2(\Omega) \times H^{2^+}(\Omega)$$

$$\begin{aligned} & \boldsymbol{j}_{e} \cdot \boldsymbol{n} = \bar{\boldsymbol{j}}_{e} \ \, \forall \, \boldsymbol{x} \in \partial_{N} \Omega \\ & \boldsymbol{j}_{y} \cdot \boldsymbol{n} = \bar{\boldsymbol{j}}_{y} \ \, \forall \, \boldsymbol{x} \in \partial_{N} \Omega \end{aligned} \qquad \boldsymbol{n} \\ & \boldsymbol{T} = \bar{T} \qquad \forall \, \boldsymbol{x} \in \partial_{D} \Omega \\ & \boldsymbol{V} = \bar{\boldsymbol{V}} \qquad \forall \, \boldsymbol{x} \in \partial_{D} \Omega \end{aligned}$$

Conservation of Electric charge

$$\nabla \cdot \mathbf{j}_{e} = 0 \qquad \forall \ \mathbf{x} \in \Omega$$

Conservation of Energy

$$\nabla \cdot \mathbf{j}_{v} = -\partial_{t} y \qquad \forall \ x \in \Omega$$

Electric current density flow

$$\mathbf{j}_{e} = \mathbf{l} \cdot (-\nabla V) + \alpha \mathbf{l} \cdot (-\nabla T)$$

$$\mathbf{j}_{\mathrm{y}} \ = \mathbf{q} + \, \mathrm{V} \, \mathbf{j}_{\mathrm{e}}$$
 Energy flux

$$\mathbf{q} = \mathbf{k} \cdot (-\nabla T) + \alpha T \mathbf{j}_e$$
 Thermal flux

$$y = y_0 + c_v T$$
 Internal energy

Electro-thermal constitutive relations

- Vector of the unknown fields: $\mathbf{M} = \begin{pmatrix} f_V \\ f_T \end{pmatrix} = \begin{pmatrix} -\frac{V}{T} \\ \frac{1}{T} \end{pmatrix}$
- Matrix form of fluxes:

$$\mathbf{j} = \begin{pmatrix} \mathbf{j}_{e} \\ \mathbf{j}_{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{f_{T}}\mathbf{l} & -\frac{f_{V}}{f_{T}^{2}}\mathbf{l} + \alpha \frac{1}{f_{T}^{2}}\mathbf{l} \\ -\frac{f_{V}}{f_{T}^{2}}\mathbf{l} + \alpha \frac{1}{f_{T}^{2}}\mathbf{l} & \frac{\mathbf{k}}{f_{T}^{2}} - 2\alpha \frac{f_{V}}{f_{T}^{3}}\mathbf{l} + \alpha^{2} \frac{1}{f_{T}^{3}}\mathbf{l} + \frac{f_{V}^{2}}{f_{T}^{3}}\mathbf{l} \end{pmatrix} \begin{pmatrix} \nabla f_{V} \\ \nabla f_{T} \end{pmatrix}$$

Fluxes Coefficients matrix

Field gradients

$$\mathbf{j} = \mathbf{Z} \quad \nabla \mathbf{M}$$

Strong form:

$$\begin{split} \mathbf{M} &\in \mathrm{H}^2(\Omega) \times \mathrm{H}^{2^+}(\Omega) & \begin{cases} \mathrm{div}(\mathbf{j}) &= \mathbf{i} & \forall \ \mathrm{x} \in \Omega \\ \mathbf{M} &= \bar{\mathbf{M}} & \forall \ \mathrm{x} \in \partial_\mathrm{D}\Omega \\ \bar{\mathbf{n}}\, \mathbf{j} &= \bar{\mathbf{j}} & \forall \ \mathrm{x} \in \partial_\mathrm{N}\Omega \end{cases} \end{split}$$
 With $\mathbf{i} = \begin{pmatrix} 0 \\ -\partial_\mathrm{t} \mathrm{y} \end{pmatrix}$, $\bar{\mathbf{j}} = \begin{pmatrix} \bar{\mathbf{j}}_\mathrm{e} \\ \bar{\mathbf{j}}_\mathrm{y} \end{pmatrix}$

Discontinuous Galerkin (DG) introduction

- Similarity to FEM, to solve PDE's
 - Geometry approximated by polyhedral elements
 - Continuity ensured inside elements
 - Polynomial solution of finite degree
- Main difference with FEM:
 - Compatibilty weakly ensured
 - Inter-element continuity weakly constrained
 - Support of nodal shape function restrained to one element
 - > Allows / eases (with high scalability and high accuracy order):
 - Discontinuous polynomial spaces of high degree

$$X^{k^{(+)}} = \left\{ \boldsymbol{M}_h \in L^2(\Omega_h) \times L^{2^{(+)}}(\Omega_h) \mid_{\boldsymbol{M}_h|_{\Omega^e} \in \mathbb{P}^k(\Omega^e) \times \mathbb{P}^{k^{(+)}}(\Omega^e) \ \forall \Omega^e \in \Omega_h} \right\}$$

- ➤ Irregular and non-conforming meshes
- hp-adaptivity

DG main concepts and equations

$$\nabla(\mathbf{j}) = \nabla(\mathbf{Z}\nabla\mathbf{M}) = \mathbf{i} \ (+BC's)$$

Weak form for DG scheme: multiply it by test functions $\delta \mathbf{M} + \int$ by parts element by element

Jump operator
$$[\![\mathbf{M}]\!] = \mathbf{M}^+ - \mathbf{M}^-$$
, Average operator $\langle \mathbf{M} \rangle = \frac{\mathbf{M}^+ + \mathbf{M}^-}{2}$

$$\int_{\Omega_{\rm h}} \nabla \delta \mathbf{M} \, \mathbf{j} \mathrm{dV} + \int_{\partial_{\mathbf{I}} \Omega_{\rm h}} \left[\!\!\left[\delta \mathbf{M} \right]\!\!\right] \langle \mathbf{j} \rangle \, \mathbf{n}^{-} \mathrm{dS} = -\int_{\Omega_{\rm h}} \mathbf{i} \, \delta \mathbf{M} \mathrm{dV} + \mathrm{BC's \, terms}$$

- > Supplementary terms:
 - ➤ Consistency term (appears naturally above)
 - > Symmetrisation term (optimal convergence rate) $\int_{\partial_{\mathbf{I}}\Omega_{\mathbf{h}}} [\![\mathbf{M}]\!] \langle \mathbf{Z}\nabla \delta \mathbf{M} \rangle \, \mathbf{n}^{-} \mathrm{d}\mathbf{S}$
 - Quadratic **stabilization** term $(\mathcal{B} = \text{stabilisation parameter})$ $\int_{\partial_{\mathbf{I}}\Omega_{\mathbf{h}}} [\![\delta\mathbf{M}]\!] \mathbf{n}^{-} \left\langle \frac{\mathbf{Z}\mathcal{B}}{\mathbf{h}_{\mathbf{s}}} \right\rangle \mathbf{n}^{-} [\![\mathbf{M}]\!] d\mathbf{S}$

Discontinuous Galerkin formulation for

Electro-Thermal Coupling

$$\begin{aligned} & \text{Find} \quad \boldsymbol{M} \in \boldsymbol{X}^{+} \\ & \boldsymbol{X}^{(+)} &= \left\{ \boldsymbol{M} \in L^{2}(\Omega_{h}) \times L^{2^{(+)}}(\Omega_{h}) \mid_{\boldsymbol{M}_{\mid \Omega^{e}} \in H^{2}(\Omega^{e}) \times H^{2^{(+)}}(\Omega^{e}) \ \forall \Omega^{e} \in \Omega_{h}} \right\} \\ & \boldsymbol{a}(\boldsymbol{M}, \delta \boldsymbol{M}) = \boldsymbol{b}(\bar{\boldsymbol{M}}, \delta \boldsymbol{M}) - \int_{\Omega_{h}} \delta \boldsymbol{M}^{T} \boldsymbol{i} d\Omega \quad \forall \delta \boldsymbol{M} \in \boldsymbol{X} \end{aligned}$$

Structural term = Boundary terms - Time derivative term

+ DG terms

Consistency

$$\begin{split} a(\boldsymbol{M}, \delta \boldsymbol{M}) &= \int_{\Omega_{h}} \nabla \delta \boldsymbol{M}^{T} \boldsymbol{j}(\boldsymbol{M}, \nabla \boldsymbol{M}) d\Omega + \int_{\partial_{I}\Omega_{h} \cup \partial_{D}\Omega_{h}} \left[\!\left[\delta \boldsymbol{M}_{\boldsymbol{n}}^{T}\right]\!\right] \left\langle \boldsymbol{j}(\boldsymbol{M}, \nabla \boldsymbol{M}) \right\rangle dS \\ &+ \int_{\partial_{I}\Omega_{h} \cup \partial_{D}\Omega_{h}} \left[\!\left[\boldsymbol{M}_{\boldsymbol{n}}^{T}\right]\!\right] \left\langle \boldsymbol{Z}(\boldsymbol{M}) \nabla \delta \boldsymbol{M} \right\rangle dS + \int_{\partial_{I}\Omega_{h} \cup \partial_{D}\Omega_{h}} \left[\!\left[\delta \boldsymbol{M}_{\boldsymbol{n}}^{T}\right]\!\right] \left\langle \frac{\mathcal{B}}{h_{s}} \boldsymbol{Z}(\boldsymbol{M}) \right\rangle \left[\!\left[\boldsymbol{M}_{\boldsymbol{n}}\right]\!\right] dS \quad \forall \delta \boldsymbol{M} \in X \end{split}$$

Compatibility

Stability

$$b(\bar{\mathbf{M}}; \delta \mathbf{M}) = \int_{\partial_{\mathrm{N}}\Omega_{\mathrm{h}}} \delta \mathbf{M}^{\mathrm{T}} \bar{\mathbf{j}} dS - \int_{\partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \bar{\mathbf{M}}_{\mathbf{n}}^{\mathrm{T}} \left(\mathbf{Z}(\bar{\mathbf{M}}) \nabla \delta \mathbf{M} \right) dS + \int_{\partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \delta \mathbf{M}_{\mathbf{n}}^{\mathrm{T}} \left(\frac{\mathcal{B}}{\mathrm{h}_{\mathrm{s}}} \mathbf{Z}(\bar{\mathbf{M}}) \right) \bar{\mathbf{M}}_{\mathbf{n}} dS$$

> The mesh dependent norm

$$|\| \mathbf{M} \||_{1}^{2} = \sum_{e} \| \mathbf{M} \|_{H^{1}(\Omega^{e})}^{2} + \sum_{s} h_{s} \| \mathbf{M} \|_{H^{1}(\partial\Omega^{e})}^{2} + \sum_{s} h_{s}^{-1} \| [\![\mathbf{M_{n}}]\!]\|_{L^{2}(\partial\Omega^{e})}^{2}$$

Where $\partial\Omega^{e}=\partial_{I}\Omega^{e}\cup\partial_{D}\Omega^{e}$

Consistency form

 $\mathbf{M}^{\mathrm{e}} \in \mathrm{H}^2(\Omega) \times \mathrm{H}^{2^+}(\Omega)$ the solution of the strong form, with $\mathbf{i} = 0$

Thus as
$$[\![\mathbf{M}^{\mathrm{e}}]\!]=0$$
 on $\partial_{\mathrm{I}}\Omega^{\mathrm{e}}$ and $[\![\mathbf{M}^{\mathrm{e}}]\!]=-\mathbf{M}^{\mathrm{e}}=-\bar{\mathbf{M}}$ on $\partial_{\mathrm{D}}\Omega^{\mathrm{e}}$

$$a(\mathbf{M}^{e}, \delta \mathbf{M}^{e}) = b(\bar{\mathbf{M}}, \delta \mathbf{M}^{e}) \ \forall \delta \mathbf{M}^{e} \in X,$$
 (1)

Weak form

The weak form, with $\mathbf{i}=0$, reads as finding $\mathbf{M}_{\mathrm{h}}\in\mathrm{X}^{\mathrm{k}}$, such that

$$a(\mathbf{M}_{h}, \delta \mathbf{M}_{h}) = b(\bar{\mathbf{M}}; \delta \mathbf{M}_{h}) \ \forall \delta \mathbf{M}_{h} \in X^{k} \subset X$$
 (2)

Replacing $\delta {f M}^{
m e} = \delta {f M}_{
m h}$, then subtracting (2) from (1)

$$a(\mathbf{M}^e, \delta \mathbf{M}_h) - a(\mathbf{M}_h, \delta \mathbf{M}_h) = b(\bar{\mathbf{M}}, \delta \mathbf{M}_h) - b(\bar{\mathbf{M}}, \delta \mathbf{M}_h) = 0 \ \forall \delta \mathbf{M}_h \in X^k$$

 $\mathcal{A}(\underline{\mathbf{M}}^{\mathrm{e}}; \underline{\mathbf{M}}^{\mathrm{e}} - \underline{\mathbf{M}}_{\mathrm{h}}, \delta \underline{\mathbf{M}}_{\mathrm{h}}) + \mathcal{B}(\underline{\underline{\mathbf{M}}}^{\mathrm{e}}; \underline{\mathbf{M}}^{\mathrm{e}} - \underline{\mathbf{M}}_{\mathrm{h}}, \delta \underline{\mathbf{M}}_{\mathrm{h}}) = \mathcal{N}(\underline{\mathbf{M}}^{\mathrm{e}}, \underline{\mathbf{M}}_{\mathrm{h}}; \delta \underline{\mathbf{M}}_{\mathrm{h}})$

Fixed

Fixed

A, B Bilinear

$$\begin{split} \mathcal{A}(\boldsymbol{M}^{\mathrm{e}};\boldsymbol{M}^{\mathrm{e}}-\boldsymbol{M}_{\mathrm{h}},\delta\boldsymbol{M}_{\mathrm{h}}) &= \int_{\Omega_{\mathrm{h}}} \nabla \delta \boldsymbol{M}_{\mathrm{h}}^{\mathrm{T}} \boldsymbol{j}_{\nabla \boldsymbol{M}}(\boldsymbol{M}^{\mathrm{e}})(\nabla \boldsymbol{M}^{\mathrm{e}}-\nabla \boldsymbol{M}_{\mathrm{h}}) \mathrm{d}\Omega \\ &+ \int_{\partial_{\mathrm{I}}\Omega_{\mathrm{h}}\cup\partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \left[\!\!\left[\delta \boldsymbol{M}_{\mathbf{h}_{\boldsymbol{n}}^{\mathrm{T}}}\right]\!\!\right] \left\langle \boldsymbol{j}_{\nabla \boldsymbol{M}}\left(\boldsymbol{M}^{\mathrm{e}}\right)(\nabla \boldsymbol{M}^{\mathrm{e}}-\nabla \boldsymbol{M}_{\mathrm{h}})\right\rangle \mathrm{d}S \\ &+ \int_{\partial_{\mathrm{I}}\Omega_{\mathrm{h}}\cup\partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \left[\!\!\left[\boldsymbol{M}_{\boldsymbol{n}}^{\mathrm{e^{\mathrm{T}}}}-\boldsymbol{M}_{\mathrm{h}_{\boldsymbol{n}}}^{\mathrm{T}}\right]\!\!\right] \left\langle \boldsymbol{j}_{\nabla \boldsymbol{M}}(\boldsymbol{M}^{\mathrm{e}})\nabla \delta \boldsymbol{M}_{\mathrm{h}}\right\rangle \mathrm{d}S \\ &+ \int_{\partial_{\mathrm{I}}\Omega_{\mathrm{h}}\cup\partial_{\mathrm{D}}\Omega_{\mathrm{h}}} \left[\!\!\left[\boldsymbol{M}_{\boldsymbol{n}}^{\mathrm{e^{\mathrm{T}}}}-\boldsymbol{M}_{\mathrm{h}_{\boldsymbol{n}}}^{\mathrm{T}}\right]\!\!\right] \left\langle \frac{\mathcal{B}}{\mathrm{h}_{\mathrm{s}}} \boldsymbol{j}_{\nabla \boldsymbol{M}}(\boldsymbol{M}^{\mathrm{e}})\right\rangle \left[\!\!\left[\delta \boldsymbol{M}_{\mathrm{h}_{\boldsymbol{n}}}\right]\!\!\right] \mathrm{d}S, \end{split}$$

$$\begin{split} \mathcal{B}(\mathbf{M}^{\mathrm{e}};\mathbf{M}^{\mathrm{e}}-\mathbf{M}_{\mathrm{h}},\delta\mathbf{M}_{\mathrm{h}}) &= \int_{\Omega_{\mathrm{h}}} \nabla \delta\mathbf{M}_{\mathrm{h}}^{\mathrm{T}} \left(\mathbf{j}_{\mathbf{M}}(\mathbf{M}^{\mathrm{e}},\nabla\mathbf{M}^{\mathrm{e}})(\mathbf{M}^{\mathrm{e}}-\mathbf{M}_{\mathrm{h}})\right) \mathrm{d}\Omega \\ &+ \int_{\partial \mathbf{r}\Omega_{\mathrm{h}}\cup\partial \mathbf{r}\Omega_{\mathrm{h}}} \left[\!\!\left[\delta\mathbf{M}_{\mathrm{h}_{\mathbf{n}}}^{\mathrm{T}}\right]\!\!\right] \left\langle\mathbf{j}_{\mathbf{M}}(\mathbf{M}^{\mathrm{e}},\nabla\mathbf{M}^{\mathrm{e}})(\mathbf{M}^{\mathrm{e}}-\mathbf{M}_{\mathrm{h}})\right\rangle \mathrm{d}S. \end{split}$$

$$\begin{split} \mathcal{N}(\mathbf{M}^{\mathrm{e}}, \mathbf{M}_{\mathrm{h}}; \delta \mathbf{M}_{\mathrm{h}}) &= \int_{\Omega_{\mathrm{h}}} \nabla \delta \mathbf{M}_{\mathrm{h}}^{\mathrm{T}} (\bar{\mathbf{R}}_{\mathbf{j}} (\mathbf{M}^{\mathrm{e}} - \mathbf{M}_{\mathrm{h}}, \nabla \mathbf{M}^{\mathrm{e}} - \nabla \mathbf{M}_{\mathrm{h}})) \mathrm{d}\Omega \\ &+ \int_{\partial_{\mathrm{I}} \Omega_{\mathrm{h}} \cup \partial_{\mathrm{D}} \Omega_{\mathrm{h}}} \left[\!\!\left[\delta \mathbf{M}_{\mathrm{h}_{\mathbf{n}}}^{\mathrm{T}} \right]\!\!\right] \left\langle \bar{\mathbf{R}}_{\mathbf{j}} (\mathbf{M}^{\mathrm{e}} - \mathbf{M}_{\mathrm{h}}, \nabla \mathbf{M}^{\mathrm{e}} - \nabla \mathbf{M}_{\mathrm{h}}) \right\rangle \mathrm{d}S \\ &+ \int_{\partial_{\mathrm{I}} \Omega_{\mathrm{h}} \cup \partial_{\mathrm{D}} \Omega_{\mathrm{h}}} \left[\!\!\left[\mathbf{M}_{\mathbf{n}}^{\mathrm{e}^{\mathrm{T}}} - \mathbf{M}_{\mathrm{h}_{\mathbf{n}}}^{\mathrm{T}} \right]\!\!\right] \left\langle (\mathbf{j}_{\nabla \mathbf{M}} (\mathbf{M}^{\mathrm{e}}) - \mathbf{j}_{\nabla \mathbf{M}} (\mathbf{M}_{\mathrm{h}})) \nabla \delta \mathbf{M}_{\mathrm{h}} \right\rangle \mathrm{d}S \\ &+ \int_{\partial_{\mathrm{I}} \Omega_{\mathrm{h}} \cup \partial_{\mathrm{D}} \Omega_{\mathrm{h}}} \left[\!\!\left[\mathbf{M}_{\mathbf{n}}^{\mathrm{e}^{\mathrm{T}}} - \mathbf{M}_{\mathrm{h}_{\mathbf{n}}}^{\mathrm{T}} \right]\!\!\right] \left\langle \frac{\mathcal{B}}{\mathrm{h}_{\mathrm{s}}} \left(\mathbf{j}_{\nabla \mathbf{M}} (\mathbf{M}^{\mathrm{e}}) - \mathbf{j}_{\nabla \mathbf{M}} (\mathbf{M}_{\mathrm{h}})\right) \right\rangle \left[\!\!\left[\delta \mathbf{M}_{\mathrm{h}_{\mathbf{n}}} \right]\!\!\right] \mathrm{d}S \end{split}$$

Fixed point formulation

$$\mathsf{Map}\quad S_h:X^k\to X^k \text{ as follows}\\ \forall\, \boldsymbol{y}\in X^k, \mathsf{Find}\ S_h(\boldsymbol{y})=\boldsymbol{M_{\boldsymbol{y}}}\in X^k$$

$$\begin{split} \mathcal{A}(\mathbf{M}^{\mathrm{e}}; \mathbf{I}_{\mathrm{h}}\mathbf{M} - \mathbf{M}_{\mathbf{y}}, \delta \mathbf{M}_{\mathrm{h}}) + \mathcal{B}(\mathbf{M}^{\mathrm{e}}; \mathbf{I}_{\mathrm{h}}\mathbf{M} - \mathbf{M}_{\mathbf{y}}, \delta \mathbf{M}_{\mathrm{h}}) \\ = \mathcal{A}(\mathbf{M}^{\mathrm{e}}; \boldsymbol{\eta}, \delta \mathbf{M}_{\mathrm{h}}) + \mathcal{B}(\mathbf{M}^{\mathrm{e}}; \boldsymbol{\eta}, \delta \mathbf{M}_{\mathrm{h}}) + \mathcal{N}(\mathbf{M}^{\mathrm{e}}, \mathbf{y}; \delta \mathbf{M}_{\mathrm{h}}) \end{split}$$

Definition of the ball O_{σ}

 \triangleright Radius: σ

ightharpoonup Center: $I_h {f M}$ the interpolant of ${f M}^e$

$$\begin{aligned} O_{\sigma}(I_{h}\boldsymbol{M}) &= \left\{\boldsymbol{y} \in X^{k} \text{ such that } ||| \ I_{h}\boldsymbol{M} - \boldsymbol{y} \ |||_{1} \leq \sigma \right\} \\ & \text{with} \quad \sigma = \frac{||| \ I_{h}\boldsymbol{M} - \boldsymbol{M}^{e} \ |||_{1}}{h_{s}^{\varepsilon}} \ , \quad 0 < \varepsilon < \frac{1}{4} \end{aligned}$$

- 1. Assumption C_{α} , C_{v} , C^{k} and Lemmas (e.g. trace inequality, inverse inequality . .)
- 2. Bound the bilinear terms \mathcal{A}, \mathcal{B}
- 3. Bound the nonlinear term $\,\mathcal{N}\,$

for stabilization parameter β >Const (\mathbb{C}_{α} , \mathbb{C}_{v} , \mathbb{C}^{k} ..)

S_h maps $O_{\sigma}(I_h \boldsymbol{M})$ into itself

$$h_s \longrightarrow 0 \implies I_h \mathbf{M} - \mathbf{M_y} \longrightarrow 0$$

Continuity of S_h in the ball $O_{\sigma}(I_h \boldsymbol{M})$

$$|\parallel \mathbf{M}_{\mathbf{y}_1} - \mathbf{M}_{\mathbf{y}_2} \parallel| \le C^k h_s^{\mu - 2 - \varepsilon} |\parallel \mathbf{y}_1 - \mathbf{y}_2 \parallel|$$

$$\mathbf{y} \in O_{\sigma}(I_{h}\mathbf{M})$$

 $S_{h}(\mathbf{y}) = \mathbf{y}$

Brouwer fixed point

 $\mathrm{S_h}(y) \, has \, a \, \text{fixed point} \, \, M_h$

The existence of unique solution of the nonlinear elliptic problem for $\frac{k \geq 2}{2}$

A prior error estimate

H¹-norm

$$\| \| \mathbf{M}^{\mathrm{e}} - \mathbf{M}_{\mathrm{h}} \| \|_{1} \le C^{\mathrm{k}} h_{\mathrm{s}}^{\mu-1} \| \mathbf{M}^{\mathrm{e}} \|_{\mathrm{H}^{\mathrm{s}}(\Omega_{\mathrm{h}})}$$

 $\mu = \min\left\{s, k+1\right\}$

L^2 -norm

$$\parallel \mathbf{M}^{\mathrm{e}} - \mathbf{M}_{\mathrm{h}} \parallel_{\mathrm{L}^{2}(\Omega_{\mathrm{h}})} \leq \mathrm{C}^{\mathrm{k}} \mathrm{h}_{\mathrm{s}}^{\mu} \parallel \mathbf{M}^{\mathrm{e}} \parallel_{\mathrm{H}^{\mathrm{s}}(\Omega_{\mathrm{h}})}$$

H¹, L²-norms are optimal in the mesh size for linear elliptic problem

H¹, L²-norms are optimal in the mesh size for nonlinear elliptic problem

1-D example with one material

Material parameters of bismuth telluride

1 [S/m]	k [W/(K·m)]	α [V/K]
$diag(8.422 \times 10^4)$	diag(1.612)	1.941×10^{-4}

[2]. L. Liu. International Journal of Engineering Science, 2012

1-D example with two materials

The effect of the **stabilization parameter** on the quality of the approximation

DG formulation is stable for Stabilization parameter >10

2-D study of convergence order

2-D study of convergence order

 H^1 -norm

Theor. converg. ord.: k

 L^2 -norm

Theor. converg. ord.: k+1

3-D unit cell simulation for composite material

25

Material	1 [S/m]	k [W/(K · m)]	α [V/K]
Carbon fiber	diag(100000)	diag(40)	3×10^{-6}
Polymer	diag(0.1)	diag(0.2)	3×10^{-7}

$T = 25 \ [^{\circ}C]$ $V = 10 \ [V]$ Polymer $V = 0 \ [V]$ Fiber

DG formulation is also applicable for irregular mesh

30 3

Conclusion & Perspectives

Conclusion

- A consistent and stable DG method was developed for Electro-Thermal coupled problem.
- The DG numerical properties of the Electro-Thermal coupled problem were derived:
 - Uniqueness fixed point form.
 - \triangleright Optimal convergence rates in L₂, H₁-norm with respect to the mesh size.
 - Convergence rates agree with the error analysis derived in the theory.

Perspectives

- Extension to Electro-Thermo-mechanical coupled problem to recover shape memory composite material behavior.
- Take into consideration temperature dependency of the material parameters.

Thanks for your attention

<u>Lina.Homsi@student.ulg.ac.be</u>