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A Way to Deal With Model-Plant
Mismatch for a Reliable
Diagnosis in Transient Operation
Least-squares health parameter identification techniques, such as the Kalman filter, have
been extensively used to solve diagnosis problems. Indeed, such methods give a good
estimate provided that the discrepancies between the model prediction and the measure-
ments are zero-mean, white, Gaussian random variables. In a turbine engine diagnosis,
however, this assumption does not always hold due to the presence of biases in the model.
This is especially true for a transient operation. As a result, the estimated parameters
tend to diverge from their actual values, which strongly degrades the diagnosis. The
purpose of this contribution is to present a Kalman filter diagnosis tool where the model
biases are treated as an additional random measurement error. The new methodology is
tested on simulated transient data representative of a current turbofan engine configura-
tion. While relatively simple to implement, the newly developed diagnosis tool exhibits a
much better accuracy than the original Kalman filter in the presence of model
biases. �DOI: 10.1115/1.2833491�
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ntroduction
The diagnosis tool considered herein is basically a gas path

nalysis method whose purpose is to assess the deviations of some
ealth parameters on the basis of measurements collected within
he gas path of the engine �1�. The health parameters are coeffi-
ients affecting the efficiency and the flow capacity of the com-
onents �fan, low pressure compressor �lpc�, high pressure com-
ressor �hpc�, high pressure turbine �hpt�, low pressure turbine
lpt�, and nozzle�, while the measurements are intercomponent
emperatures, pressures, as well as rotational speeds. The health
ssessment leads to a diagnosis of the engine condition, which
llows suitable maintenance actions to be undertaken.

The health parameter estimation is achieved by a Kalman filter,
hich is a minimum mean square error �variance� estimator
ithin a recursive framework �2�. This means that the estimated
ealth parameters minimize the distance �in the least-squares
ense� between a model prediction and the observed measure-
ents. Moreover, the recursive structure of the Kalman filter up-

ates the values of the identified health parameters as new data are
vailable, which is a useful property in real-world applications
uch as on-board performance monitoring �3�.

Since the first research efforts of Urban �4�, most of the gas
ath analysis methods were restricted to measurements observed
nder steady-state operation of the engine, mainly for computa-
ional load reasons. For a few years, the ability to extract the
ngine condition from transient data has been investigated using
arious techniques such as least-squares estimation �5,6�, artificial
eural networks �7� for a batch treatment of the data, and Kalman
lters �8–11� in a recursive framework.
More specifically, it has been shown in Ref. �10� that the use of
easurements representative of transient behavior significantly

mproves both the diagnosis accuracy and the isolation capability
nder negative redundancy �i.e., more health parameters than sen-
ors�, provided that a faithful dynamic model is available. Indeed,
transient operation allows a much greater number of operating

oints to be considered, thereby increasing the analytical redun-
ancy.
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Although the existence of a perfectly faithful model is generally
assumed, this hypothesis is rarely met in practice. In fact, complex
phenomena, such as heat transfer, volume dynamics, clearances,
and secondary airflow and power off-takes, are poorly modeled or
unmodeled in current state-of-the-art aerothermodynamic engine
models �12,13�. Consequently, the performance predictions gener-
ated by the dynamic model are biased with respect to measure-
ments taken on the engine. As reported in Ref. �11�, those biases
strongly reduce the efficiency of the diagnosis tool.

The present contribution proposes a solution to the model bi-
ases by considering them as an additional measurement error. In-
deed, from the point of view of an external observer, it is not
possible to distinguish a model bias from a sensor error. However,
unlike sensor errors, which are basically unpredictable before-
hand, the model biases of interest have a more predictable nature
that can be studied by comparing the model outputs and the mea-
surements observed on a healthy engine during a learning phase
previous to the health parameter assessment.

Description of the Method
The scope of this section is to provide a short description of our

diagnosis tool and to present the methodology we have developed
to cope with model-plant mismatch and its integration within the
diagnosis algorithm.

Diagnosis Tool. Our diagnosis tool belongs to the family of
model-based approaches, meaning that a simulation model of the
turbine engine must be available. In the framework of gas path
analysis, these are basically nonlinear aerothermodynamic models
based on mass, energy, and momentum conservation laws applied
to the engine.1

As mentioned in the Introduction, the framework in which this
contribution takes place is the development of a diagnosis tool
processing transient data and reliance on the Kalman filter estima-
tion algorithm. Since the system model is nonlinear, the unscented
Kalman filter �14� is used instead of the generic linear Kalman
filter. A few adjustments and assumptions govern the applicability

1
Linearized models are often used to lower the computational burden.
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Downloa
f the unscented Kalman filter. The first one consists in formulat-
ng the simulation model of the engine in terms of a state-space

odel, namely,

xk = F�uk,vk,wk,xk−1� + �k �1�

yk = G�uk,vk,wk,xk� + �k �2�

here k is a discrete time index, uk are the command parameters
e.g., fuel flow�, vk are measurable exogenous inputs �e.g., Mach
umber and altitude�, wk are the aforementioned health param-
ters, and xk are the state variables. The state variables are in-
ended to handle the transient effects taking place in the gas path
f the engine. Generally speaking, these transient effects belong to
hree categories, namely, the heat transfers between the gas path
nd the components of the engine, the shaft inertia, and the fluid
ransport delays.

Equation �2� is called the measurement equation and joins the
eterministic simulation model G�·� and a random variable �k in-
ended to represent the stochastic influence of the measurement
ncertainties. Similarly, Eq. �1� is named the state prediction
quation and links the deterministic integration routine F�·� of the
imulation model and a random variable �k, which represents an
rror term. In addition to these two equations, a third one, named
he health parameter transition equation, is often included which
tates that the health parameters may vary in time by following a
rst-order Markov process �see Ref. �3� for further details�.
The second assumption is that both �k and �k are zero-mean,

hite, and Gaussian random variables2 which is denoted by

�k = N�0,Ry� and �k = N�0,Rx� �3�

ince the state variables are unknown �not all of them are mea-
urable�, they must be estimated together with the health param-
ters from the same sequence of measurements yk. This problem,
nown as the dual estimation problem, is solved herein by a so-
alled dual estimation Kalman filter �DEKF�. This dual Kalman
lter relies on two unscented Kalman filters running concurrently,
ne for the health parameters and the other for the state variables.
he interested reader may consult Ref. �15� for a detailed descrip-

ion of the algorithm. Basically, once the former filter has updated
he health parameters, the current value is used by the latter to
pdate the corresponding state variables.

Provided that a prior value for the health parameters and the
tate variables is available, the basic step consists of observing the
iscrepancies between the model outputs, denoted by ŷk, and the
bserved measurements yk. These discrepancies, also called re-
iduals and denoted by rk, are processed by the DEKF, which
ecursively updates the health parameters and the state variables
o that the average value of rk is driven to zero. In other words,
he identified health parameters provide a means of observing the
ctual health condition of the engine. Figure 1 summarizes this
ecursive, closed-loop process. The engine performance model,
ctually embedded in the DEKF, has been represented outside of it
n order to underline its important role in the estimation process.

Dealing With Model Biases. The physical meaning of the
dentified health parameters is only valid provided that the model
s faithful. Otherwise, as reported by Volponi in Ref. �11�, the
ealth parameters become “tuners,” which are adjusted by the
dentification process to fit the behavior of the real engine, losing
ense for diagnosis reports. Indeed, as formulated in the preceding
ection, the Kalman filter assumes that the discrepancies between
he model and the measurements are zero on average.

Unfortunately, model biases do not have a pure stochastic na-
ure, but should rather be seen as systematic errors whose mean
alues are different from zero. The assumption on the noise char-
cteristics is therefore violated, which perturbs the health param-

2
In addition, �k and �k are assumed uncorrelated.
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eter identification. In practice, it has been observed that model
biases as small as the measurement noise standard deviation can
dangerously reduce the reliability of the diagnosis. Therefore, the
biases have to be modeled in some way so that the residuals will
reflect only the degradation of the engine. In reality, the model-
plant mismatch depicts the approximations made in both the state
transition equation �Eq. �1�� and the measurement equation �Eq.
�2��. A possible mathematical translation of this fact is to consider
that neither �k nor �k are zero-mean, Gaussian random variables.

In this contribution, it is proposed to gather all the effects
caused by modeling errors in the single measurement equation
�Eq. �2��. The measurement noise �k is now seen as a hybrid
bias-noise term gathering the measurement noise and the model-
plant mismatch. Mathematically speaking, �k is considered as a
Gaussian random variable of variable properties �i.e., mean and
covariance�. Two reasons favored this choice: First, the Kalman
filter deals with this type of random variables. Second, a Gaussian
random variable is totally defined by its mean and its covariance,
which is simple to handle in practice,

�k = N�bk,Rb,k� �4�

Provided that bk and Rb,k are known, the mechanism of the un-
scented Kalman filter can be applied by making the following
substitutions:

rk = yk − ŷk → rk = yk − ŷk − bk �5�

Ry → Rb,k �6�

Determination of bk and Rb,k. As already mentioned above,
the model biases are not, strictly speaking, random variables. Con-
sequently, they can be studied beforehand, for example, during the
acceptance tests that every engine undergoes before it is brought
into service. The purpose of this offline learning is to build a
model that predicts bk and Rb,k as precisely as possible. This
approach is very close to the eStorm philosophy �11�, with the
difference that in our study both the mean bias and its uncertainty
are modeled.

During this learning phase, model outputs are compared to the
observed measurements without estimating the health parameters,
which are assumed to be at their healthy nominal values. As the
engine transient model is not perfect, the observed residuals rk
correspond to the model biases. The next step of the learning
phase consists of characterizing the mean bk and the covariance

Fig. 1 Health parameter and state variable update mechanism
using a DEKF
matrix Rb,k of the observed biases.
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Modeling the mean bias bk is typically a function approxima-
ion problem. In the following, some general considerations about
his problem are recalled. Numerous textbooks address this prob-
em in a more exhaustive way �see, for instance, Ref. �16��.

The cloud of data of the learning set has to be fitted with a
unction H, which may depend on the controls, the ambient vari-
bles, the state variables, and, possibly, past values of them and
hich also contains fitting parameters p, as stated in

bk = H�uk,vk,xk, . . . ,p� �7�

he first step is to decide on which input variables the function H
epends, with the aim of reducing the dimensionality of the input
pace by performing a so-called feature extraction. A feature can
e seen as an intelligent transformation of the original input vari-
bles. Then, the structure �e.g., polynomial fit or neural networks�
nd the complexity �e.g., order of the polynomial or number of
idden nodes� have to be selected. As a result, the number of
tting parameters p is obtained. For example, in the case of a
calar, second-order polynomial fit, the fitting parameters p are the
hree coefficients of the parabola.

The choice of the flexibility of the fitting function must be done
n a very careful way. Indeed, the goal is to obtain the best repre-
entation of the underlying properties of the data in the learning
et and hence to obtain the best generalization performance. In
ther words, over-fitting of the data must be avoided. So, the
umber of samples in the learning set should be large enough with
espect to the flexibility of the approximation function. On the
ther hand, a general result of learning theory states that for a
iven number of fitting parameters, the larger the database, the
ore meaningful the values of these parameters from a statistical

oint of view �see Ref. �16��.
The fitting parameters p are generally computed through the
inimization of an error function �e.g., sum of squares error�. The

etermination of the covariance matrix Rb,k is to be explained
ater.

Considering the present application, a rather basic, but physi-
ally meaningful, model is chosen. First, fixed ambient conditions
e.g., sea-level static� are selected when collecting the learning
et. Then, three assumptions are made in order to simplify the
etermination of bk and Rb,k.

1. The engine steady-state model is highly accurate. To this
end, model-matching techniques such as those described in
Refs. �17� or �18� can be applied.

2. The engine undergoes moderate transient maneuvers. This
constraint can be expressed in terms of an upper limit on the
engine acceleration. This bound is application dependent and
was set here for the sake of simplicity to a value of
�200 rpm /s on the fan rotor acceletation.3

3. During the learning phase, the engine is in healthy nominal
condition, hence the values of the health parameters are
known and set to their nominal values.

The problem of modeling the mean bk is first investigated. We
an reasonably suppose that the more rapid and complex the tran-
ient is, the greater the model-plant mismatch is. Therefore, it is
esirable to link the mean bias bk to a scalar quantity, which is
epresentative of the “intensity” of the transient and which is easy
o compute. To this end, the following transient index �TI� is
efined:

TIk =
1

nx
�
i=1

nx ẋ̂k�i�
xref�i�

�8�

here nx is the number of state variables of the on-board model,

ˆ̇ k�i� is the derivative of state variable i at time index k, and xref�i�

3Note that another indicator of engine acceleration could be chosen, e.g., core

cceleration.
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is the reference value of state variable i �e.g., at take-off rating�.
The unit of TI is s−1. The normalization by a reference state value
is required given the different orders of magnitude of the state
variables. The TI is zero in a steady-state operation, positive when
the engine is accelerating, and negative otherwise.

The TI is computed based on state derivatives provided by the
engine model rather than on actual measurements. Two reasons
dictate this choice: First, the engine model produces noise-free
signals and outputs directly the state derivatives; second, not all
state variables are normally measurable on the real engine �e.g.,
the metal temperatures involved in the heat transfers� but are
available in the engine model.

So, modeling the mean value of the bias amounts to determin-
ing the mapping bk= f�TIk� from the database of biases. This prob-
lem is solved through a least-squares polynomial fit. The selection
of the polynomial order and a possible partitioning of the TI axis
is a question of engineering judgment. Additional indications are
provided in the application detailed later in the paper.

The model of the mean value of the bias available, the covari-
ance matrix of the bias, Rb,k, can now be computed. The proce-
dure is given in Algorithm 1. Depending on the partitioning
adopted for the mean bias, one covariance matrix is computed per
TI segment. As a first step, the gap between each data point and
the mean bias is computed for all data points belonging to a par-
ticular segment �lines 2–5, note that each vector ei is a ny�1
vector�. Finally, each element of the symmetric covariance matrix
is obtained using the well-known definition of the covariance of
random variables �line 6�.

Algorithm 1. Covariance matrix computation.
1. Set N=0

2. for all k such that TImin�TIk�TImax do

3. N=N+1

4. eN= r̂k−b�TIk�
5. end for

6. Rb=
1

N−1
�i=1

N �eiei
T�

The covariance matrix takes into account both the measurement
noise �sensor inaccuracies� and the possible variability of the
mean bias. Also, it should not be surprising that some off-diagonal
terms of that matrix are nonzero. This simply indicates that the
sensor biases are interdependent as the modeling errors introduce
some relationships between the measurements: for instance, the
bias on the exhaust gas temperature �EGT� sensor measurement is
linked to that of the low pressure spool speed since temperature
recovery factor for thermocouples will vary with mass flow.

This concludes the offline modeling of the bias model, which
can now be integrated within the diagnosis algorithm in order to
make it more robust to model-plant mismatches.

Modification of the Diagnosis Algorithm. The block diagram

Fig. 2 Integration of the BCM
of the modified diagnosis algorithm is shown in Fig. 2. A short
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escription of the procedure is given in this section. Similar to the
riginal procedure detailed in Fig. 1, the previous estimates of the
tate variables x̂k−1 and health parameters ŵk−1 are used together
ith the current inputs uk and vk by the engine performance model

o generate an estimation of the measurements. Additionally, the
Ik is computed using relation �8�. From this TI, the mean bias bk
nd its covariance matrix Rb,k are obtained according to the bias
odel previously set up. The bias bk is taken into account in the

esidual rk, which is fed into the original DEKF, with the only
ifference that the measurement noise covariance matrix Ry is
eplaced by Rb,k. Loosely speaking, the mean bias bk and its
ovariance matrix Rb,k are now extra inputs to the original DEKF.
he integration of the bias compensation module �BCM� within

he diagnosis algorithm has a very limited impact on the compu-
ational load. Indeed, only a polynomial evaluation is used to re-
urn bk and Rb,k.

pplication of the Method

Engine Configuration. The application used as a test case is a
igh bypass ratio mixed-flow turbofan. The engine layout is de-
cribed in Fig. 3 where the health parameter location and the
tation numbering are also indicated. One command variable,
hich is the fuel flow rate fed in the combustor, is considered in

he following.
The engine performance model has been developed and vali-

ated as part of the OBIDICOTE 4 project. A detailed description
f the model can be found in Ref. �19�.

As real data were not available, we worked with simulated data
nly. To introduce modeling errors, we considered two different
onfigurations of the OBIDICOTE model with regard to transient
peration. Our hypothesis concerning the perfect fidelity of the
teady-state model to the data used is hence implicitly satisfied.

The sensor configuration adopted in the test cases is represen-
ative of typical instrumentation available on modern turbofan en-
ines and is detailed in Table 1. The stated uncertainties have been
elected according to the OBIDICOTE documentation and ac-
ount for the magnitude of random errors only.

“Real” Engine and On-Board Model. The OBIDICOTE
odel plays the role of the “real” engine. The shaft dynamics and

he heat transfers in the hpc, burner, and hpt are thus supposed to
e perfectly modeled. The seven state variables involved in this
rst model are listed in Table 2.
Gaussian noise, whose magnitude is specified in Table 1, is

dded to the clean measurements generated by the real engine
odel to make them closer to typical test data. The sampling rate

4A Brite/Euram project for on-board identification, diagnosis, and control of tur-

ig. 3 Turbofan layout with station numbering and health pa-
ameter location
ofan engine.
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is set to 50 Hz, which is a typical value to capture the transient
effects described above.

A second model is embedded in the diagnosis algorithm and
plays the role of the imperfect on-board model. It suffers from
model-plant mismatch since the heat transfer processes are poorly
modeled with respect to the real engine. As shown in Table 3, only
three state variables are involved in this second model. They are
related to the spool inertia and to a bulk heat transfer in the hpt.

Heat transfer processes are the slowest dynamics in a turbine
engine and they quite strongly influence the transient response of
the engine �see Ref. �13��. Considering the present application, the
heat transfer is placed on the hpt since it is the hottest part of the
engine; therefore, the thermal effects are expected to be more
important than in other components. Moreover, the observability
of the hpt thermal state is satisfactory with the selected sensor
suite �see Ref. �10��.

Modeling the Bias. The methodology for bias modeling de-
scribed in a previous section is applied to the turbofan layout. The
task of bias modeling is obviously application dependent. Re-
ported here are the main issues of the process for the real engine
and on-board model setup.

The first step is to build a database of residuals for the healthy
engine, which will serve as a learning set for determining the bias
model. Figure 4 depicts the fuel flow trajectory input to the real
engine and the on-board model. In this contribution, the engine
model is run in open loop; therefore, the set point is specified in
terms of fuel flow rather than fan speed or engine pressure ratio.
For reference, the lowest fuel flow value �slightly less than
0.2 kg /s� corresponds to the ground idle rating, and the greatest
one �slightly higher than 1.2 kg /s� gives the take-off power rating.
The sequence is 1900 s long so that the database contains 95,000
samples �per sensor�. Other scenarios could be added to the data-
base.

Table 1 Sensor configuration and assumed uncertainty

Label Uncertainty

T13 �2 K
P13 �100 Pa
T3 �2 K
P3 �5000 Pa
Nlp �6 rpm
Nhp �12 rpm
T6 �2 K

Table 2 State variables for the real engine

Label Description

Nlp Low pressure spool rotational speed
Nhp High pressure spool rotational speed
Tm3b hpc blade temperature
Tm3c hpc casing temperature
Tm4b Combustion chamber casing temperature
Tm42b hpt blade temperature
Tm42c hpt casing temperature

Table 3 State variables for the on-board model

Label Description

Nlp Low pressure spool rotational speed
Nhp High pressure spool rotational speed
Tm42 hpt metal temperature
Transactions of the ASME
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The mismatch between the real engine and the on-board model
ppears in Fig. 5, where the normalized root mean square error
NRMSE� is plotted for each sensor. The NRMSE for the ith
ensor is defined according to

NRMSE�i� =� 1

n − 1�
k=1

n
�yk�i� − ŷk�i��2

Ry�i,i�
�9�

s can be seen in Fig. 5, the NRMSE should be equal to 1 if the
n-board model were perfect �white bars�. Indeed, in that case, the
nly source of variation in the response of the real engine and the
n-board model is the sensor noise. For the incomplete on-board
odel considered in this application �gray bars�, it can be seen

hat the prediction for T13 is quite faithful; modeling errors, how-
ver, have a significant effect on the other measurements and par-
icularly on T3. Note that the T3 prediction error could be reduced
y introducing heat transfer on the hpc.

Now, the job consists in defining a model for the residuals from
he real and BCM-off data. Plotted in Fig. 6 is the cloud of T3
esiduals �black circles� with respect to TI for the operation of the
ngine under the inputs of Fig. 4.

After examining the residual cloud of each measurement, it was
ecided to split the TI axis into three distinct regions and to apply
quadratic least-squares fit on the data to determine the mean bias

Fig. 4 Fuel flow profile for learning set generation

Fig. 5 Model-plant mismatch
Fig. 6 Mean bias extraction for T3

ournal of Engineering for Gas Turbines and Power
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�green lines in Fig. 6�. The covariance matrices were then com-
puted using Algorithm 1. Higher-order polynomials were rejected
since the aim is to extract the global trend in the bias.

The resulting bias model is summarized in Table 4. TI� is a
threshold value �set to 10−3 in this application� that makes oper-
ating points with small absolute values of TI considered as steady-
state ones. For these operating points, the mean bias is set to zero
and the covariance matrix Rb,k reduces to the original measure-
ment noise covariance matrix Ry given the assumption of a per-
fect steady-state model. The vectors p1, p2, p3 and p4, p5, p6 are
the coefficients of the quadratic least-squares fit for the TI�TI�

and TI�−TI� regions, respectively.
The effect of the BCM on the prediction error can be seen in

Fig. 5. The black bars represent the NRMSE for each sensor when
the BCM is turned on. Obviously, the simple model defined above
enhances the accuracy of the prediction provided by the on-board
model as all NRMSEs are closer to unity than when the BCM is
disabled �gray bars�.

Test-Case A: Diagnosis at Test Bench. To assess the improve-
ments brought by the BCM, the following test case has been de-
veloped: It is representative of a maintenance session on a test
bench for which sea-level static �SLS�, standard day conditions
are assumed. The evolution of the fuel flow with respect to time is
sketched in Fig. 7. It is an 800 s sequence made of two successive
power sweeps between idle and max-continuous regimes, fol-
lowed by an acceleration between idle and part-power regimes.5

Engine deterioration is simulated from the component fault case
proposed in Ref. �20�. It consists of a deviation of nearly all health
parameters at t=0 s with the following magnitude: −1.5% on
SW12R, −1.2% on SE12, −1.0% on SW2R, −1.0% on SE2,
−2.3% on SW26R, −1.4% on SE26, +0.88% on SW41R, −1.6%
on SE41, and −1.3% on SE49.

The evolution of the health parameters identified with the origi-
nal DEKF �i.e., with the BCM disabled� is plotted in Fig. 8. The
health parameters exhibit an erratic behavior. Clearly, little valu-
able information about the health condition of the engine can be
derived from the graphs. The health parameters are used by the
DEKF as tuners to drive the residuals to zero �on average�. The
health parameters of the hpc and both turbines seem to be particu-
larly sensitive to the model-plant mismatch.

When the BCM is enabled, the identification of the health pa-
rameters is depicted in Fig. 9. The improvement with respect to
the disabled-BCM case is obvious. The health parameters do not

5

Fig. 7 Fuel flow profile, test bench conditions

Table 4 Summary of the bias model

Region Mean bias Covariance matrix

TIk�TI� bk=p1TIk
2+p2TI+p3 Rb,k per Algorithm 1

TIk�−TI� bk=p4TIk
2+p5TI+p6 Rb,k per Algorithm 1

	TIk	�TI� bk=0 Rb,k=Ry
Recall that the engine is open loop, fuel flow piloted.
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ander according to the transient but converge to their actual
alue, and the actual condition of the engine can be stated. About
00 s is required to converge to the actual engine health as can be
oted on the lower graph reporting the health parameters of the
ot section. The small variations in SW26R, SE26, and SW41R
re due to the remaining modeling error on T3 �see Fig. 5�.

To underline the originality of our approach that models the
ean bias level, and also the uncertainty associated with this bias

through the covariance matrix Rb,k�, Fig. 10 depicts the identifi-
ation of the hpt degradation when using a hybrid BCM setting.
he mean bias is computed based on the model presented in Table
, but the covariance matrix of the measurement is set to Rb,k

Fig. 8 Diagnosis with BCM disabled

Fig. 9 Diagnosis with BCM enabled
Fig. 10 Diagnosis with hybrid BCM
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=Ry, whatever the TI value is. In doing so, no information about
the accuracy of the bias bk is transmitted to the DEKF. This cor-
responds to the assumption that bk perfectly matches the model
bias.

These results are much better than those presented in Fig. 8
where the BCM was totally disabled. This hints at the fact that the
mean bias has indeed the most disruptive effect on the diagnosis
algorithm. Yet, some instabilities are still present in Fig. 10, which
disappear when the covariance matrix Rb,k is used �i.e., in Fig. 9�.
This can readily be seen by comparing the smoothness of the
curves between Figs. 10 and 9.

From this last result, it can be concluded that even if the mod-
eling of the bias is quite simple and not always very accurate,
taking the uncertainty in the bias into account can improve the
quality of diagnostics. Hence, the role of the covariance matrix
Rb,k in the Kalman filter algorithm is to deemphasize the influ-
ence of the residuals on the health parameter update when a model
bias is likely to be expected or when our knowledge about the bias
is not very accurate.

Adapting the Bias Compensation Module to Non-Sea-Level
Static Conditions. In the previous subsection, the positive effect
of the BCM on the diagnosis algorithm has been demonstrated.
The diagnosis was performed in the same atmospheric conditions
as for the extraction of the bias model �i.e., SLS conditions�. Prac-
tically, it is indeed difficult to collect biases outside of a pass-off
test. Hence, it would be highly valuable to use the predefined
BCM for any other operating conditions.

The extension of the BCM to the whole flight envelope of the
engine is nearly immediate by having recourse to the concept of
corrected parameters, which relies on similarity laws and first-
order approximation of the gas turbine aerothermodynamic pro-
cesses. The basic idea behind similarity laws is to define dimen-
sionless groups of parameters that are associated with the flow
field in the engine. Those corrected parameters allow a compari-
son, generally on a Mach number basis, of the performance of the
engine operating under different atmospheric conditions. As a re-
minder, the general expression for the corrected parameter X is
given by

Xco =
X

�a�b �10�

where �=T2 /Tref, �= P2 / Pref, Tref=288.15 K, and Pref
=101,325 Pa.

Parameter correction is a common practice in the gas turbine
community, and the theoretical values of the exponents a and b
for the steady-state and transient variables of interest can be found
in many references �See, for instance, Refs. �21,22�.� Yet, addi-
tional physical phenomena, such as the modification of the ther-
mophysical properties of the working fluid, Reynolds number ef-
fects, and geometrical effects �e.g., clearance and blade untwist�,
make the engine behavior deviate from the assumptions of the
Mach number similarity. Hence, a fine tuning of the a and b
exponents for each parameter involved in the BCM should be
carried out as explained in Ref. �23� for improved accuracy.

The following operations allow the adaptation of the original
BCM to any ambient conditions.

1. Get current state derivatives from the on-board model.
2. Compute corrected state derivatives.
3. Build corrected TI from corrected state derivatives accord-

ing to Eq. �8�.
4. Call the BCM with corrected TI on input; get bk and Rb,k on

output.
5. “Decorrect” bk to current ambient conditions.

As can be noted in item 5, the mean bias bk is decorrected, but not
its associated covariance matrix. Hence, we implicitly assume that
the uncertainty in the mean bias is constant for different ambient

conditions. It means that the highest contribution to the measure-
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ent covariance is the measurement noise �the magnitude of
hich is independent of the operating conditions� rather than the
ncertainty in the mean bias. It is worth mentioning that these
daptations are applied outside of the core of the BCM, which is
hereby not affected at all.

Test-Case B: Validation for Non-Sea-Level Static
onditions. To validate the correction procedure applied to the
CM, a second test case has been designed. Cruise flight condi-

ions �altitude=10,800 m, flight Mach number=0.82� are as-
umed. The simulated fault is the same engine deterioration as
reviously described. The open-loop scheduled fuel flow is plotted
n Fig. 11 and is similar in shape to the one of test-case A. The
eader will certainly notice the simplified nature of this test case,
hich is intended here for validation purposes only.
Figure 12 sketches the evolution of the identified health param-

ters when using the corrected BCM. It can be seen that the en-
ine deterioration is accurately assessed �localization and magni-
ude�. As for the identification under SLS conditions, one can
otice slight oscillations in SW26R, SE26, and SW41R due to the
emaining prediction error in T3.

For the considered application, it can thus be stated that first-
rder corrections brought by corrected parameters appear to be
ufficient to use the original BCM, determined from SLS data, for
onitoring the condition of the engine under other ambient con-

itions. It can be explained by the fact that the shortcomings of
he model are intrinsic and hence do not depend on the atmo-
pheric conditions. The proposed methodology for bias compen-
ation is therefore very appealing, given that it is much easier to
ollect biases on the test bench than in flight.

Fig. 11 Fuel flow profile, cruise conditions
Fig. 12 Diagnosis with the corrected BCM, cruise conditions

ournal of Engineering for Gas Turbines and Power

ded 31 Mar 2008 to 139.165.121.81. Redistribution subject to ASM
Discussion
The enhancement of the diagnosis capabilities possible with the

BCM in the presence of model-plant mismatch has been discussed
in the previous section. However, some more issues have to be
discussed to complete the analysis of the results.

The first question is related to the continuity of the bias model
with respect to the TI. In this paper, three different TI patterns
have been defined, and both the mean bias b and the covariance
Rb are discontinuous between adjacent patterns. No instabilities
of the DEKF have been noticed so far. It is supposed that the
DEKF is unaware of those discontinuities because it is not sensi-
tive to the derivative of the bias model. TI segments might be
developed to match the specific acceleration and deceleration fea-
tures of a particular control system �fuel control and actuators�.

Another open question is linked to the complexity of the bias
model. A very simple piecewise quadratic bias model has been
considered in this application, and it has been shown to be suffi-
cient for providing a rather accurate diagnosis. However, more
complex models, such as neural networks, could be tested. An-
other research direction concerning the complexity of the bias
model is the definition itself of that model. Throughout the paper,
it has been assumed that the bias model only depends on the TI. A
formulation with two input arguments such as TI and its time
derivative, or TI and a state index, should be investigated. Data
mining techniques could be used to this end.

An essential work is to further investigate the applicability of
the BCM, defined from SLS mismatch data, throughout the flight
envelope. This approach has been proven successful for the par-
ticular application considered in the present study, somewhat sim-
plified with respect to real-world situations. Indeed, new-
generation engines are more complex, from the standpoint of
architecture as well as control systems. The structure of the
model-plant mismatch might then depend on the ambient and op-
erating conditions, too. In that case, collection of mismatch data in
an altitude test facility and/or on a flying test bed would become
mandatory for a complete determination of the BCM.

Finally, some more studies still need to be undertaken concern-
ing robustness issues. Those are twofold: First, the capability of
the algorithm to cope with sensor malfunctions is still under de-
velopment. Second, the applicability of the methodology pre-
sented herein has to be verified for other modeling errors such as
sensor/actuator dynamics, fluid dynamics effects, bleed air and
power take-offs, and especially biased steady-state engine model-
ing.

Conclusion
The ability to perform a reliable diagnosis in transient operation

with an imperfect model of a gas turbine has been investigated. A
methodology has been developed to compensate for the bias in-
duced by model-plant mismatch by treating it as a pseudo-
Gaussian variable. The improvements to the quality of the diag-
nosis with the new algorithm have been demonstrated on simple,
but realistic test cases.

More specifically, it has been pointed out that taking into ac-
count both the mean bias and its related uncertainty improves the
identification procedure in terms of stability and accuracy even
with a rather simple structure of the bias model. The BCM, built
from data gathered on a test bench, has also shown interesting
generalization properties in order to carry out health monitoring
for other ambient conditions. A simple approach relying on cor-
rected parameters addresses this issue for the simulated test data
available.
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â � estimation of an unknown variable a

A8IMP � nozzle exit area �nominal value: 1.4147 m2�
bk � mean of the model bias

EGT � exhaust gas temperature
k � discrete time index

Pi � total pressure at station i
Rb,k � covariance matrix of the model bias
SEi � efficiency scaler of the component whose entry

is located at section i �nominal value: 1.0�
SWiR � flow capacity scaler of the component whose

entry is located at section i �nominal value:
1.0�

Ti � total temperature at station i
uk � actual command parameters
vk � actual external disturbances
wk � actual but unknown health parameters
xk � actual but unknown state variables
yk � observed measurements
�k � measurement noise vector
�k � process noise vector

N�m ,R� � a Gaussian probability density function with
mean m and covariance matrix R
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