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A real-time, centralized control system is presented which is acting on the active and reactive powers of distributed generators when the network experiences voltage and/or
thermal limits violation. The control resorts to multi-step receding horizon optimization. The objective is to minimize the deviations of Dispersed Generation Units (DGU) active
and reactive powers from reference values. Furthermore, the formulation is such that DGU powers are restored to their desired schedule as soon as operating conditions
allow doing so. Three modes of operation of the proposed controller are presented, involving dispatchable units as well as DGUs operated to collect maximum power.

Motivation

e The number of renewable energy sources connected
to distribution systems is progressively increasing

e temporary voltage problems and/or thermal overload
are expected to occur more frequently.

Controller main features

e Centralized controller receives the near future sched-
ules of DGUs and:

—in normal situation, steers the DGUs to follow the
schedule or, capture maximum available power

—Iin undesired situation, keeps the production level
as close as possible to their reference values while
solving the voltage or thermal violation

—restores DGU outputs to the schedule as soon as
system conditions improve (resetting effect).

Model Predictive Control (MPC) approach

At time £k, the controller:
e Collects measurements

e Uses an internal model and the measurements to pre-
dict the system response over an interval of V, steps

e computes an optimal sequence of N, future control
changes AP, (k+i)and AQ .- (k+i),:=0... N.—1

e applies only the first component (z = 0).

At time k£ + 1, the whole procedure is repeated.

Constraint multi-step optimization

Inequality constraints

fori=1,...,N,:
—e 1+ Vk+0) < V(k+i|k) < VPEk+1i)+ el
Ik+i|k)<I"(k+i)+esl

fore =0,...,N.— 1:
u™ < au(k+il| k) <ume

Au™ < u(k+i|k)—ulk+i—1]k) < Au"™@

u™" um Au"™"and Au* : lower and upper limits
on DGU outputs and their rate of change

1 : unit vector
Viu(k +4), VW(k+1) and I*(k +1i) : progressive
tightening bounds on predicted voltages and currents
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The voltages and currents are brought within the limits
View yvur and I'? at the end of prediction horizon.

Contexts of application

The above MPC formulation can accommodate vari-
ous contexts of application and regulatory policies, de-
pending on the interactions and information transfers
between Distribution System Operator (DSO) and the
entities acting on the DGUs.
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u(k) = [P, (k),Q, (k)" : control variables

9
w,ef(k) = [P s(k), Q,.¢(k)]" : control reference values

r

R,, R, : weighting matrices to prioritize the controls

€ = |€y, €9, €3]  slack variables to relax the inequality
constraints in case of infeasibility

S : weighting matrix heavily penalizing nonzero e

Linearized system evolution

fori=1,..., N,
Vik+i|k)=V(k+i—-1]k)+
+Sy[uk+i—1)—ulk+i—2)]
Ik+i|k)=Ik+i—1|k)+

+Srluk+i—1) —ulk +i—2)]

V(k+1ilk), I(k +i|lk) : bus voltages and branch cur-
rents predicted at time k& + ¢ given the measurements
at time &

V(k| k), I(k]|k): last received measurements

Sy, S; . sensitivity matrices of voltages and currents
respect to control changes
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In all modes the controller sends the corrections:
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Simulation results
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22 DGUs, consist of 3.3-MVA doubly fed induction gen-
erators driven by wind turbine and 3-MVA synchronous
generators.

Correction of thermal overload and DGUs resetting
effect—Mode 1

All DGUs are assumed to be driven by wind turbines.
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Capability of anticipating violation—-Modes 1 and 3

13 DGUs are synchronous generators operating in
mode 3, and the rest wind units running in mode 1.
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