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Abstract. We characterize pairs of complementary non-homogeneous Beatty
sequences (An)n>0 and (Bn)n>0, with the restriction A1 = 1 and B1 ≥ 3, for
which there exists an invariant take-away game having {(An, Bn), (Bn, An) |
n > 0} ∪ {(0, 0)} as set of P -positions. Using the notion of Sturmian word
arising in combinatorics on words, this characterization can be translated into
a decision procedure relying only on a few algebraic tests about algebraicity or
rational independence. This work partially answers to a question of Larsson
et al. raised in [11].

1. Introduction

A pair of non-homogeneous Beatty sequences (An)n>0 and (Bn)n>0 is given by
two positive irrational numbers α, β (in this paper, we do not consider any rational
modulus) and two real numbers γ, δ such that, for all n > 0,

An := ⌊nα+ γ⌋, Bn := ⌊nβ + δ⌋.
Two sequences are said to be complementary, if

(1) {An | n > 0} and {Bn | n > 0} make a partition of N>0.

The general question addressed in this paper is the following one.

Question 1. Let (An)n>0 and (Bn)n>0 be a pair of complementary non-homogeneous
Beatty sequences. Consider the set

(2) P = {(0, 0)} ∪ {(An, Bn), (Bn, An) | n > 0}.
For convenience, we set A0 = B0 = 0. Given any pair (x, y) 6∈ P does there exist a
pair (u, v) of non-negative integers not in the set

P − P = {(An − Am, Bn −Bm), (An −Bm, Bn −Am) | m,n ≥ 0}
and such that (x− u, y − v) belongs to P.

This problem was originally proposed by Larsson et al. in [11] where a similar
question is solved for a large class of sequences including the case of homogeneous
Beatty sequences (γ = δ = 0). More about the background in given in Section 2.3.
As explained in the next subsection, our motivation for this problem stems from
combinatorial game theory. It permits to determine the existence of rulesets of
particular interest.

Key words and phrases. Two-player combinatorial game, Beatty sequence, Sturmian word,
Invariant game, Superadditivity.
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1.1. General vector subtraction games. In [10], Golomb introduced the notion
of general vector subtraction games. Given t piles of tokens, a position of such a
game is a t-tuple of non-negative integers, corresponding to the number of tokens
in each pile. A move is also a t-tuple of non-negative integers corresponding to
the number of tokens that are removed from each pile. Let p = (p1, . . . , pt) be a
position and m = (m1, . . . ,mt) be a non-zero move. The move m can be applied to
the position p provided that m ≤ p, i.e., for all i, mi ≤ pi. The position resulting
of the application of m is the t-tuple p−m. Given a set M of allowed moves and a
starting position p, two players alternately apply a move from M. The first player
unable to move loses the game. Some instances of vector subtraction game corre-
spond to well-known games found in the literature, such as Nim [3] or Wythoff’s
game [18].

A position of a game is said to be a P -position (resp., an N -position), if there
exists a strategy for the second (resp., first) player to win the game, whatever the
moves of the other player are. One of the first results in combinatorial game theory
(CGT) claims that any move from a P -position leads to an N -position, and from
any N -position, there exists a move leading to a P -position. Games having different
sets of moves may share the same set of P -positions. Note that these notions of P -
and N -positions are sufficient to understand the CGT content of this manuscript
because we focus essentially on sequences.

In [5], the last two authors introduced the notion of an invariant game in a
general context. Roughly speaking, a game is said to be invariant if all moves are
“playable from any position”, i.e., each allowed move is independent from the posi-
tion it is played from. In particular, they defined it formally for take-away games,
and it turns out that invariant take-away games exactly correspond to the general
vector subtraction games of Golomb. If m = (m1, . . . ,mt) is a non-zero move, then
it can be applied to every position p = (p1, . . . , pt) such that p ≥ m.

In that framework, a general question is the following one: given a set P of t-
tuples of non-negative integers, does there exist an invariant take-away game whose
set of P -positions is P?

Definition 2. A set P ⊆ Nt is said admissible if there exists an invariant take-away
game whose set of P -positions is P .

The link with Question 1 addressed at the begin of this paper is given by the
next remark.

Remark 3. To determine if P is an admissible set, it suffices to check whether the
game having the maximal subtraction set M = Nt \ (P−P) as set of moves admits
P as set of P -positions. Indeed, since there must be no move between any two
P -positions, all the moves inside P − P must be forbidden. And if a game having
a ruleset X which is a subset of Nt \ (P −P), admits P as set of P -positions, then
adding to X moves which are not of the form P − P does not change the status
(i.e., P - or N -) of the positions of the game. Notice that with such a maximal
subtraction set M, the classical part where one needs to prove that there is no
move from a P -position to another P -position completely disappears.
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In this context, Question 1 can be restated as deciding whether a given pair of
complementary non-homogeneous Beatty sequences is admissible or not.

In this paper, we will consider the case t = 2 and the set P is built from pairs of
non-negative integers obtained from Beatty sequences as in (2). Even though the
homogeneous case was solved in [11] (in fact, much more is proven in that paper),
we pursue this introduction with the homogeneous case. We present an alternative
(short) proof to let the reader build some intuition on a simpler situation.

1.2. Building some intuition from homogeneous Beatty sequences. In the
setting of take-away games, it is usual to have A0 = B0 = 0 since (0, 0) is a terminal
P -position. In the homogeneous case, we simply let the indices start with 0.

Definition 4. Let α be a positive irrational number. A a sequence of integers of
the form (⌊nα⌋)n≥0 is an homogeneous Beatty sequence. Two sequences (An)n≥0

and (Bn)n≥0 are complementary if (1) holds.

Theorem 5 (Beatty’s theorem). Let α, β > 0 be two irrational numbers. The
sequences (⌊nα⌋)n≥0 and (⌊nβ⌋)n≥0 are complementary if and only if

(3)
1

α
+

1

β
= 1.

The color code (red, green and blue cells) defined in the next example will be
standard for the whole paper.

Example 6. Take α = (1+
√
5)/2 be the golden ratio and β = (3+

√
5)/2 satisfying

Beatty’s theorem. These two numbers define a pair of complementary homogeneous
Beatty sequences (An)n≥0 = (⌊nα⌋)n≥0 and (Bn)n≥0 = (⌊nβ⌋)n≥0. In Figure 1,
the set of pairs in P = {(An, Bn), (Bn, An) | n ≥ 0} is represented in red. It is
well-known that P is the set of P -positions of the Wythoff’s game [18].

Since (0, 0) belongs to P , we have that P ⊂ (P − P). As in Remark 3, consider
a take-away game with the maximal set of moves M = N2 \ (P −P). The elements
in N2 ∩ (P − P) not in P are represented in blue or green and we will explain the
difference below.

Let (x, y) 6∈ P . There are three cases.

(a) The pair (x, y) corresponds to a white cell if and only if (x, y) 6∈ P − P .
Hence (x, y) admits a move leading to (0, 0). With a take-away game with
M as set of moves, from position (x, y), we can remove all the token in a
single move.

(b) If (x, y) corresponds to a green cell, then there exist (p, q) ∈ P such that
x > p and y = q, or x = p and y > q. In the first (resp. second) case,
(x−p, 0) (resp. (0, y− q)) is a move leading to (p, q). As a take-away game,
this corresponds to the moves of the game of Nim. Since we are dealing with
complementary sequences, these moves are always in M. Stated otherwise,
for allm,n, ifm 6= n, then An 6= Am, Bm and Bn 6= Am, Bm or, equivalently
the four integers An − Am, Bn − Bm, An − Bm, Bn − Am are all non-zero.
No element in P − P is horizontal or vertical.

(c) If (x, y) corresponds to a blue cell, then (x, y) belongs to P − P and there
is no Nim-move leading to P . These are the only possibly problematic
positions. Question 1 therefore becomes in this context: does there exist
(u, v) ∈ M such that (x− u, y − v) is in P?



4 J. CASSAIGNE, E. DUCHÊNE., AND M. RIGO

Figure 1. The set N2 ∩ (P − P) when α = (1 +
√
5)/2.

In Figure 1, we may observe that for every blue cell (x, y), the cell (x− 1, y− 1) is
a red one. Since (1, 1) belongs to M, the figure suggests that P is admissible. (Of
course, this is well-known in the case of Wythoff’s game.)

Theorem 7. Let α, β be irrational numbers with 1 < α < 2 < β be such that
(An)n≥0 = (⌊nα⌋)n≥0 and (Bn)n≥0 = (⌊nβ⌋)n≥0 are complementary homogeneous
Beatty sequences. The set P = {(An, Bn), (Bn, An) | n ≥ 0} is admissible.

Let M = N2 \ (P −P). We have to prove that for every (x, y) 6∈ P , there exists
(u, v) ∈ M such that (x − u, y − v) ∈ P . It essentially follows from the next three
lemmas.

Lemma 8. Let n > m and µ be a positive irrational number. We have ⌊nµ⌋ −
⌊mµ⌋ ∈

{
⌊(n−m)µ⌋, ⌊(n−m)µ⌋+ 1

}
.

Proof. Observe that

nµ− 2 = mµ+ (n−m)µ− 2 < ⌊mµ⌋+ ⌊(n−m)µ⌋ ≤ mµ+ (n−m)µ = nµ.

This yields

⌊nµ⌋ − 2 < ⌊mµ⌋+ ⌊(n−m)µ⌋ ≤ ⌊nµ⌋.
�

The next statement explains the configuration seen in Figure 1 with the blue
and green cells occurring in the outer region delimited by the cone defined by the
red cells.

Lemma 9. The set N2 ∩ (P − P) is included in

{0, 0} ∪
{
(An + ǫ− h,Bn + ǫ′ + h), (Bn + ǫ′ + h,An + ǫ− h)

| n ≥ 1, 0 ≤ h < An, ǫ, ǫ
′ ∈ {0, 1}

}
.
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Proof. Elements of N2 ∩ (P − P) are either (0, 0), or (An − Am, Bn − Bm) for
m < n, or (An − Bm, Bn − Am) for Bm < An, or their transpose. By Lemma 8,
(An −Am, Bn −Bm) is of the form (An−m + ǫ, Bn−m + ǫ′) with ǫ, ǫ′ ∈ {0, 1} (i.e.,
we take h = 0). Now, in the second case, by Lemma 8, there exist ǫ, ǫ′ ∈ {0, 1}
such that

(An −Bm, Bn −Am) = (An−m +Am + ǫ −Bm, Bn−m +Bm + ǫ′ −Am)

= (An−m + ǫ− h,Bn−m + ǫ′ + h)

with h = Bm−Am > 0 and since An−m+ǫ−h > 0, we conclude that h ≤ An−m. �

Lemma 10. The elements (u, 0), (0, v), (1, 1) belong to M for all u, v > 0.

Proof. The fact that (u, 0) and (0, v) belong toM follows from the complementarity
of the sequences, see Example 6 case (b). The fact that (1, 1) belongs to M follows
from Lemma 9 because, for all n ≥ 1, h, ǫ′ ≥ 0, Bn + ǫ′ + h ≥ B1 ≥ 2. Hence (1, 1)
does not belong to P − P . �

Proof of Theorem 7. Without loss of generality, we may assume that x ≤ y and
(x, y) 6∈ P . Complementarity implies that x = Ai or x = Bi for some i.

If x = Bi, then consider the move (u, v) = (0, y −Ai). Since y ≥ Bi, y −Ai > 0
and (u, v) ∈ M by Lemma 10. Hence, (x, y)− (u, v) = (Bi, Ai) belongs to P .

If x = Ai and y > Bi, then consider the move (u, v) = (0, y −Bi). We conclude
with Lemma 10.

Now, it remains the case x = Ai ≤ y < Bi. The case y = Bi is obviously
excluded as (x, y) 6∈ P . If (x, y) ∈ M, then we can consider the move (u, v) = (x, y)
leading to (0, 0).

Assume that (x, y) 6∈ M, i.e., (x, y) ∈ N2 \ (P − P). By Lemma 9, there exist
n ≥ 1, ǫ, ǫ′ ∈ {0, 1}, h ∈ {0, . . . , An − 1} such that

x = An + ǫ− h and y = Bn + ǫ′ + h.

(Note that x = Bn+ ǫ′+h, y = An+ ǫ−h, is only possible if x = y = Bn+ ǫ′+h =
An + ǫ− h, since x ≤ y and Bn + ǫ′ + h ≥ Bn ≥ An + 1 ≥ An + ǫ− h, so that the
above equalities also hold true.) As x = Ai ≤ y < Bi, we have

Ai = An + ǫ − h ≤ An + 1 ≤ An+1, so that i ≤ n+ 1

and

Bi > Bn + ǫ′ + h ≥ Bn, so that i > n.

Hence i = n+1, ǫ = 1, h = 0, x = An+1 = An+1, y = Bn+ ǫ′. So (x, y)− (1, ǫ′) =
(An, Bn) ∈ P , with (1, ǫ′) ∈ M. �

1.3. Background on non-homogeneous Beatty sequences. In this paper, we
will focus on sets P of the form (2) built on a pair (An)>0 and (Bn)n>0 of comple-
mentary non-homogeneous Beatty sequences defined as follows.

Definition 11. A pair of non-homogeneous complementary Beatty sequences (An)n>0

and (Bn)n>0 is given by two positive irrational numbers α, β and two real numbers
γ, δ such that, for all n > 0, An := ⌊nα+ γ⌋, Bn := ⌊nβ + δ⌋ and (1) holds
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As noticed in Example 6, given a pair of non-homogeneous complementary
Beatty sequences, the Nim moves (i.e., moves of the type (u, 0) and (0, v)) be-
long to M = N2 \ (P − P), for all u, v > 0.

In the homogeneous case, we have recalled Beatty’s theorem. Similarly, Fraenkel’s
partition theorem [7] gives necessary and sufficient conditions for complementarity
of non-homogeneous Beatty sequences. This result is stated in a more general con-
text (partitions of either Z, Z≥N or Z≤N and it deals with irrational α and β as
well as rational ones). Another resource is [15]. For the sake of clarity, we limit
ourselves to a statement of a restricted version of Fraenkel’s theorem.

Theorem 12. [7, Thm. II] Let α, β be positive irrational numbers. The sequences
(⌊nα + γ⌋)n>0 and (⌊nβ + δ⌋)n>0 are complementary if and only if (3) holds and
the following two conditions also hold

(4)
γ

α
+

δ

β
= ⌊α+ γ⌋ and,

(5) for all n ≥ 1, nβ + δ 6∈ Z.

2. Considered setting

2.1. Our assumptions. Let α, β be positive irrational numbers and two real num-
bers γ, δ such that the two sequences defined, for all n > 0,

An := ⌊nα+ γ⌋, Bn := ⌊nβ + δ⌋

form a pair of complementary non-homogeneous Beatty sequences (thus, From The-
orem 12 relations (3), (4), (5) hold). For convenience, we set A0 = B0 = 0. Without
loss of generality, we assume that α < β. From Theorem 12 and condition (3), we
deduce that 1 < α < 2 < β. In what follows, we moreover assume that

(6) A1 = 1 and B1 ≥ 3.

The main purpose of this paper is to answer, in this setting, Question 1, i.e., to
characterize the values of α, β, γ, δ for which the corresponding set P defined by
(2) is admissible. The condition B1 ≥ 3 is the only limitation of our study, the
technical explanation about this extra assumption will come from Lemma 47.

Remark 13. The conditionA1 = 1 was also considered in the initial problem stated
in [11, Problem 2]. In particular, it guarantees that the inequality An < Bn holds
for all n > 0. This condition is not crucial and its removal would not fundamentally
change our work. Note that A1 = 1 also implies

1− α ≤ γ < 2− α.

Moreover, relation (4) reduces to

γ

α
+

δ

β
= 1.
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2.2. A few examples. Now that the setting is clear, we present numerical exam-
ples suggesting that the admissibility of P strongly depends on the values of the
parameters α, β, γ, δ defining the two Beatty sequences. The first two examples are
with γ negative, the first one gives a non-admissible set, the second one suggests
admissibility (the proof of admissibility will follow from our main results, Theo-
rems 45 and 50). The last two examples are with γ positive. This distinction about
the sign of γ will appear all along the paper.

Example 14. Take β = 3.99 +
√
5/2 ≃ 5.108 and γ = −0.2. From (3) and (4),

we get α = β/(β − 1) ≃ 1.243 and δ = −βγ/α ≃ 0.822. The first elements of
(An, Bn)n>0 are

n 1 2 3 4 5 6 7 8 9 10
An 1 2 3 4 6 7 8 9 10 12
Bn 5 11 16 21 26 31 36 41 46 51

The set N2 ∩ (P − P) is represented in Figure 2 with the same color code as in
Example 6. For the blue cell (6, 2), we can remove (1, 1) 6∈ (P−P) to get (5, 1) ∈ P .

Figure 2. The set N2 ∩ (P − P) with the values of Example 14,
γ < 0 and P is not admissible.

Similarly, with the blue cell (10, 3), we can remove (5, 2) 6∈ (P − P) to again get
(5, 1) ∈ P .

Nevertheless, with the blue cell (10, 2), the only non-zero element in P that
could possibly be reached is (5, 1). But to get that element, we should remove
exactly (5, 1) which belongs to P . This shows that with these values of α, β, γ, δ
the corresponding set P is not admissible. The reader may already notice that
(10, 2) is of the form (Bn + B1, An+1) with n = 1 (this will play a special role in
our proofs).
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Example 15. Let us modify slightly the values of the previous example (we sub-

tract 1 to β) and take β = 2.99 +
√
5/2 ≃ 4.108 and γ = −0.2. From (3) and

(4), we get α = β/(β − 1) ≃ 1.322 and δ = −βγ/α ≃ 0.622. The first elements of
(An, Bn)n>0 are

n 1 2 3 4 5 6 7 8 9 10
An 1 2 3 5 6 7 9 10 11 13
Bn 4 8 12 17 21 25 29 33 37 41

The set N2 ∩ (P − P) is represented in Figure 3 with the same color code as in
Example 6. For each blue cell (x, y) in Figure 3, we are able to find a pair (u, v)

Figure 3. The set N2 ∩ (P − P) with the values of Example 15,
γ < 0 and P should be admissible.

not in P − P that answers Question 1: (x − u, y − v) belongs to P , see Table 1.
This example suggests that, with these values of α, β, γ, δ, the corresponding set P
should be admissible (we have to wait for Theorem 50).

In the first two examples, γ was negative. Now, we consider two example where
γ is positive, the first one gives a non-admissible set, the second one suggests ad-
missibility.

Example 16. Take β = 4.99 +
√
5/2 ≃ 6.108 and δ = −1 −

√
2 ≃ −2.414. From

(3) and (4), we get α = β/(β − 1) ≃ 1.196 and γ = −αδ/β ≃ 0.473. The set
N2 ∩ (P −P) is represented in Figure 4 with the same color code as in Example 6.
The blue cell (6, 2) belongs to P − P and the only non-zero element in P that can
be reached is (3, 1) which belongs to P . Hence, with these values of α, β, γ, δ the
corresponding set P is not admissible. Again the reader may already notice that
(6, 2) is of the form (Bn +B1, An+1) with n = 1.
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(x, y) (u, v) (x − u, y − v)
6∈ (P − P) ∈ P

(5, 2) (1, 1) (4, 1)
(9, 3) (1, 1) (8, 2)
(16, 5) (8, 3) (8, 2)
(16, 6) (8, 4) (8, 2)
(20, 6) (3, 1) (17, 5)
(20, 7) (3, 2) (17, 5)
(24, 7) (3, 1) (21, 6)
(28, 9) (3, 2) (25, 7)
(28, 10) (3, 3) (25, 7)
(32, 10) (3, 1) (29, 9)
(32, 11) (3, 2) (29, 9)

Table 1. Blue cells in Example 15.

Figure 4. The set N2 ∩ (P − P) with the values of Example 16,
γ > 0 and P is not admissible.

Example 17. Consider the following four real numbers β = 8+(1+
√
5)/2 ≃ 9.618,

α = β/(β − 1) ≃ 1.116, δ = −2.5
√
7 ≃ −6.614 and γ = −δα/β ≃ 0.768. The set

N2 ∩ (P −P) is represented in Figure 5 with the same color code as in Example 6.
Figure 5 readily suggests that P should be admissible. This will be formally proved
in Section 7.2. The first terms of the corresponding two sequences are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
An 1 2 4 5 6 7 8 9 10 11 13 14 15 16 17
Bn 3 12 22 31 41 51 60 70 79 89 99 108 118 128 137
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Figure 5. The set N2 ∩ (P − P) with the values of Example 17,
γ > 0 and P should be admissible.

2.3. Related works. Now that the reader has some intuition about our problem,
let us put this paper into perspective. For take-away games played over two piles
of token, introducing the notion of an invariant game, admissible sets were first
provided in [5] for a particular family of homogeneous Beatty sequences where α
is a quadratic irrational number having an ultimately periodic continued fraction
expansion of the form (1; 1, k). Games related to quadratic irrational numbers with
expansion (1; k) were considered in [8]. The following conjecture was stated in [5]:
any pair (An, Bn)n≥0 of complementary (homogeneous) Beatty sequences provides
an admissible set.

Later on, Larsson et al. [11] gave sufficient conditions on a pair (An, Bn)n≥0

of complementary sequences to provide an admissible set. Their main condition is
that the sequence (Bn)n≥0 is B1-superadditive.

Definition 18. A sequence (Bn)n>0 is B1-superadditive if, for all m,n > 0, Bm +
Bn ≤ Bm+n < Bm + Bn + B1. A sequence satisfying the left-hand inequality is
said to be superadditive.

Example 19. The sequence (Bn)n>0 of Example 17 is not B1-superadditive be-
cause we have B1+2 = 22 > B1 +B2 +B1.

The authors of [11] observe that any pair of complementary homogeneous Beatty
sequences satisfy in particular this latter property. Therefore, their result provides
a positive answer (even for a wider family of complementary sequences) to the
conjecture expressed in [5]. The problem being solved positively for homogeneous
Beatty sequences, it is natural to address Question 1.

Note that the authors of [11] also wonder whether a pair (An, Bn)n>0 of non-
homogeneous complementary Beatty sequences with A1 = 1 provides an invariant
set if and only if the sequence (Bn)>0 is B1-superadditive. We show in Section 7,
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that the answer to this question is negative.

In general, obtaining two games with the same set of P -positions is challenging.
Recently it was proved that there is no algorithm, given two games played over the
same number of heaps (and both described by a finite set of allowed moves), deciding
whether or not these two games have the same set of P -positions [13]. Thus, tak-
ing a maximal subtraction set is a reasonable choice to look for an invariant ruleset.

Let us also mention the introduction of the ⋆-operator in [11]. If G is a game
(not necessarily invariant), then one can define an invariant game G⋆ whose set
of moves is the set of non-zero P -positions of G. This dualization operator (see
[11, Theorem 1.2]) is a major tool to solve Question 1 for homogeneous Beatty
sequences. Let us also mention [12] where the ⋆-operator is used for arbitrary
invariant take-away games.

2.4. Organization of the next sections. Our main result will be stated in terms
of an infinite word associated with the parameters α, β, γ, δ, see Definition 34 in
Section 4.2. Therefore, in Section 3, we recap the needed background about combi-
natorics on words and, in particular, about Sturmian words. We are interested in
occurrences of some prescribed factor appearing in such a word. Similar interplay
between CGT and combinatorics on words can be found in [6, 9].

Section 4 contains the technical core of the paper. When B1 ≥ 3, we provide
necessary and sufficient conditions for P to be an admissible set. Our condition
has a combinatorial flavor: we define an infinite word w built upon α, β, γ, δ and
the condition is described in terms of factors occurring or not in this word; see
Section 4.3. If the 4-tuple (α, β, γ, δ) satisfies this condition, then this 4-tuple is
said to satisfy the combinatorial admissibility test or, for short, that the 4-tuple is
CAT. Finally, in Section 5, in Theorem 45, we prove that there is no admissible set
P associated with a 4-tuple which is not CAT. In Theorem 50, we show that if the
4-tuple is CAT, then P is an admissible set.

In Section 6, we translate these combinatorial conditions into an algebraic setting
better suited to tests. It turns out that if α, β, 1 are rationally independent, then
we make use of the two-dimensional version of the density theorem of Kronecker.
Otherwise, one has to study the relative position of a rectangle and a straight line
over the two-dimensional torus R2/Z2. This setting is quite natural when studying
pairs of natural irrational numbers and can be found in [2, 7, 15, 19].

As already mentioned in Section 2.3, answering a question of Larsson et al. [11],
we show in Section 7 that B1-superadditivity is not a necessary condition to provide
an admissible set.

3. Sturmian words for game combinatorists

In this section, we collect the main facts on Sturmian words that will be used
in this paper. This section has been written for a reader having no particular
knowledge in combinatorics on words. For general references, see for instance [1, 14].

Definition 20. An alphabet is a finite non-empty set. Its elements are called
symbols. A finite word over the alphabet A is a finite sequence of elements in A.
The set of finite words (resp. finite non-empty words) over A is denoted by A∗

(resp. A+). An infinite word over the alphabet A is a map from N to A. Infinite
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words will be denoted using bold face symbols like s or w. Also note that the first
symbol of an infinite word has index 0.

The so-called Sturmian words form a well-known and extensively studied class of
infinite words over a 2-symbol alphabet. They can be defined in several equivalent
ways, one of them arising in the context of non-homogeneous Beatty sequences.
Below, we present three well-known equivalent definitions of Sturmian words: me-
chanical words, codings of some rotations and balance property [14, Chap. 2]. We
will purposely and interchangeably use these three definitions.

Let λ, ρ be two real numbers with λ > 0. In the literature, one usually considers
λ ∈ (0, 1) which is not a true restriction but, in that case, the obtained word is
written over the alphabet {0, 1}. For an arbitrary λ, the reader will notice that we
will have to consider in some situations its fractional part {λ}.

3.1. Mechanical words. We define the infinite word sλ,ρ = (sλ,ρ(n))n≥0 by

sλ,ρ(n) := ⌊(n+ 1)λ+ ρ⌋ − ⌊nλ+ ρ⌋, ∀n ≥ 0.

This word is often referred to as a lower mechanical word [14]. It is not difficult to
see that sλ,ρ(n) takes exactly the two values ⌊λ⌋ and ⌊λ⌋+ 1.

Example 21. Take λ = ρ = 1/τ where τ is the golden ratio (1 +
√
5)/2 that we

have seen in Example 6. The word s1/τ,1/τ is the consecrated Fibonacci word whose
first symbols are

(7) s1/τ,1/τ = 101101011011010110101 · · · .
In the context of CGT, this word is a coding of the P -positions of Wythoff’s games
[18, 4].

3.2. Coding of rotations. As we will see, this formalism is convenient to describe
the factors occurring in a Sturmian word sλ,ρ. Consider the one-dimensional torus
T1 = R/Z identified with [0, 1). Take the map Rλ : T1 → T1, x 7→ {x + λ}. One
can study the orbit of ρ (reduced modulo 1) under the action of Rλ. We thus define
two intervals

I⌊λ⌋ := [0, 1− {λ}) and I⌊λ⌋+1 := [1− {λ}, 1)
partitioning T1. One can show that this setting provides another way to define the
word sλ,ρ.

Theorem 22. [14] For all n ≥ 0, we have

sλ,ρ(n) = ⌊λ⌋ ⇔ Rn
λ(ρ) ∈ I⌊λ⌋ and sλ,ρ(n) = ⌊λ⌋+ 1 ⇔ Rn

λ(ρ) ∈ I⌊λ⌋+1.

Definition 23. A factor of length ℓ > 0 in a word z = z0z1 · · · is a finite sequence
made of ℓ consecutive symbols: zi · · · zi+ℓ−1. We say that the factor occurs in z in
position i. By convention, the unique factor of length 0 is the empty word ε.

Example 24. Considering again the Fibonacci word (7), we see that 011 is a factor
of s1/τ,1/τ occurring in positions 1, 6, 9.

The set of all factors of length ℓ occurring in an infinite word z is denoted by
Facz(ℓ) and the whole set of factors of z is

Facz =
⋃

ℓ≥0

Facz(ℓ).
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For a binary word v = v0v1 · · · vm, for all t, vt ∈ {⌊λ⌋, ⌊λ⌋ + 1}, we define a half-
interval Iv,λ of T1 as

(8) Iv,λ := Iv0 ∩R−1
λ (Iv1 ) ∩ · · · ∩R−m

λ (Ivm).

One can show that v occurs in sλ,ρ in position i if and only if Ri
λ(ρ) ∈ Iv,λ. See

[14, Section 2.1.2]. This result is illustrated by the following example.

Example 25. Again for the Fibonacci word and the factor 011, recalling that
τ2 − τ − 1 = 0, we have

I011,1/τ = I0 ∩R−1
1/τ (I1) ∩R−2

1/τ (I1) = [0, 1/τ2) ∩ R−1
1/τ [1/τ

2, 1)
︸ ︷︷ ︸

[2/τ2,1)∪[0,1/τ2)

∩R−2
1/τ [1/τ

2, 1)
︸ ︷︷ ︸

[3/τ2−1,2/τ2)

and we find I011,1/τ = [3/τ2 − 1, 1/τ2) where 3/τ2 − 1 ≃ 0.146 and 1/τ2 ≃ 0.382.
If we compute the first few approximations of Rn

1/τ (1/τ) for n = 0, 1, . . . , 10, we

get 0.618, 0.236, 0.854, 0.472, 0.0902, 0.708, 0.326, 0.944, 0.562, 0.180, 0.798. Observe
that the only values falling into the interval I011,1/τ are for those n = 1, 6, 9 which
exactly corresponds to the observations about the factor 011 made in Example 24.

3.3. A balance property. Let A be a finite alphabet. Let a be a symbol in A
and let u be a finite word over A. We denote by |u| the length of u and by |u|a the
number of occurrences of a in u.

Definition 26. An infinite word z over A is said to be balanced if, for all n ≥ 0,
all u, v ∈ Facz(n) and all a ∈ A, we have ||u|a − |v|a| ≤ 1.

Theorem 27. [14, Theorem 2.1.5] An infinite word over {0, 1} is Sturmian if and
only if it is aperiodic and balanced.

This result implies that, for a given Sturmian word sλ,ρ, up to permutation of
the symbols occurring in a factor (i.e., up to abelian equivalence), there are exactly
two kinds of factors of length ℓ, those having either ⌈ℓ{λ}⌉, or ⌈ℓ{λ}⌉− 1, symbols
⌊λ⌋ + 1. The corresponding factors will be called respectively heavy and light. In
[16], the following intervals are defined, for all ℓ > 0,

(9) IH,λ(ℓ) := [1− {ℓλ}, 1) and IL,λ(ℓ) := [0, 1− {ℓλ})
and it is proved that the factor of length ℓ occurring in position i in sλ,ρ is heavy
if and only if Ri

λ(ρ) ∈ IH,λ(ℓ).

Example 28. For the Fibonacci word introduced in Example 21, there are exactly
6 factors of length 5. Five are light: 10110, 01101, 11010, 10101 and 01011. They
contain ⌈5{τ}⌉ − 1 = 3 symbols 1. The unique heavy factor of length 5 is 11011
with 4 symbols 1. We have IH,1/τ (5) = [1− {5/τ}, 1) where 1− {5/τ} ≃ 0.91. We
have given approximations of the first few values of Rn

1/τ (1/τ) in Example 25 and

we see that for n = 7 the point belongs to that interval. Otherwise stated, an heavy
factor of length 5 occurs for the first time in position 7 in the Fibonacci word.

We will often make use of the following observation.

Remark 29. Let u = u1 · · ·un and v = v1 · · · vn be two factors of length n occurring
in the Sturmian word sλ,ρ over the alphabet {⌊λ⌋, ⌊λ⌋+ 1}. We have

n∑

i=1

ui −
n∑

i=1

vi =







1 if u is heavy and v is light,
−1 if u is light and v is heavy,
0 if u, v are both light (resp., heavy).
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In particular, we have
n∑

i=1

vi − 1 ≤
n∑

i=1

ui ≤
n∑

i=1

vi + 1.

4. A characterization of the 4-tuples leading to an invariant game

From α, β, γ, δ, our first aim is to define an infinite word w = (wn)n≥0 of pairs
taking values in a finite set. We proceed with two steps. First, we define the
product of two infinite words in Section 4.1. Then we specify our coding word in
Section 4.2. We describe some combinatorial conditions on the factors of this coding
word in Section 4.3. Finally, in Section 5 we prove that this condition (called CAT)
is equivalent to the fact that P is admissible.

4.1. Direct product and synchronization. In the next section, coming back to
our initial problem, we will introduce an infinite word over an alphabet of pairs.
This infinite word is obtained as the direct product of two Sturmian words.

Definition 30. Let s = (sn)n≥0 and t = (tn)n≥0 be two infinite words over the
alphabets A and B respectively. The direct product of s and t is the word s ⊗ t =
(pn)n≥0 where

pn = (sn, tn), ∀n ≥ 0.

Observe that s⊗ t is an infinite word over the alphabet A×B of pairs of symbols.

We denote by π1 and π2 the two homomorphisms of projection defined by
π1(x, y) = x, π2(x, y) = y, for all (x, y) ∈ A × B, and extended to π1(s ⊗ t) = s
and π2(s ⊗ t) = t. If u ∈ A+ and v ∈ B+ are two finite words of the same length,
one can define accordingly u ⊗ v and π1(u ⊗ v) = u, π2(u ⊗ v) = v. For more on
two-dimensional generalization of Sturmian words, see for instance [2]. For some
recurrence properties of direct product, see [17].

Let us now introduce a convenient notation for a particular 2-symbol alphabet
denoted by Aλ. In the next sections, up to some minor modifications of the first
symbol, we will be interested in the direct product of two Sturmian words sλ,ρ and
sµ,ν over the alphabets Aλ = {⌊λ⌋, ⌊λ⌋+ 1} and Aµ = {⌊µ⌋, ⌊µ⌋+ 1} respectively.

Consider the two-dimensional torus T2 = R2/Z2 identified with [0, 1)× [0, 1) and
the map Rλ,µ : T2 → T2, (x, y) 7→ ({x + λ}, {y + µ}). From the characterization
given in Section 3.2, it is obvious that T2 is split into four regions of the kind Ia×Ib
where a ∈ Aλ and b ∈ Aµ in such a way that

(sλ,ρ ⊗ sµ,ν)(n) = (a, b) ⇔ Rn
λ,µ(ρ, ν) ∈ Ia × Ib.

Example 31 (Continuing Example 14). Recall that we had β = 3.99 +
√
5/2 ≃

5.108 and α = β/(β − 1) ≃ 1.243. We have Aα = {1, 2} and Aβ = {5, 6}. In
Figure 6, the starting point ({γ}, {δ}) is denoted by 0 and the arrow represents the
application of Rα,β , i.e., a translation of ({α}, {β}) in T2. The first ten iterations
of this map are labeled in the figure. The torus is split into the four regions
corresponding to an occurrence of (1, 5), (1, 6), (2, 5) and (2, 6) respectively. These
regions are denoted respectively a, b, c and d. One can notice that the visited
regions are: cbaacaaaacb · · · . From this, we get π1(sα,γ) = 21112111121 · · · and
π2(sβ,δ) = 565555555556 · · · .

The next statement is a direct reformulation of (8).
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Figure 6. The torus T2 split into four regions as discussed in Example 31.

Lemma 32. Let v ∈ A+
λ and w ∈ A+

µ be two words of the same length. The factor
v ⊗ w occurs in sλ,ρ ⊗ sµ,ν in position i, i.e., v occurs in sλ,ρ in position i and
simultaneously w occurs in sµ,ν in position i, if and only if Ri

λ,µ(ρ, ν) ∈ Iv,λ× Iw,µ.

Let ℓ ≥ 1. Using (9), again T2 is split into four regions of the kind IA,λ(ℓ)×IB,µ(ℓ)
where A,B ∈ {L,H} in such a way that the factor of length ℓ occurring in sλ,ρ is
light and, simultaneously, the factor of length ℓ occurring in sµ,ν is light, if and only
if Ri

λ,µ(ρ, ν) ∈ IL,λ(ℓ) × IL,µ(ℓ). The other combinations light/heavy, heavy/light

and heavy/heavy are obtained accordingly.

4.2. Introducing a coding word. From α, β, γ, δ, let us define an infinite word
w = (wn)n≥0 of pairs taking values in a finite set. Except maybe for the first
symbol, this word is the direct product sα,γ ⊗ sβ,δ of two Sturmian words. Indeed,
we have set A0 = 0 (resp., B0 = 0) which may differ from ⌊γ⌋ (resp., ⌊δ⌋).

Let us first collect a few useful relations.

Remark 33. Since we consider complementary sequences, condition (4) in Theo-
rem 12 and our first assumptions on α and β (see Section 2.1) imply the following
dependencies:

(10) If 0 ≤ γ < 2− α, then we have δ ≤ 0.

(11) If 1− α < γ < 0, then we get 0 < δ < 1.

Indeed, (10) is directly deduced from Theorem 12 and (4) because δ = −γβ/α and
thus γδ ≤ 0. For the same reason, in (11), if γ is negative, then δ is positive.
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Moreover, since δ = −γβ/α and if we assume that −γ < α − 1, then using (3) we

get δ < β(α−1)
α = 1.

Definition 34 (Introduction of the word w). For all n ≥ 0, we set

wn = (An+1 − An, Bn+1 −Bn),

that is

w = w0w1w2 · · · = (A1, B1)
(
sα,γ(1), sβ,δ(1)

) (
sα,γ(2), sβ,δ(2)

)
· · ·

The purpose of this word w is the following one. Let i ≤ j. Observe that

(12)

j
∑

k=i

wi = (Aj+1 −Ai, Bj+1 −Bi).

Referring to the sign of γ, this word will be denoted by w+ (resp., w−) whenever
γ is positive (resp., negative). Since 1 < α < 2, we have that for all n ≥ 0,
sα,γ(n) ∈ {1, 2}. We also have sβ,δ(n) ∈ {⌊β⌋, ⌊β⌋ + 1}. Since A1 − A0 = 1, the
following observation is straightforward.

Lemma 35. For all n ≥ 0, we have An+1 − An ∈ {1, 2}. For all n > 0, we have
Bn+1 −Bn ∈ {⌊β⌋, ⌊β⌋+ 1}

Assume first that γ < 0. Hence ⌊γ⌋ ≤ −1 and from (11), 0 < δ < 1, i.e., ⌊δ⌋ = 0.
Then A1 < sα,γ(0) = A1 − ⌊γ⌋ and B1 = B1 − ⌊δ⌋ = sβ,δ(0), i.e., π2(w−) = sβ,δ.
The word w− is thus written over the alphabet defined in the next definition.

Definition 36 (Introduction of the 4-symbol alphabet {a, b, c, d}). The word w−

is written over the alphabet of size 4
{
(1, ⌊β⌋), (1, ⌊β⌋+ 1), (2, ⌊β⌋), (2, ⌊β⌋+ 1)

}
.

This set is in one-to-one correspondence with the alphabet {a, b, c, d}. We choose
a, b, c, d such that π1(a) = π1(b) = 1, π1(c) = π1(d) = 2, π2(a) = π2(c) = ⌊β⌋ and
π2(b) = π2(d) = ⌊β⌋+ 1.

Assume now that γ > 0. Let us explain why we need to introduce a fifth symbol
in the alphabet (contrarily to Definition 36). In our setting, recall that γ < 1.
Hence ⌊γ⌋ = 0 and we get that A1 = sα,γ(0), i.e., π1(w+) = sα,γ . Moreover,
δ < 0 and therefore B1 = ⌊β + δ⌋ < sβ,δ(0) = ⌊β + δ⌋ − ⌊δ⌋. The word w1w2 · · ·
is thus written over the alphabet

{
(1, ⌊β⌋), (1, ⌊β⌋ + 1), (2, ⌊β⌋), (2, ⌊β⌋ + 1)

}
and

w0 = (1, B1) with B1 ≤ ⌊β⌋. If B1 < ⌊β⌋, then w+ is written over the 5-symbol
alphabet

{
(1, B1), (1, ⌊β⌋), (1, ⌊β⌋+ 1), (2, ⌊β⌋), (2, ⌊β⌋+ 1)

}

the symbol (1, B1) appearing only once as the first element.

Definition 37 (Introduction of the fifth symbol e). We set e such that π1(e) = 1
and π2(e) = B1.

Example 38 (For γ < 0). Take the same values as in Examples 14 and 31 leading
to a non-admissible set P (see Figure 2). We get the following table.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

An+1 − An 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 2 1

Bn+1 −Bn 5 6 5 5 5 5 5 5 5 5 6 5 5 5 5 5 5 5 5

w
−

a b a a c a a a a c b a a c a a a c a
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Note that sα,γ(0) = 2 6= 1 meaning that the first sequence in the above table
disagrees with sα,γ for the first term only. Also, the first occurrence of (2, 6) = d
is for n = 30. Again, w− agrees with the coding of the trajectory described in
Example 31, except for the first symbol.

Example 39 (For γ > 0, continuing Example 16). Recall that we had β = 4.99 +√
5/2 ≃ 6.108 and α = β/(β − 1) ≃ 1.196 leading to a non-admissible set P (see

Figure 4).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

An+1 − An 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2

Bn+1 −Bn 3 6 6 7 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6

w+ e a c b a a a c a a a a c b a a a a c

Note that sβ,δ(0) = 6 6= 3 meaning that the second sequence in the above table
disagrees with sβ,δ for the first term only. Also, the first occurrence of (2, 7) = d is
for n = 162.

Example 40 (For γ > 0). Take β = 4.99 +
√
5/2 ≃ 6.108 and δ = −0.05. Hence

B1 − B0 = ⌊β + δ⌋ = 6. Even if B1 − B0 belong to {⌊β⌋, ⌊β⌋ + 1}, this example
shows that B1 −B0 6= sβ,δ(0) = ⌊β + δ⌋ − ⌊δ⌋ = 7.

4.3. The combinatorial admissibility condition. It is now convenient to in-
troduce the Parikh vector of a finite word w ∈ {a, b, c, d}. It is defined as

Ψ(w) = (|w|a, |w|b, |w|c, |w|d) ∈ N4.

Our aim is to introduce a test on words and factors. In the theory of complex-
ity, the notion of succinct certificates of disqualification is well-known for co−NP
languages. Here we introduce two definitions (depending on the sign of γ) to carry
a similar idea. If we find a prefix or a factor with some prescribed properties, then
we will show that such an occurrence leads to a non-admissible set P . Roughly
speaking, such a prefix or factor is a succinct certificate for non-admissibility.

The following two definitions correspond to the determination of disqualifying
factors in w+ (for Definition 41) and w− (for Definition 42) respectively.

Definition 41. Let p = w0u1 · · ·un = w0u be the prefix of length n+1 of w+. We
say that p is disqualifying+ if u ∈ {a, b}∗, u1 · · ·un−1 is a palindrome and if any of
the following three situations occur:

(i) 2B1 = π2(un)− 1 and there exists v ∈ Facn(w+) such that

Ψ(v) = Ψ(u) + (0,−1, 1, 0) or Ψ(v) = Ψ(u) + (1,−2, 0, 1)

(ii) 2B1 = π2(un) and there exists v ∈ Facn(w+) such that

Ψ(v) = Ψ(u) + (−1, 0, 1, 0) or Ψ(v) = Ψ(u) + (0,−1, 0, 1)

(iii) 2B1 = π2(un) + 1 and there exists v ∈ Facn(w+) such that

Ψ(v) = Ψ(u) + (−1, 0, 0, 1) or Ψ(v) = Ψ(u) + (−2, 1, 1, 0)

Although Definition 41 seems rather artificial, its motivation comes from sum-
ming up the symbols occurring in such factors. Let p = w0u1 · · ·un = w0u be the
prefix of length n+ 1 of w+. First note that

n∑

i=1

ui = (An −A1 + π1(un), Bn −B1 + π2(un))
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The existence of a factor v ∈ Facn(w+) in one of the three situations means that

n∑

i=1

vi = (An + π1(un), Bn +B1) = (An+1, Bn +B1)

We will see later on that such factors prevent us to find a winning strategy from
some N -positions obtained from (An+1, Bn +B1).

Definition 42. Let u = u1 · · ·un ∈ {a, b}∗ be a factor of length n occurring in w−.

(SD.1) If there exists v ∈ Facn(w−) ∩ {a, b}∗ such that |v|b < |u|b, i.e.,

Ψ(v) = Ψ(u) + (j,−j, 0, 0), for some j > 0,

then we say that u satisfies property (SD.1) (SD stands for“suffix-disqualifying”
as described next).

(SD.2) If there exists v ∈ Facn−1(w−) such that either |u1 · · ·un−1|a = |v|a,
|u1 · · ·un−1|b−1 = |v|b and |v|c = 1, or |u1 · · ·un−1|a+1 = |v|a, |u1 · · ·un−1|b−
2 = |v|b and |v|d = 1, i.e.,

Ψ(v) = Ψ(u1 · · ·un−1) + (0,−1, 1, 0) or Ψ(v) = Ψ(u1 · · ·un−1) + (1,−2, 0, 1),

then we say that u satisfies property (SD.2).

A factor u = u1 · · ·un ∈ {a, b}∗ of w− is suffix-disqualifying, if either,

• for all j ∈ {1, . . . , n}, the suffixes uj · · ·un all satisfy property (SD.1), or
• for all j ∈ {1, . . . , n− 1}, the suffixes uj · · ·un all satisfy property (SD.2).

Example 43. Assume that w− = aabcdaaabac · · · . The prefix aab is suffix-
disqualifying. Indeed, the factors a, aa and aaa occurring in w− show that the
suffixes b, ab and aab satisfy (SD.1). Note that the factor aba satisfies (SD.2),
because its prefix of length 2 contains exactly one a and one b, but the factor ac
contains the same number of a’s and one b has been replaced with c.

Let u ∈ Fac(w−) ∩ {a, b}∗. Note that, if all suffixes of u satisfy (SD.1), then u
ends with b.

Definition 44. A 4-tuple (α, β, γ, δ) satisfies the combinatorial admissibility test
(or, is CAT) if

• γ > 0 and for all prefixes p = w0w1 · · ·wn of w+ such that 2 ≤ |p| < B1, i.e.,
1 ≤ n ≤ B1 − 2, with wi ∈ {a, b} for i = 1, . . . , n, p is not disqualifying+.

• γ < 0 and, for any prefix p ∈ {a, b}∗ of w− of length less than B1, p is not
suffix-disqualifying.

Hence the word given in Example 43 corresponds to a 4-tuple which is not
CAT (if we suppose B1 is large enough). It will be shown in the next Section
that such tuples correspond to sets that are not admissible. Indeed, since aab is
suffix-disqualifying, it suffices to consider the position derived from the factor aaa,
i.e., (π1(a) + π1(a) + π1(a), π2(a) + π2(a) + π2(a)). From this position (which is
not in P), the only available moves to a position in P would be to go either to
(π1(a) + π1(a), π2(a) + π2(a)), to (π1(a), π2(a)) or to (0, 0). But such moves are
forbidden since the factors a, aa and aaa appear in w−.
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5. Equivalence between CAT and admissible sets

With Definitions 44 and 2, we state the first part of the result.

Theorem 45. If the 4-tuple (α, β, γ, δ) is not CAT, then P is not admissible.

Proof. Assume that γ < 0 and there exists a prefix p = w0 · · ·wn−1 ∈ {a, b}∗ of
w− of length n less than B1 such that p is suffix-disqualifying. Therefore, since
π1(a) = π1(b) = 1, the first n+ 1 elements in P are (i, Bi) for i = 0, . . . , n.

Assume first that all the suffixes of p satisfy (SD.1). Consider the position
(n,Bn − 1) which is not in P . We will show that from (n,Bn − 1), there is no
allowed move leading to a position in P . Proceed by contradiction. Assume that
there exists i < n such that we can play the move (n,Bn−1) → (Ai, Bi). It implies
that (n− Ai, Bn − Bi − 1) is not in P − P . By assumption, the suffix wi · · ·wn−1

satisfies (SD.1). Hence there exists a factor f = wj+i · · ·wj+n−1 ∈ {a, b}∗ in w of
length n− i = n−Ai such that |f |b < |wi · · ·wn−1|b. Since π1(a) = π1(b) = 1, we

get Aj+n − Aj+i =
∑n−1

k=i π1(wj+k) = n − i. Note that π2(f) and π2(wi · · ·wn−1)
are factors of the Sturmian word sβ,δ. Hence, the balance property implies that
|f |b − 1 = |wi · · ·wn−1|b. From this, it follows that

Bj+n −Bj+i =
n−1∑

k=i

π2(wj+k) =
n−1∑

k=i

π2(wk)− 1 = Bn −Bi − 1

and (Aj+n −Aj+i, Bj+n −Bj+i) = (n−Ai, Bn −Bi − 1) is in P − P .
Assume now that all the suffixes of p satisfy (SD.2). One can proceed in a similar

way to prove that from the position (n,Bn−1 − 1) which is not in P , there is no
allowed move leading to a position in P .

Assume that γ > 0 and there exists a prefix p = w0w1 · · ·wn−1 of w+ such that
2 ≤ |p| < B1, w1 · · ·wn−1 ∈ {a, b}∗ and p is disqualifying+. Therefore, the first
n+1 elements in P are (i, Bi) for i = 0, . . . , n (see above). Since p is disqualifying+,
from Definition 41, Bn −Bn−1 = π2(wn−1) ∈ 2B1 + {−1, 0, 1} and B1 ≥ 3. Hence
Bn−1 + B1 < Bn and (n,Bn−1 + B1) is not in P . We will show that from this
position (n,Bn−1 + B1), there is no allowed move leading to a position in P . We
proceed by contradiction. Assume first that there is a move (n,Bn−1+B1) → (0, 0).
Since p is disqualifying+, there exists a factor f = f1 · · · fn−1 occurring in w+

such that
∑n−1

k=1 fk = (n,Bn−1 + B1). In other words, (n,Bn−1 + B1) belongs
to P − P . Now assume that there is a move (n,Bn−1 + B1) → (Aj , Bj), with
j > 0. Since p is disqualifying+, wj · · ·wn−2 is the reversal of w1 · · ·wn−j−1. Hence

we get
∑n−2

k=j π2(wk) + B1 =
∑n−j−1

k=1 π2(wk) + π2(w0) = Bn−1 + B1 − Bj and

(n− j, Bn−1 +B1 −Bj) belongs to P − P . �

We now turn to the converse. We show that, if the 4-tuple (α, β, γ, δ) is CAT,
then an invariant game having P as set of P -positions exists, i.e., P is admissible.
As mentioned in Remark 3, it suffices to test the maximal subtraction game having

M := N2 \ (P − P)

as set of moves. The next result is the analogue of Lemma 9 for homogeneous
Beatty sequences.

Lemma 46. If the 4-tuple (α, β, γ, δ) is CAT, then we have

{(k, 0), (0, k) | k ≥ 1} ∪ {(1, k) | 1 ≤ k < B1} ⊆ M.
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Proof. Since {An | n > 0} and {Bn | n > 0} make a partition of N, we clearly have
that (k, 0) and (0, k) belong to M.

Let k be such that 1 ≤ k < B1. By way of contradiction, assume that (1, k) ∈
P − P . Note that δ < 1 (see (11)), implies B1 = ⌊β + δ⌋ ≤ ⌊β⌋ + 1. We consider
two cases:

• (1, k) = (An−Am, Bn−Bm) for some n > m ≥ 0. According to Lemma 35,
An−Am = 1 implies n = m+1 and (An−Am, Bn−Bm) can possibly take the
values (1, B1), (1, ⌊β⌋) and (1, ⌊β⌋+1). Since k < B1, if k < ⌊β⌋, then (1, k)
cannot be of this form. If k = ⌊β⌋, then k < B1 implies that B1 = ⌊β⌋+ 1
and thus γ < 0. In other words, b is a prefix of w−. By assumption,
(α, β, γ, δ) is CAT (and we are in the situation where γ < 0), this means
that w− contains no occurrence of a (coding the difference (1, ⌊β⌋)) because
otherwise, the prefix b of w− would satisfy (SD.1).

• (1, k) = (An−Bm, Bn−Am) for some n > m ≥ 0. Hence we haveBn−Am =
(Bn −Bm) + (Bm −Am) ≥ B1, contradicting the hypothesis.

�

Lemma 47. Let n,m, k, l,∆ be five integers such that n > m ≥ 0, k > l ≥ 0, and
∆ ≥ 2. If An −Am = Ak −Al +∆, then we have Bn −Bm > Bk −Bl +∆− 4.

Proof. Consider the relative position of the straight line of equation y = β
αx + 2δ

and the point of coordinates (An, Bn). More precisely, consider the difference of
y-coordinates between the point of the line having a x-coordinate equal to An and
the point (An, Bn):

β

α
An + 2δ −Bn =

β

α
⌊nα+ γ⌋+ 2δ − ⌊nβ + δ⌋.

This quantity is equal to

β

α
(nα+ γ) + 2δ − (nβ + δ)− β

α
{nα+ γ}+ {nβ + δ} = β − β

α
{nα+ γ}+ {nβ + δ}

where, for the last equality, we have used (4). Hence, this difference satisfies

β

α
An+2δ−Bn ∈

(

β − β

α
, β + 1

)

, i.e.,
β

α
An+2δ−β−1 < Bn <

β

α
An+2δ−β+

β

α
.

Assume that Ak −Al = i. From the above computation, we get

Bk −Bl <
β

α
Ak + 2δ +

β

α
− (

β

α
Al + 2δ − 1) = (i+ 1)

β

α
+ 1.

Similarly, by assumption An −Am = i+∆ and we get

Bn −Bm >
β

α
An + 2δ − 1− (

β

α
Am + 2δ +

β

α
) = (i+∆− 1)

β

α
− 1.

Hence we get

Bn −Bm − (Bk −Bl)−∆+ 4 > (i +∆− 1)
β

α
− 1− (i+ 1)

β

α
− 1−∆+ 4

= (∆− 2)(
β

α
− 1)

≥ 0

Observe that this last inequality holds since ∆ ≥ 2 and α < β. �
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We will make use of Lemma 47 in the proof of Theorem 50 (and in particular,
with the case (3.1.a)). Since our assumption is that B1 ≥ 3, the condition ∆ ≥ 2
will be fulfilled. Therefore, in order to hypothetically prove our main theorem in the
case B1 = 2, another argument should be developed. See the concluding Section 8.

Lemma 48. The map n 7→ Bn −An is non-decreasing.

Proof. Since An+1−An ∈ {1, 2}, Bn+1−Bn ∈ {⌊β⌋, ⌊β⌋+1}, then Bn+1−An+1 ≥
Bn −An + ⌊β⌋ − 2 and the conclusion follows from the fact that ⌊β⌋ ≥ 2. �

Lemma 49. If the 4-tuple (α, β, γ, δ) is CAT and ⌊β⌋ = 2, then the following
properties hold:

(a) B1 = 3.
(b) γ < 0.
(c) w− starts with bb. The factor a never appears in w−.
(d) The first three pairs of the sequence (An, Bn) are (0, 0), (1, 3), (2, 6).
(e) The factor cc never occurs in w−.

Proof. (a) Obtained from B1 ≥ 3 and δ < 1.
(b) Since B1 > ⌊β⌋, we have δ > 0, and thus γ < 0.
(c) Since (A1, B1) = (1, 3), it means that w0 = b and we necessarily have

A2 = 2. Since (α, β, γ, δ) is CAT, the prefix b is not suffix-disqualifying,
meaning that a never appears in w−. In other words, w1 = b.

(d) Directly deduced from the previous item.
(e) Since bb occurs in w− and π2(w−) is Sturmian, it means that cc never

appears.
�

Theorem 50. If the 4-tuple (α, β, γ, δ) is CAT, then the invariant game having M
as set of moves admits P as set of P -positions, i.e., P is admissible.

Proof. By construction of M, it is clear that from a position in P any move leads
to a position in N = N2 \ P . Now we show that if (x, y) belongs to N , there exists
a move m ∈ M such that (x, y) −m belongs to P . If x = 0 or y = 0, we conclude
directly using Lemma 46. Without loss of generality, we now may assume that
0 < x ≤ y.

Since {An | n > 0} and {Bn | n > 0} make a partition of N, we consider three
cases.

Case 1) If x = Bi for some i > 0, then consider the move (0, y − Ai). From
Lemma 46, this move belongs to M since y ≥ x = Bi > Ai. Hence the resulting
position (x, y)− (0, y − Ai) = (Bi, Ai) belongs to P .

Case 2) If x = Ai and y > Bi, then consider the move (0, y −Bi) ∈ M leading to
the position (Ai, Bi).

Case 3) Consider the case where x = Ai ≤ y < Bi. Note that we do not take
into account the case y = Bi, since we would have (x, y) = (Ai, Bi) which does not
belong to N . We consider two sub-cases:

Case 3.1) B1 < x = Ai ≤ y < Bi.

3.1.a) If y − x ≥ 2, we aim to show that it is always possible to move either to
(1, B1) or to (B1, 1). Since the move should not belong to P − P , we have three
situations that may occur.



22 J. CASSAIGNE, E. DUCHÊNE., AND M. RIGO

Situation 1. We start by proving that these two moves are not of the form
(An − Bm, Bn − Am) with n > m > 0. First assume that (Ai − 1, y − B1) =
(An −Bm, Bn −Am) for some n > m > 0. Hence we have

Ai − 1 = An −Bm and y −B1 = Bn −Am.

In that case, since An −Ai = Bm − 1 ≥ 0, note that we necessarily have i ≤ n. We
now subtract the previous two equalities to obtain

y = Bn −An +Bm −Am +Ai − 1 +B1

And since y < Bi, the following inequality holds

Bn −An +Bm −Am < Bi −Ai +A1 −B1

Since n ≥ i, the contradiction is guaranteed thanks to Lemma 49 and A1−B1 < 0.
Now suppose that (Ai −B1, y− 1) = (An −Bm, Bn −Am) for some n > m > 0.

With the same argument as above, we get

Bn −An +Bm −Am < Bi −Ai +B1 −A1

Since we still have n ≥ i in that case (An − Ai being positive), and m ≥ 1, the
contradiction is ensured thanks to Lemma 49.

Situation 2. Now assume that (Ai − 1, y−B1) = (Bn −Am, An −Bm) for some
n > m > 0. Again, subtracting the two equalities, we get

y −Ai = B1 − 1− (Bm −Am)− (Bn −An).

The left hand side is non-negative, but thanks to Lemma 49, the right hand side is
negative. Similarly, if (Ai −B1, y− 1) = (Bn −Am, An −Bm) for some n > m > 0,
we get directly y−Ai = 1−B1 − (Bm −Am)− (Bn −An). This is a contradiction
because the l.h.s. is non-negative and the r.h.s. is negative.

Situation 3. It now remains to prove that at least one of the two moves is neither
of the form (An −Am, Bn −Bm), nor (Bn −Bm, An −Am) with n > m ≥ 0.

Case 1: Ai−1 ≤ y−B1. From Lemma 35, Bn−Bm ≥ (n−m)⌊β⌋ and An−Am ≤
2(n−m). Hence (Ai−1, y−B1) cannot be of the form (Bn−Bm, An−Am), except
in the particular case where Ai− 1 = y−B1 and Bn−Bm = An−Am. Again from
Lemma 35, this may only happen if ⌊β⌋ = 2, together with An − Am = 2(n −m)
and Bn−Bm = (n−m)⌊β⌋. But from Lemma 49, the factor cc never occurs in w−

in that case, implying n−m = 1, then Ai = 3, contradicting Ai > B1.
Hence (Ai − 1, y − B1) can only be of the form (An − Am, Bn − Bm). If it is

the case, we will show that the move (Ai − B1, y − 1) is not forbidden. By way of
contradiction, assume that both moves are forbidden, i.e., there exists n > m ≥ 0
and k > l ≥ 0 satisfying

x− 1 = An −Am and y −B1 = Bn −Bm,

x−B1 = Ak −Al and y − 1 = Bk −Bl.

Indeed, since Ai − B1 < y − 1, then (Ai − B1, y − 1) cannot be of the form
(Bk −Bl, Ak −Al) because Bk − Bl ≥ Ak − Al. Moreover, the other forms (Ak −
Bl, Bk −Al) or (Bk −Al, Ak −Bl) are also excluded thanks to the above discussion
in situations 1 and 2. Thus, if (Ai − B1, y − 1) is forbidden, it can only be of the
form (Ak −Al, Bk − Bl) .

Now, by subtracting the last two equalities from the first two ones, we obtain

An −Am = Ak −Al +B1 − 1 and Bn −Bm = Bk −Bl − (B1 − 1).
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Since B1 − 1 ≥ 2, Lemma 47 with ∆ = B1 − 1 yields a contradiction.
Case 2: Ai − 1 > y − B1. Hence (Ai − 1, y − B1) can only be of the form

(Bn−Bm, An−Am). Similarly, (Ai −B1, y− 1) satisfies Ai−B1 < y− 1, and thus
can only be of the form (An − Am, Bn − Bm). Now assume that both moves are
forbidden, i.e., there exists n > m ≥ 0 and k > l ≥ 0 satisfying

x− 1 = Bn −Bm and y −B1 = An −Am,

y − 1 = Bk −Bl and x−B1 = Ak −Al.

By subtracting the last two equalities from the first two ones, we obtain

An −Am = Ak −Al + y − x and Bn −Bm = Bk −Bl − (y − x).

Since y − x ≥ 2, Lemma 47 with ∆ = y − x yields a contradiction.

3.1.b) If y − x < 2, we will show that playing from (x, y) = (Ai, y) to (0, 0) is
“almost always” legal. Indeed, if this move was forbidden, there would exist a
factor f1 · · · fl in w, of length l > 1 (since Ai > B1 ≥ 3), and satisfying y − x =
∑l

k=1 π2(fk) −
∑l

k=1 π1(fk) < 2. According to Lemma 35, the only factors that
may satisfy these conditions need to have ⌊β⌋ = 2 and are:

• factors of the kind cc+: According to Lemma 49, cc never occur in w−,
which excludes such factors.

• factors of the kind ac+ and their permutations: According to Lemma 49,
these factors never occur because they contain a.

• factors of the kind dc+ and their permutations: According to Lemma 49,
since cc never occur, the list reduces to the factors {dc, cd, cdc}. The case
cdc would lead to study (Ai, Ai + 1) = (6, 7), which is impossible since
B2 = 6 from Lemma 35. The cases cd and dc lead to examine position
(Ai, Ai + 1) = (4, 5). For this particular case, play (4, 5) → (3, 1), which is
legal since (1, 4) = (1, ⌊β⌋+ 2) is clearly not in P − P from Lemma 35.

Case 3.2) x = Ai ≤ y < Bi and Ai < B1. If i = 1, then (x, y) = (1, y) and thanks
to Lemma 46, playing to (0, 0) is allowed. Hence in the following discussion, we
may assume that i > 1. Since Ai < B1 and the increasing sequences (An)n>0 and
(Bn)n>0 make a partition of N>0, we have Ai′ = i′ for 0 < i′ ≤ i.

If y = Bj for some j < i, playing to (Aj , Bj) is allowed from Lemma 46.

3.2.a) If y < Bi−2, there exists t ≥ 3 such that Bi−t < y < Bi−t+1 and i ≥ 3.
Playing to (Ai−t, Bi−t) is allowed. Indeed, we have

(x, y)− (Ai−t, Bi−t) = (t, k) where t ≥ 3, k ≤ ⌊β⌋
and the conclusion follows from Lemma 35: (t, k) with t ≥ 3, k ≤ ⌊β⌋ is not of the
form (An−Am, Bn−Bm). In addition, it is easy to see that (t, k) can neither be of
the form (An −Bm, Bn −Am) (otherwise we would have k = Bn −Am ≥ ⌊β⌋+ 1),
nor of the form (Bn−Am, An−Bm) (otherwise we would have t = Bn−Am ≥ B1,
contradicting the property t = Ai−Ai−t < B1), nor (Bn−Bm, An−Am) (otherwise
we would have Bn −Bm = t < i = Ai < B1, implying Bn −Bm < ⌊β⌋ !)

3.2.b) If Bi−2 < y < Bi−1 − 1 or if y = Bi−1 − 1 and Bi−1 − Bi−2 = ⌊β⌋, then
playing to (Ai−2, Bi−2) is allowed. Indeed, we have

(x, y)− (Ai−2, Bi−2) = (2, k) where k < ⌊β⌋
and, as in the previous case, the conclusion follows again from Lemma 35.
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3.2.c) If y = Bi−1 − 1 and Bi−1 −Bi−2 = ⌊β⌋+1, we consider two cases according
to the sign of γ.

γ > 0: We will show that moving to (0, 0) is always possible. For this purpose, it
suffices to show that there exists no factor f = f1 · · · fl of w+ such that
∑l

k=1 fk = (i, Bi−1 − 1). Assume that such a factor f exists. In other
words, (i, Bi−1 − 1) is of the kind1 (An −An−l, Bn −Bn−l) and belongs to
P −P . Necessarily the length of f satisfies l ≤ i (because π1(f) ∈ {1, 2}∗).

If l = i, since sβ,δ(0)w1w2 · · · is a Sturmian word, one can use Remark 29
and the fact that sβ,δ(0) > π2(w0), to get

Bi−1 − 1 =
l∑

k=1

π2(fk) ≥
i−1∑

k=0

π2(wk).

As (12) gives
∑i−1

k=0 π2(wk) = Bi−1 + π2(wi−1), we get a contradiction.

If l = i−1, we conclude in the same way that
∑l

k=1 π2(fk) ≥
∑i−2

k=0 π2(wk) =
Bi−1, a contradiction.

If l < i− 1, then using Remark 29, we get

l∑

k=1

π2(fk) ≤
i−3∑

k=0

π2(sβ,δ(k)) + 1 = π2(w0)− ⌊δ⌋+
i−3∑

k=1

π2(sβ,δ(k)) + 1 ≤ Bi−2 + 2

where for the last inequality, we have used the fact that ⌊δ⌋ ≤ −1. Recall
that we are assuming here that Bi−1 − Bi−2 = ⌊β⌋ + 1 (but we also have

⌊β⌋ ≥ 3 since δ < 0 and B1 ≥ 3). Hence,
∑l

k=1 π2(fk) ≤ Bi−2+2 < Bi−1−1
which is again a contradiction.

γ < 0: Consider the prefix p of w− of length i. Since Aj − Aj−1 = 1 for all
0 < j ≤ i, we know that p ∈ {a, b}∗ and |p| < B1. Since (α, β, γ, δ) is
CAT, the prefix p is not suffix-disqualifying. In particular, it means that
there exists some j ∈ {0, . . . , i − 2} such that wj · · ·wi−1 does not satisfy
property (SD.2). Playing from (x, y) to (Aj , Bj) is thus allowed. Indeed,
assume on the contrary that (x − Aj , y − Bj) belongs to P − P and is of
the form (An −Am, Bn −Bm) (the other case (Am −Bn, Bm −An) cannot
occur). It would mean that there exists a factor f = f1 · · · fl of w− such

that
∑l

k=1 fk = (i − j, Bi−1 − 1 − Bj). Necessarily we have l ≤ i − j. If

l = i− j, then
∑l

k=1 π2(fk) ≥
∑i−1

k=j π2(wk)− 1, since π2(w−) is Sturmian.

But we also have
∑l

k=1 π2(fk) = Bi−1− 1−Bj =
∑i−1

k=j π2(wk)− 1, leading

to a contradiction. If l < i − j − 1, then
∑l

k=1 π2(fk) ≤
∑i−3

k=j π2(wk) + 1.

But we also have
∑l

k=1 π2(fk) = Bi−1− 1−Bj =
∑i−1

k=j π2(wk)− 1, leading
to a contradiction. Hence l = i−j−1, meaning that f is a factor of w− over
{a, b, c, d}∗ of length (i − j − 1) with exactly |f |c + |f |d = 1. In particular,
∑l

k=1 π1(fk) = (i−j). Assume first that |f |c = 1. Since wj · · ·wi−1 does not
satisfy property (SD.2), we get |f |a = |wj · · ·wi−2|a−1, |f |b = |wj · · ·wi−2|b,

1In all what follows, the case (An − Bm, Bn − Am) is easy to consider. Indeed, here we get
from (Ai, Bi−1 − 1) = (An −Bm, Bn −Am) that An −Ai = Bm and Bn −Bi − 1 = Am − 1, thus

Bn − Bi ≤ Am − 4 and An − Ai > Bn − Bi which is not possible. Note that we do not have to
consider moves (Bn −Bm, An−Am) nor (Bn −Am, An−Bm) because Bn−Bm ≥ An−Am and
Bn − Am ≥ An − Bm but we are in a position (i, y) with y < Bi. To avoid lengthy discussions,
we have only considered the more intricate situation.
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and
∑l

k=1 π2(fk) =
∑i−2

k=j π2(wk), which is a contradiction. The proof is

similar in the case |f |d = 1.

3.2.d) If Bi−1 < y < Bi − 1 or if y = Bi − 1 and Bi − Bi−1 = ⌊β⌋, then consider
the move

(x, y)− (Ai−1, Bi−1) = (1, k) where k < ⌊β⌋.
γ < 0: This move is allowed since (1, k) never occurs in w−.
γ > 0: This move is allowed whenever k 6= B1 (recall that (1, B1) occurs as w0 in

w+). Now assume that y = Bi−1 +B1. In particular, we get B1 ≤ ⌊β⌋ − 1.
In the case where w1 · · ·wi−2 is a palindrome, we show that we can play

to (0, 0). Assume to the contrary that there exists a factor f = f1 · · · fl
occurring in w+ such that

∑l
k=1 fi = (x, y). Necessarily, l ≤ i. If l = i,

then
∑l

k=1 π2(fk) ≥ ∑i−2
k=1 π2(wk) + 2⌊β⌋ since sβ,δ is Sturmian. But we

also have
∑l

k=1 π2(fk) = y =
∑i−2

k=1 π2(wk)+2B1 contradicting the fact that

B1 < ⌊β⌋. If l < i− 1, then
∑l

k=1 π2(fk) ≤
∑i−2

k=1 π2(wk) + 1. But we also

have
∑l

k=1 π2(fk) = y =
∑i−2

k=1 π2(wk) + 2B1 leading to the contradiction
2B1 ≤ 1.

Hence l = i−1 and using again the Sturmian property, we get
∑i−1

k=1 π2(wk)−
1 ≤ ∑l

k=1 π2(fk) ≤
∑i−1

k=1 π2(wk)+1. But
∑l

k=1 π2(fk) = y =
∑i−1

k=1 π2(wk)+
2B1 − Bi +Bi−1 leading to

Bi −Bi−1 − 1 ≤ 2B1 ≤ Bi −Bi−1 + 1.

The prefix w0 · · ·wi−1 is not disqualifying+. According to Definition 41, the
situation can be split into three cases. Assume first that 2B1 = π2(wi−1)−1.

The factor f of length i− 1 is such that
∑l

k=1 π1(fk) = i, this implies that

|f |c + |f |d = 1. Moreover,
∑l

k=1 π2(fk) = y =
∑i−1

k=1 π2(wk) + 2B1 −
π2(wi−1). Hence

∑l
k=1 π2(fk) =

∑i−1
k=1 π2(wk) − 1 and the factor f must

satisfy |w1 · · ·wi−2|a = |f |a, |w1 · · ·wi−2|b − 1 = |f |b, |f |c = 1. This con-
tradicts the fact that w0 · · ·wi−1 is not disqualifying+. The last two cases
where 2B1 = π2(wi−1) and 2B1 = π2(wi−1) + 1 are treated similarly.

If w1 · · ·wi−2 is not a palindrome, consider the smallest j such that
w1+j 6= wi−2−j . We can play to (Ai−j−2, Bi−j−2) except if there exists
some factor f = wt · · ·wt+l−1 occurring in w+ and satisfying

t+l−1∑

k=t

wk =

i−2∑

k=i−j−2

wk + (1, B1).

Assume to conclude this part of the proof that we are in this latter situation.
Clearly we have that l ≤ j+2. If t = 0, since π1(w0) = · · · = π1(wl−1) =

1, then l = j+2, and
∑t+l−1

k=t π2(wk) 6=
∑i−2

k=i−j−2 π2(wk)+B1. If t 6= 0 and

l < j+2, from Remark 29, we have
∑t+l−1

k=t π2(wk)−1 ≤ ∑i−2
k=i−j−2 π2(wk).

Hence,
∑t+l−1

k=t π2(wk) <
∑i−2

k=i−j−2 π2(wk) + B1. If t 6= 0 and l = j + 2,

from Remark 29, we have
∑t+l−1

k=t π2(wk) ≥ ∑i−1
k=i−j−2 π2(wk) − 1 and as

∑t+l−1
k=t π2(wk) =

∑i−1
k=i−j−2 π2(wk)+B1−π2(wi−1). Hence we obtain B1 ≥

π2(wi−1)−1, which is a contradiction if B1 6= ⌊β⌋−1 or if π2(wi−1) = ⌊β⌋+1.
In the case where B1 = ⌊β⌋ − 1 and π2(wi−1) = ⌊β⌋, since B1 ≥ 3, we get
⌊β⌋ ≥ 4. In this particular case, none of the three situations described in
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Definition 41 can occur. Indeed, we have 2B1 = 2⌊β⌋ − 2 > ⌊β⌋ + 1 =
π2(wi−1) + 1. Hence one can use the strategy described above (i.e., playing
to (0, 0)), by acting as if w1 · · ·wi−2 was a palindrome.

3.2.e) If y = Bi − 1 and π2(wi−1) = Bi −Bi−1 = ⌊β⌋+ 1, we consider two cases.

γ > 0: We will show that moving to (0, 0) is always possible. For this purpose, it
suffices to show that there exists no factor f = f1 · · · fl of w+ such that
∑l

k=1 fk = (i, Bi − 1). Assume that such a factor f exists. Necessarily f

satisfies l ≤ i. If l < i, then
∑l

k=1 π2(fk) ≤
∑i−2

k=0 π2(wk) + 2 = Bi−1 + 2,

yielding a contradiction. If l = i, we have
∑l

k=1 π2(fk) ≥
∑i−1

k=1 π2(wk) −
1 + ⌊β⌋ because w1w2 · · · is Sturmian. Since we must have y = B1 +
∑i−1

k=1 π2(wk) − 1 =
∑l

k=1 π2(fk), it implies B1 ≥ ⌊β⌋. As B1 < ⌊β⌋ + 1
when γ > 0, we have B1 = ⌊β⌋. We deduce that sβ,δ(0) = ⌊β⌋ + 1, and
∑i−1

k=0 sβ,δ(k) =
∑i−1

k=0 π2(wk) + 1 = Bi + 1. Since a Sturmian word is
balanced, no factor of length i gives a sum equal to Bi − 1.

γ < 0: We consider the prefix p of w of length i. Since Aj − Aj−1 = 1 for all
0 < j ≤ i, we know that p ∈ {a, b}∗ and |p| < B1. Since (α, β, γ, δ) is
CAT, the prefix p is not suffix-disqualifying. In particular, it means that
there exists some j ∈ {0, . . . , i − 1} such that wj · · ·wi−1 does not satisfy
property (SD.1). Playing from (x, y) to (Aj , Bj) is thus allowed. Indeed,
assume on the contrary that (x − Aj , y − Bj) belongs to P − P and is of
the form (An − Am, Bn − Bm) (the other case (Am − Bn, Bm − An) can-
not occur). It would mean that there exists a factor f = f1 · · · fl of w

such that
∑l

k=1 fk = (i − j, Bi − 1 − Bj). Necessarily we have l ≤ i − j.

If l < i − j, then
∑l

k=1 π2(fk) ≤ ∑i−2
k=j π2(wk) + 1 since π2(w) is Stur-

mian. But
∑l

k=1 π2(fk) = Bi − 1 − Bj =
∑i−1

k=j π2(wk) − 1, leading to

the contradiction π2(wi−1) ≤ 2. Hence l = i − j, meaning that f is a
factor of w over {a, b}∗ of length (i − j). Since wj · · ·wi−1 does not sat-
isfy property (SD.1), we get |f |b ≥ |wj · · ·wi−1|b. In other words, we have
∑l

k=1 π2(fk) >
∑i−1

k=j π2(wk)− 1 = Bi − 1−Bj , a contradiction.

�

Putting together Theorems 45 and 50 yields the characterization.

Corollary 51. The set P is admissible if and only if the 4-tuple (α, β, γ, δ) is CAT.

6. Characterizing CAT 4-tuples

In the previous section, we have described combinatorial conditions (expressed
by Definition 41 and Definition 42) on the word w+ or w− leading to the existence
of an admissible set. In this section, we translate these combinatorial conditions
into an algebraic setting better suited to tests.

The tests described in this section are all of the following kind. Take two intervals
I, J over [0, 1) interpreted as intervals over the unit circle T1 = R/Z, i.e., if a > b,
then the interval [a, b) is [a, 1)∪[0, b). For a given 4-tuple (α, β, γ, δ) of real numbers,
we ask, whether or not there exists some i such that Ri

α,β(γ, δ) ∈ I × J .
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Definition 52. The real numbers α, β, 1 are rationally independent (i.e., linearly
independent over Q), if whenever there exist integers p and q such that pα+ qβ is
an integer, then p = q = 0.

The extension of the density theorem of Kronecker is well-known: the set

{Ri
α,β(γ, δ) = ({iα+ γ}, {iβ + δ}) ∈ T2 | i ∈ N}

is dense in T2 if and only if α, β, 1 are rationally independent [19]. So, in that latter
case, there exist infinitely many i such that Ri

α,β(γ, δ) belongs to a non-empty
interval I × J .

If α, β, 1 are rationally dependent, since α and β are irrational numbers, there
exist integers p, q, r with p, q 6= 0 such that pα + qβ = r. From (3), we deduce
that qβ2 + (p − q − r)β + r = 0, i.e., β is thus an algebraic number of degree 2.
Of course, the same conclusion holds for α. In this situation, the set of points
{Rn

α,β(γ, δ) | n ∈ N} is dense on a straight line in T2 with rational slope, see for
instance Example 53. Hence the initial question is reduced to determine whether
or not a line intersect a rectangle. Moreover, if α and β are irrational numbers
satisfying (3) but they are not algebraic of degree 2, then α, β, 1 are rationally
independent.

Example 53. Consider the positive root α = (3 +
√
17)/2 of x2 − 3x− 2. We get

β = (7 +
√
17)/8 and α = 4β − 2. Hence, we get

Rn
α,β(x, y) = ({x+ nα}, {y + nβ}) = ({x+ 4nβ}, {y + nβ})

showing that Rα,β corresponds to a translation of {β}(4, 1) in T2. Since β is irra-
tional, thanks to Kronecker theorem, the set of points {Rn

α,β(x, y) | n ∈ N} is dense

on the straight line in T2 with rational slope 1/4 and passing through (x, y).

6.1. Testing a disqualifying prefix in w+. Let p = w0u1 · · ·un = w0u be the
prefix of length n+ 1 of w+. If u1 · · ·un−1 is not a palindrome or if u 6∈ {a, b}∗ or
if 2B1 6∈ {π2(un)− 1, π2(un), π2(un) + 1}, then p is not disqualifying+. Otherwise,
one of the following three situations may occur.

If 2B1 = π2(un)−1, then p is disqualifying+ if and only if π1(u) is light, π2(u) is
heavy, i.e., Rα,β(γ, δ) ∈ IL,α(n)× IH,β(n) where, as in (9), IL,α(n) = [0, 1− {nα})
and IH,α(n) = [1−{nβ}, 1), and there exists a factor v ∈ Facn(w+) such that π1(v)
is heavy, π2(u) is light, i.e., there exists i such that

Ri
α,β(γ, δ) ∈ IH,α × IL,β(n).

If 2B1 = π2(un), then p is disqualifying+ if and only if π1(u) is light and there
exists a factor v ∈ Facn(w+) such that π1(v) is heavy and both π2(u) and π2(v)
are either light or heavy, i.e., there exists i such that

Ri
α,β(γ, δ) ∈ IH,α × IL,β(n) if Rα,β(γ, δ) ∈ IL,α(n)× IL,β(n),

Ri
α,β(γ, δ) ∈ IH,α × IH,β(n) if Rα,β(γ, δ) ∈ IL,α(n)× IH,β(n).

If 2B1 = π2(un) + 1, then p is disqualifying+ if and only if π1(u) and π2(u) are
light, i.e., Rα,β(γ, δ) ∈ IL,α(n) × IL,β(n) and there exists a factor v ∈ Facn(w+)
such that π1(v) and π2(u) are heavy, i.e., there exists i such that

Ri
α,β(γ, δ) ∈ IH,α × IH,β(n).
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Figure 7. An example of orbit when α, β, 1 are rationally dependent.

6.2. Testing (SD.1). Given u = u1 · · ·un ∈ {a, b}∗ ∩ Fac(w−), we can proceed
as follows to decide whether or not u satisfies (SD.1). If π2(u1 · · ·un) is light,
i.e., |π2(u1 · · ·un)|⌊β⌋+1 = ⌈n{β}⌉ − 1, then u does not satisfy (SD.1). Otherwise,
π2(u1 · · ·un) is heavy. In that case, u satisfies (SD.1) if and only if, there exists an
integer i such that

• 1n occurs in sα,γ in position i and,
• the factor of length n occurring in sβ,δ in position i is light.

These last two conditions can be tested as follows. As in (8), consider the two
intervals

I1n,α = I1 ∩R−1
α (I1) ∩ · · · ∩R−n+1

α (I1) where I1 = [0, 1− {α})
and, as in (9), IL,β(n) = [0, 1− {nβ}). Using Lemma 32, the two above conditions
hold true if and only if I1n,α 6= ∅ and there exists i such that

Ri
α,β(γ, δ) ∈ I1n,α × IL,β(n).

6.3. Testing (SD.2). Given u = u1 · · ·un ∈ {a, b}∗ ∩Fac(w−), we can proceed as
follows to decide whether or not u satisfies (SD.2). If π2(u1 · · ·un−1) is light, i.e.,
|π2(u1 · · ·un−1)|⌊β⌋+1 = ⌈(n−1){β}⌉−1, then u does not satisfy (SD.2). Otherwise,
π2(u1 · · ·un−1) is heavy.

If ⌈(n− 1){α}⌉ > 2, then any factor of length n− 1 in sα,γ contains at least two
symbols 2 and u does not satisfy (SD.2).

If ⌈(n− 1){α}⌉ = 1 (resp., if ⌈(n− 1){α}⌉ = 2), then any factor of length n− 1
in sα,γ with exactly one symbol 2 is heavy (resp., light). In that case, u satisfies
(SD.2) if and only if, there exists an integer i such that
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• the factor of length n − 1 occurring in sα,γ in position i is heavy (resp.,
light),

• the factor of length n− 1 occurring in sβ,δ in position i is light.

The two above conditions hold true if and only if there exists i such that

Ri
α,β(γ, δ) ∈ IH,α(n− 1)× IL,β(n− 1)

(resp., if and only if there exists i such that Ri
α,β(γ, δ) ∈ IL,α(n− 1)× IL,β(n− 1)).

7. B1-superadditivity is not a necessary condition for invariance

As mentioned in Section 2.3, the authors of [11] ask the question whether a pair
(An, Bn)n>0 of non-homogeneous complementary Beatty sequences with A1 = 1
provides an admissible set if and only if the sequence (Bn)>0 is B1-superadditive.
In what follows we provide counterexamples to this assumption, meaning that the
two notions of a CAT 4-tuple given in Definition 44 and B1-superadditivity are not
equivalent. Recall that the definition of superadditivity and B1-superadditivity is
given in Definition 18.

7.1. Counterexamples with γ < 0. A sequence satisfying γ < 0 is never super-
additive, but some are admissible. The non-superadditivity of such sequences can
be easily proved by the following Lemma.

Lemma 54. Given a pair (An, Bn)n>0 = (⌊nα+γ⌋, ⌊nβ+δ⌋)n>0 of non-homogeneous
complementary Beatty sequences with γ < 0, there exists some integers n,m > 0
such that Bm +Bn > Bm+n.

Proof. First note that according to (11), we have 0 < δ < 1. Since β is irrational,
there exists some integer n > 0 such that {βn+ δ} < δ

2 . With such an n we have

Bn = ⌊βn+ δ⌋ = βn+ δ − {βn+ δ} > βn+
δ

2
.

By multiplying par 2 we obtain

2Bn > β2n+ δ > B2n,

showing the desired result. �

Now, all the wanted counterexamples are those satisfying Definition 44. As an
illustration, take for instance the sequence with

(13) β = 1.99 +

√
5

2
, α =

β

β − 1
, γ = −0.2 and δ = −βγ

α
.

The corresponding set N2 ∩ (P −P) is represented in Figure 8 with the same color
code as in Example 6.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
An+1 −An 1 1 2 1 2 1 2 1 2 1 2 1 1 2 1
Bn+1 −Bn 3 3 3 3 3 4 3 3 3 3 3 3 3 3 4

w− a a c a c b c a c a c a a c b

This sequence is admissible since the 4-tuple (α, β, δ, γ) is CAT. Indeed, according
to Definition 44 and since B1 = 3, it suffices to show that the prefixes a and aa
are not suffix-disqualifying. Clearly, since they do not contain any symbol b, they
satisfy neither (SD.1) nor (SD.2) of Definition 42.
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Figure 8. The set N2 ∩ (P − P) with the values in (13).

7.2. Counterexamples with γ > 0. In the case where γ > 0, one can also find
admissible sequences that are superadditive, but not B1-superadditive. As an ex-
ample, consider the four real parameters given in Example 17. The corresponding
set N2∩(P−P) is represented in Figure 5 with the same color code as in Example 6.

We have already observed in Example 19 that (Bn)n>0 is not B1-superadditive.
However this sequence is superadditive as it is the case for all sequences with γ > 0.
It now remains to show that with the parameters given in Example 17, the sequence
(An, Bn) is admissible. For this purpose, it suffices to make use of Theorem 50 and
detect directly whether or not the 4-tuple (α, β, γ, δ) is CAT. This can be easily
carried on as follows.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
An+1 −An 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1
Bn+1 −Bn 3 9 10 9 10 10 9 10 9 10 10 9 10 10 9

w+ e a d a b b a b a b d a b b a

From Definition 44, since B1 = 3, the only prefix of w+ to test is p = ea. If this
prefix is not disqualifying+, then the 4-tuple (α, β, γ, δ) is CAT and from Theo-
rem 50, the sequence is admissible. In particular, a is a palindrome. But 2B1 = 6
and π2(a) = 9. Hence 2B1 6∈ {8, 9, 10} and we can conclude directly that the prefix
is not disqualifying+.

8. Concluding remark

The current paper does not provide any characterization of admissible sequences
satisfying B1 = 2. Hence the result of Larsson et al. [11] remains the best one
for such sequences, asserting that B1-superadditivity is a sufficient condition for
having an admissible set. Yet, it is not a necessary condition any more in that



NON-HOMOGENEOUS BEATTY SEQUENCES LEADING TO INVARIANT GAMES 31

context, since there also exist counterexamples of non B1-superadditive sequences
that correspond to P -positions of invariant games.

We have considered below two examples when B1 = 2 (and γ is negative).

Example 55. Assume β = 1 +
√
2 and δ =

√
2− 1. In this case, γ ≃ −0.292. We

have
n 1 2 3 4 5 6 7 8 9 10
An 1 3 4 6 8 9 11 13 15 16
Bn 2 5 7 10 12 14 17 19 22 24

The set N2 ∩ (P − P) is represented in Figure 9 with the same color code as in
Example 6. The set P seems to be admissible. For each blue cell, one can remove
either (1, 1), (2, 2) or (3, 3) to reach a red cell. The coding word is

Figure 9. The set N2∩ (P −P) with β = 1+
√
2 and δ =

√
2− 1.

The set P seems to be admissible.

w− = acdadcadcdacdadcdacdadcadcdadcad · · ·
but one should find an alternative to Definition 44. As we will see in the next
example, it is not enough to have a condition on the first letter of w−.

Example 56. Assume β = 0.8 +
√
2 and δ =

√
2 − 1.2. In this case, γ ≃ −0.292.

We have
n 1 2 3 4 5 6 7 8 9 10
An 1 3 5 7 8 10 12 14 16 18
Bn 2 4 6 9 11 13 15 17 20 22

The set N2 ∩ (P − P) is represented in Figure 10 with the same color code as in
Example 6. The set P is not admissible. Indeed, with the blue cell (8, 7) of the
form (Bn +B1, An+1) with n = 3, one has to remove either (2, 2), (4, 4) or (6, 6) to
reach a red cell. But these three elements belong to P − P . The coding word is
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Figure 10. The set N2∩(P−P) with β = 1+
√
2 and δ =

√
2−1;

P is not admissible.

w− = acccdacccdcaccdccadcccadccccbccc · · ·
but one should find an alternative to Definition 44. Indeed, as shown in the above
examples, in the case B1 = 2 the words w+ and w− may have two consecutive
letters in {c, d}. It makes the notions of suffix-disqualifying and disqualifying+ no
more relevant to define the CAT. However, one can conjecture that Definition 44
remains valid for the sequences satisfying An+2 −An < 4 for all n.
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[6] E. Duchêne, M. Rigo, A morphic approach to combinatorial games: The Tribonacci case,
Theor. Inform. Appl. 42 (2008), 375–393.

[7] A. S. Fraenkel, The bracket function and complementary sets of integers, Canad. J. Math.

21 (1969), 6–27.



NON-HOMOGENEOUS BEATTY SEQUENCES LEADING TO INVARIANT GAMES 33

[8] A. S. Fraenkel, How to beat your Wythoff games’ opponent on three fronts, Amer. Math.

Monthly 89 (1982), 353–361.
[9] A.S. Fraenkel, Complementary Iterated Floor Words and the Flora Game, SIAM J. on Dis-

crete Math 24 (2010), 570–588.
[10] S.W. Golomb, A Mathematical Investigation of Games of “Take-Away”, J. Combinatorial

Theory 1 (1966), 443–458.
[11] U. Larsson, P. Hegarty, A. S. Fraenkel, Invariant and dual subtraction games resolving the
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[13] U. Larsson, J. Wästlund, From Heaps of Matches to the Limits of Computability, Electron.

J. Combin. 20 (2013), no. 3, Paper 41, 12 pp.
[14] M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Math. and its Applications

90, Cambridge University Press (2002).
its P-positions, J. Comb. Theory Ser. A 119 (2012), 1302–1314.

[15] K. O’Bryant, Fraenkel’s partition and Brown’s decomposition, Integers 3 (2003), A11.
[16] M. Rigo, P. Salimov, E. Vandomme, Some properties of abelian returns, J. of Integer Se-

quences 16 (2013) 13.2.5.
[17] P. V. Salimov, On uniform recurrence of a direct product, Disc. Math. & Theoret. Comput.

Sci. 12 (2010), 1–8.
[18] W. A. Wythoff, A modification of the game of Nim, Nieuw Arch. Wisk. 7 (1907), 199–202.
[19] E. Zehnder, Lecutres on Dynamical Systems, Hamiltonian Vector Fields and Symplectic

Capacities, EMS Textbooks in Math. (2010).
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