Observational signatures of past mass-exchange episodes in massive binaries : The cases of HD 149404 and HD 17505

Raucq Françoise

University of Liège, Department AGO

4th TIGRE Workshop

- Introduction
 - Definitions
 - HD 149404
 - HD 17505
- A HD 149404
 - Preparatory analysis
 - Disentangling
 - Spectral types and brightness ratio
 - Spectral analysis
 - Rotational velocities and macroturbulence
 - The CMFGEN code and method
 - Results
- 3 HD 17505
- 4 Conclusion

Definitions

- Massive star :
 - \bullet $M > 10 M_{Sun}$, $T_{eff} > 20 000 K, <math>L > 10^6 L_{Sun}$
 - $\bullet \ v_{\infty} \sim 2000 3000 \ km/s \ {
 m and} \ \dot{M} \sim 10^{-6} 10^{-5} \ M_{Sun}/year$
- Large fraction of massive stars in binary or higher multiplicity systems
- ⇒ Orbital motion allows to observationally determine the masses of the stars

Definitions

- Massive star :
 - \bullet $M > 10 M_{Sun}$, $T_{eff} > 20 000 K, <math>L > 10^6 L_{Sun}$
 - $\bullet \ v_{\infty} \sim 2000 3000 \ km/s \ {
 m and} \ \dot{M} \sim 10^{-6} 10^{-5} \ M_{Sun}/year$
- Large fraction of massive stars in binary or higher multiplicity systems
- \Rightarrow Orbital motion allows to observationally determine the masses of the stars

But multiplicity can also lead to complications:

- Interactions between the stellar winds
- Transfer of matter and kinetic momentum through a Roche Lobe overflow interaction (Podsia dlowski et al. 1992; Wellstein et al. 2001; Hurley et al. 2002)
- \Rightarrow Binarity significantly affects the spectra and the subsequent evolution of the components

HD 149404

- Detached, non-eclipsing O-star binary, member of the Ara OB1 association
- Circular orbit with an orbital period of 9.81 days
- Orbital inclination of 21° (Rauw et al. 2001)
- Variability of emission lines (He II λ 4686, Hα) likely indicative of a wind-wind interaction (Rauw et al. 2001, Thaller et al. 2001, Nazé et al. 2002)
- One ON component due to significant nitrogen enrichment of the atmosphere
 - \Rightarrow This could hint at a past binary interaction

HD 17505

- Multiple system composed of 7 visual companions, member of the Cas OB6 association
- Central object composed of three O-stars
- Low excentricity orbit of the inner binary, e = 0.095, with an orbital period of 8.57 days
- ullet Orbital period of the tertiary < 61 years

Previous determination of the orbital solution by Rauw et al. (2001)

 \rightarrow Recover the individual spectra of both components via **disentangling** (González & Levato 2006)

Spectral disentangling

Previous determination of the orbital solution by Rauw et al. (2001)

ightarrow Recover the individual spectra of both components via disentangling (González & Levato 2006)

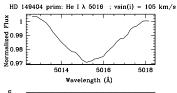
This technique also has its limitations (González & Levato 2006)

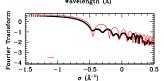
- Broad spectral features are not recovered with the same accuracy as narrow ones
- Spectral disentangling does not yield the brightness ratio of the stars
- Small errors in the normalization of the input spectra lead to oscillations of the continuum in disentangled spectra
- Quality of the results depends on the RV ranges covered

In the specific case of HD149404: emission lines partly formed in the wind-wind interaction zone (Rauw et al. 2001, Thaller et al. 2001, Nazé et al. 2002)

Based on the reconstructed individual line spectra :

- Conti's quantitative classication criteria for O-type stars (conti & Alschuler 1971,
 Conti & Frost 1977, Mathys 1988, see also van der Hucht 1996)
 - \Rightarrow Primary star is an O7.5 If and secondary is an ON9.7 I
- $\bullet \ \frac{\mathit{l}_{1}}{\mathit{l}_{2}} = (\frac{\mathit{EW}_{1}}{\mathit{EW}_{2}})_{obs}(\frac{\mathit{EW}_{O\,9.5}}{\mathit{EW}_{O\,7.5}})_{\mathit{mean}}$
 - \Rightarrow Mean brightness ratio : 0.72 \pm 0.17


Good agreement with the ones derived by Rauw et al. (2001) :


O7.5I(f) + ON9.7I and
$$rac{l_1}{l_2}=0.90\pm0.16$$

Rotational velocities

 \Rightarrow Determination of the $v \sin(i)$ of the stars of the system using a Fourier transform method (Gray 2008, Simón-Díaz & Herrero 2007)

 \implies Mean vsin(i) = **93 and 63 kms**⁻¹ for the P and S stars respectively

Macroturbulence

⇒MACTURB (Gray, R.O. 2010, http://www.appstate.edu/~grayro/spectrum/spectrum276/node38.html)

 \Rightarrow 70 and 80 kms⁻¹ for the P and S stars respectively

Rauco Francoise

The CMFGEN code and method

HD 149404

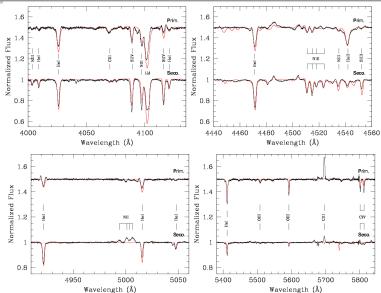
Non-LTE model atmosphere code CMFGEN (Hillier & Miller 1998)

Equations of radiative transfer and statistical equilibrium in the co-moving frame for plane-parallel or spherical geometries

First approximation of gravity, stellar mass, radius and luminosity from literature (Martins et al. (2005), Rauw et al. (2001) and Muijres et al. (2012))

Non-LTE model atmosphere code CMFGEN (Hillier & Miller 1998) :

Equations of radiative transfer and statistical equilibrium in the co-moving frame for plane-parallel or spherical geometries


First approximation of gravity, stellar mass, radius and luminosity from literature (Martins et al. (2005), Rauw et al. (2001) and Muijres et al. (2012))

Iterative process that permits us to adjust these parameters :

- The temperatures : relative strength of the He I λ 4471 and He II λ 4542 lines (Martins 2011)
- ② Surface gravities : through wings of Balmer lines Together with luminosities : iterative process through BC and $\frac{M_1}{M_2}$
- lacktriangle Mass-loss rate and the clumping factor o Approximations
- 4 CNO abundances through the strengths of the associated lines

Results (1)

HD 149404

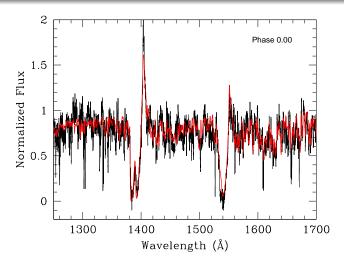


Figure 2: IUE spectrum (black) and binary modelised spectra through re-combination of CMFGEN primary and secondary spectra (red).

Results (3)

Two very interesting results :

• Overabundance in N confirmed in the S star

$$[N/C] = 100 [N/C]_0$$

$$[O/C] \ge 5 [O/C]_0$$
for the S star and
$$[N/C] \simeq 2 - 3 [N/C]_0$$
for the P star

	Primary	Secondary	Sun ¹
He/H	0.1	0.1	0.089
C/H	$1.02^{+0.10}_{-0.11} \times 10^{-4}$	$1.89^{+0.47}_{-0.47}\times10^{-5}$	2.69×10^{-4}
N/H	$1.32^{+0.20}_{-0.15} \times 10^{-4}$	$7.15^{+2.5}_{-1.8} \times 10^{-4}$	6.76×10^{-5}
O/H	$7.33^{+1.1}_{-1.1} \times 10^{-4}$	$7.85^{+1.8}_{-1.1}\times10^{-5}$	$4.90\times10^{\boldsymbol{-4}}$

1. (Asplund et al. 2009)

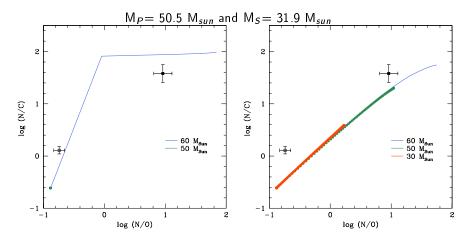


Figure 3: Predictions of N/C vs. N/O as a function of stellar mass, on the left without any rotation of the stars and on the right including a rotation of $0.4 \times v_{crit}$ (Ekström et al. 2012).

Two very interesting results :

• Overabundance in N confirmed in the S star

$$[N/C] = 100 [N/C]_0$$

 $[O/C] \ge 5 [O/C]_0$
for the S star and
 $[N/C] \simeq 2 - 3 [N/C]_0$
for the P star

• Asynchronous rotation : $P_P = 3.77$ and $P_S = 7.46$ days

Two very interesting results :

• Overabundance in N confirmed in the S star

$$[N/C] = 100 [N/C]_0$$

 $[O/C] \ge 5 [O/C]_0$
for the S star and
 $[N/C] \simeq 2 - 3 [N/C]_0$
for the P star

• Asynchronous rotation : $P_P = 3.77$ and $P_S = 7.46$ days

⇒ Tend to to confirm mass and kinetic momentum transfer from the current S to the current P (Vanbeveren 1982, 2011, Vanbeveren & de Loore 1994, Langer et al. 2003)

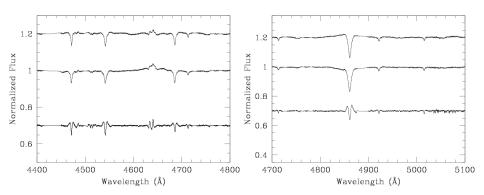


Figure 4: Parts of a normalized disentangled spectra of the primary (top, shifted upwards by 0.2 continuum units), secondary (middle) and tertiary star (bottom, shifted downwards by 0.3 continuum units) of HD 17505.

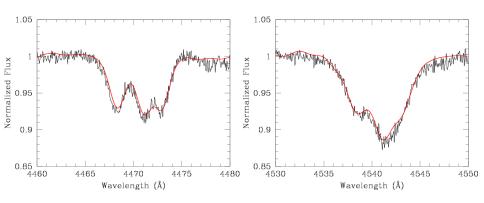


Figure 5: Parts of a normalized spectrum of the triple system HD 17505 (black), along with the current best-fit CMFGEN model spectra (red).

Conclusion

- HD 149404 is the first system in a sample of binary systems with past mass-exchange episode (Raucq et al. 2015, accepted)
- ightarrow First step to better understand the interactions in massive binaries
 - Case of HD 17505: Difficulties inherent to the techniques to be further studied and overcome
 - Other targets that are being studied: LSS 3074, HD 14633, HD 206267...

Conclusion

- HD 149404 is the first system in a sample of binary systems with past mass-exchange episode (Raucq et al. 2015, accepted)
- ightarrow First step to better understand the interactions in massive binaries
 - Case of HD 17505: Difficulties inherent to the techniques to be further studied and overcome
 - Other targets that are being studied: LSS 3074, HD 14633, HD 206267...

Thank you

Apendix (1)

	This study		Rauw et al. ([?])	
	Prim.	Sec.	Prim.	Sec.
<i>R</i> (R _⊙)	19.3 ± 2.2	25.9 ± 3.4	24.3 ± 0.7	28.1 ± 0.7
$M~({ m M}_{\odot})$	$\textbf{50.5} \pm \textbf{20.1}$	$\textbf{31.9} \pm \textbf{9.5}$	$\textbf{57.4} \pm \textbf{14.3}$	$\textbf{36.5} \pm \textbf{9.1}$
$T_{ m eff}$ (10 4 K)	$\textbf{3.40} \pm \textbf{0.15}$	$\textbf{2.80} \pm \textbf{0.15}$	3.51 ± 0.1	3.05 ± 0.04
$\log(\frac{L}{L_{\odot}})$	$\textbf{5.68} \pm \textbf{0.06}$	$\textbf{5.63} \pm \textbf{0.05}$	$\textbf{5.90} \pm \textbf{0.08}$	$\textbf{5.78} \pm \textbf{0.08}$
$\log g$ (cgs)	$\textbf{3.55} \pm \textbf{0.15}$	$\textbf{3.05} \pm \textbf{0.15}$		
β	1.03 (f)	1.08 (f)		
$v_{\infty}~({ m km~s^{-1}})$	2450 (f)	2450 (f)		
$\dot{M}~({ m M}_{\odot}{ m yr}^{-1})$	9.2×10^{-7} (f)	3.3×10^{-7} (f)		
BC	-3.17	-2.67		

Table 1: The best-fit CMFGEN model parameters are compared with the parameters obtained by Rauw et al. (2001) for an orbital inclination of 21°. The effective temperatures from Rauw et al. (2001) were derived through the effective temperature calibration of Chlebowski & Garmany (1991) and permitted, along with the determined luminosities, to infer the stellar radii. The quoted errors correspond to 1σ uncertainties. The symbol "(f)" in the table correspond to values fixed from the literature (Howarth et al. 1997; Muijres et al. 2012).

Apendix (2)

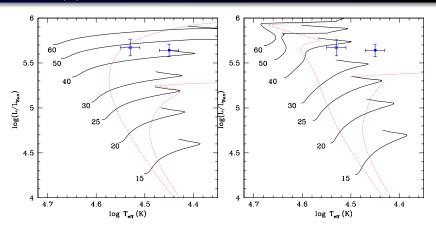


Figure 6: Primary (open square) and secondary (filled square) stars in the HR diagram with evolutionary tracks for single stars at solar metallicity during the core H burning phase (Ekström et al. 2012), for non-rotating stars (left), and stars rotating at 0.4 \times v_{crit} (right). Dotted red lines: isochrones of 3.2 and 6.3 Myr for the left panel and of 4.0 and 8.0 Myr for the right panel.

Apendix (3)

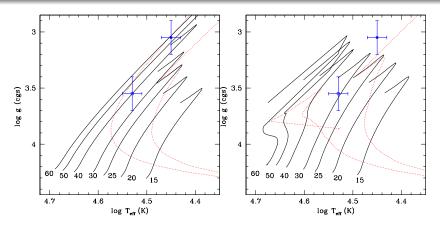


Figure 7: Primary (open square) and secondary (filled square) stars in the $\log(g) \cdot \log(T_{eff})$ with evolutionary tracks for single stars at solar metallicity during the core H burning phase (Ekström et al. 2012), for non-rotating stars (left), and stars rotating at 0.4 \times v_{erit} (right). Dotted red lines: isochrones of 3.2 and 6.3 Myr for the left panel and of 4.0 and 8.0 Myr for the right panel.