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Energy conservation properties of Ritter solution for idealized dam break 

flow 

ABSTRACT 

We examine different aspects of energy conservation in the case of the analytical solution of Ritter for 

idealized dam break flow in a horizontal frictionless and dry channel. We detail the application of the 

unsteady Bernoulli equation in this case and highlight that the inertial effects cancel out when averaged 

over the whole flow region. We also show that the potential and kinetic contributions to the total 

mechanical energy in the flow region have a distinct and constant relative importance: potential energy 

accounts for 60 %, and kinetic energy for 40 % of the total mechanical energy. These properties of 

Ritter solution are rarely emphasized while they may be of practical relevance, particularly for the 

verification of numerical schemes with respect to their ability to ensure energy conservation. 

Keywords: Dam break flow; energy conservation; mechanical energy; specific energy; 

unsteady Bernoulli equation. 

1 Introduction 

We consider here the case of an idealized dam break flow occurring in a flat and frictionless 

prismatic channel, with an upstream reservoir of infinite length. The cross-section is 

rectangular and the initial water depth in the reservoir is noted h0 (Fig. 1). This idealized 

configuration also schematizes sudden flow releases resulting from sluice gate operation or 

hydroelectric load acceptance in a headrace (Sturm, 2010). It was widely used to verify 

numerical schemes (e.g., Begnudelli & Sanders, 2006; Canelas et al., 2013; Mignot & 

Cienfuegos, 2009; Oertel & Bung, 2012; Wu, 2008), to compare with experimental data (e.g., 

El Kadi Abderrezzak et al., 2008; Hsu et al., 2014; Lauber & Hager, 1998a, 1998b; Oertel & 

Bung, 2012) and to derive more advanced analytical solutions, accounting for flow resistance, 

initial water depth downstream or bed slope (e.g., Aureli et al., 2014; Chanson, 2009). 

Assuming a uniform velocity profile over the flow depth and considering that the 

pressure distribution is hydrostatic, Ritter (1892) developed an analytical solution based on 

the theory of characteristics applied to simple wave problems. As shown in Fig. 1, it 

corresponds to a rarefaction wave (e.g., Rhee et al., 1986) travelling towards upstream in the 

reservoir, at the velocity c0 = (g h0)
0.5

, and towards downstream at the velocity - 2 c0, where g 

is the gravity acceleration. In the flow region (i.e. - 2 c0 t  x  c0 t), the water depth h and the 

depth-averaged flow velocity u may be expressed as a function of time t > 0 and position x as 

(Ritter, 1892): 
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At the initial location of the dam (x = 0), the water depth is constant (4/9 h0) and the flow is 

critical (i.e. F = 1, with F = |u|/(gh)
0.5

). 

As the bottom is assumed frictionless and the flow is continuous, no head losses are 

encountered in such a flow. We detail here how the conservation of energy can be formulated 

for this idealized dam break flow configuration. In section 2, we focus on the specific energy, 

while the conservation of mechanical energy in the flow is examined in section 3. 

2 Specific energy 

In general, the energy head (or total head) E is defined as the sum of the elevation z 

(representing the potential head), the pressure head p / (  g ) and the velocity head 

u
2
 / ( 2 g ): E = z + p / (  g ) + u

2
 / ( 2 g ), with p the pressure and  the fluid density 

(Chaudhry, 1993; Sturm, 2010). Since the pressure is assumed hydrostatic and the channel 

bottom is horizontal (z = 0), the sum of potential and pressure heads yields simply the flow 

depth h, which represents here the piezometric head. Hence, the energy head is also equal to 

the specific energy H = h + u
2
 / ( 2 g ) (Hager, 2010; Sturm, 2010). 

From Eqs. (1) and (2), the specific energy H of the flow may be evaluated as a 

function of position x and time t: 

 

2
2

0

0

1
2

2 3

u x
H h h

g c t

  
     
   

  (3) 

Although the flow does not lead to head losses, the specific energy is obviously neither 

constant nor uniform. This results from the transient nature of the flow. In particular, H is 

found minimum (H = 2/3 h0) at the initial location of the dam (x = 0), where the flow is 

critical (Fig. 1).  

The equation of motion for unsteady flow (e.g., Eq. 7.15 in Sturm, 2010) writes: 
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in which the non-homogeneous terms (bottom and friction slopes) were omitted since a flat 

and frictionless bottom is assumed. By integrating Eq. (4) between two arbitrary positions xA 

and xB in the flow region, one obtains: 
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which is one formulation of the unsteady Bernoulli equation. 

Given Eq. (2), the inertial term in Eq. (5) becomes: 
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Introducing Eqs (3) and (6) into Eq. (5) confirms that both sides of Eq. (5) are equal, which 

follows simply from the fact that the unsteady Bernoulli equation holds for Ritter solution. 

This is consistent with the absence of head losses under such frictionless and continuous flow 

conditions. 

Integrating the inertial term (6) between the upstream (x = c0 t) and downstream 

(x = - 2 c0 t) ends of the flow region, considering xA = c0 t (upstream limit of the flow region), 

leads to: 
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This confirms that the effect of inertia over the whole flow region is to spatially redistribute 

the specific energy. This contrasts with a standard head loss term, the integral of which would 

be non-zero. 

Consequently, integrating the specific energy over the whole flow domain and up to a 

finite abscissa LR in the undisturbed part of the upstream reservoir (LR ≥ c0t) yields: 
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which simply equals the length of the flow domain times the initial specific energy h0. This is 

consistent with the fact that inertial effects cancel in average. In Eq. (8), term ① represents 

the streamwise-integration over the flow region of the combination of pressure and potential 

heads (i.e. piezometric head), while term ② corresponds to the streamwise integration of the 

velocity head. Their respective values are: 
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which shows that the piezometric head accounts for 1 / 3 of the streamwise-integrated specific 

energy over the flow region (3 h0 c0 t), while the velocity head contributes for 2 / 3. This ratio 

remains constant over time as a result of the self-similar nature of Ritter solution. 

Since Eq. (4) is derived from the principle of momentum conservation, Eq. (8) is not a 

direct expression of the conservation of the mechanical energy. This is discussed in the next 

section. 

3 Mechanical energy 

The mechanical energy e per unit mass of a flowing fluid can be expressed as the sum of the 

kinetic energy v
2
 / 2 and the potential energy g z, both per unit mass (Potter et al., 2010; 

White, 2008): 
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with v = ( v • v )
0.5

, v the fluid velocity vector, measured with respect to a fixed reference 

frame, and z the vertical elevation above the horizontal channel bottom. Other types of 

energy, including internal energy, are not considered here as we focus on the motion of an 

incompressible and inviscid fluid without thermal effects. Under these assumptions, the 

conservation equation for mechanical energy over an arbitrary control volume  bounded by 

a closed surface S writes (Potter et al., 2010): 
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with n the unit vector normal to S pointing outwards and vI the local velocity of the closed 

surface S. The shear stress tensor was neglected in Eq. (12) as the fluid is assumed inviscid. 

The right-hand-side of Eq. (12) represents the power developed by the pressure forces. 

Consistently with Ritter solution, we consider a one-dimensional flow domain of unit 

width, in which only the x-component of the fluid velocity is non-zero, i.e. v = [ u  0  0 ]
T

. 

Since the velocity distribution is assumed uniform and the pressure is hydrostatic, Eq. (12) 

reduces to: 
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  (13) 

where the abscissa xA and xB define the positions of two arbitrary cross-sections A and B in the 



flow domain. These cross-sections A and B may be mobile, at velocities vA and vB 

respectively. We examine hereafter the application of Eq. (13), first to the flow region, next to 

the whole flow domain. 

Let us consider first a deforming control volume which expands over time to match 

the flow region (- 2 c0 t  x  c0 t). The first term of the left-hand side in Eq. (13) becomes: 
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This confirms that, at any time t > 0, the total mechanical energy contained within the flow 

region is equal to the mean potential energy per unit mass  g h0 / 2 times the volume h0 c0 t 

of the undisturbed fluid initially present in the flow region (i.e. between the location of the 

dam and the upstream position of the rarefaction wave at current time t). In addition, the 

integrals  and  in Eq. (14) are respectively equal to 3 / 5 and 2 / 5. This reveals that the 

relative contributions of the potential energy and the kinetic energy remain distinctively 

constant over time, corresponding respectively to 60 % and 40 % of the total energy 

contained in the flow region. This independence from time results also from the self-similar 

nature of Ritter solution over time. This is also shown in Fig. 2, which represents the 

distribution of both contributions over the flow region. The part of the flow region situated 

downstream of the reservoir (i.e. x < 0) contributes predominantly with kinetic energy, while 

the potential energy dominates within the reservoir (i.e. x > 0). 

Considering xA = - 2 c0 t and xB = c0 t, the right-hand side of Eq. (13) vanishes since 

u(xB,t) = 0 and h(xA,t) = 0. Given that vA(t) = u(xA,t) and taking into account Eq. (14), Eq. (13) 

yields: 
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which is indeed verified as the conservation of energy applies for the smooth and continuous 

flow conditions considered here. Equation (15) expresses that the rate of change of the total 

energy contained within the flow region is equal to the potential energy per unit length in the 

undisturbed part of the reservoir times the celerity c0 of the rarefaction wave in the reservoir. 

Let us consider now a fixed control volume which extends beyond the flow region, 

from - ∞ up to an arbitrary abscissa LR  c0 t upstream in the reservoir. Using Eqs. (1) and (2), 

the volume integral in Eq. (13) may be evaluated as follows: 
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This simply results from the fact that, at any time, the total mechanical energy in the flow 

domain remains equal to the potential energy initially present in the reservoir at rest. 

Equation (16) is a simple and practical relation which may be used to verify the energy 

conservation in the discrete solution provided by numerical schemes. Equation (13) holds also 

for the fixed control volume considered here, since in this case all terms, including the time 

derivative, are equal to zero. 

4 Conclusion 

By examining the formulation of energy conservation in the well-known Ritter solution for 

idealized dam break flow, we highlighted several distinctive properties which are rarely 

emphasized. The unsteady Bernoulli equation holds with a substantial influence of the inertial 

term, which nonetheless is zero in average over the flow length as inertial effects merely 

redistribute specific energy. The conservation of mechanical energy in the whole flow domain 

was also examined. It remains constant over time and equal to its initial value, since the flow 

is frictionless and continuous. Within the flow region, the relative importance of potential and 

kinetic energy remains constant over time and takes distinctive values: respectively 60 % and 

40 % of the total mechanical energy. Relationships derived here, such as Eq. (16), may prove 

useful in practice for benchmarking numerical methods in terms of energy conservation. 
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Notation 

c0 = (g h0)
0.5

 = wave celerity in the undisturbed part of the reservoir (m) 

e = mechanical energy per unit mass (m
2
s

-2
) 

E = energy head (m) 

F = |u|/(gh)
0.5

 = Froude number (-) 

g = gravity acceleration (ms
-2

) 



h = water depth (m) 

H = specific energy (m) 

h0 = initial water depth in the reservoir (m) 

LR = abscissa in the undisturbed part of the upstream reservoir (m) 

n = unit vector normal to S and pointing outwards (-) 

p = pressure (Pa) 

S = closed surface defining the control volume  (m
2
) 

t = time (s) 

u = fluid velocity component along direction x (ms
-1

) 

v = fluid velocity vector (ms
-1

) 

v = ( v • v )
0.5

 (ms
-1

) 

vA, vB = velocity of the points A and B (ms
-1

) 

vI = local velocity of the closed surface S (ms
-1

) 

x = abscissa along the streamwise direction (m) 

xA, xB = abscissae at points A and B (m) 

z = elevation above the horizontal channel bottom (m) 

 = fluid density (kg m
-3

) 

 = arbitrary control volume (m
3
) 

 = x / ( c0 t ) = non-dimensional abscissa (-) 
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Figure 1 Water depth h, flow velocity u and specific energy H in Ritter solution, normalized 

using the initial water depth h0 in the reservoir and the corresponding wave celerity 

c0 = ( g h0 )
0.5

. Flow from right to left. 

 

 

Figure 2 Streamwise distribution of the depth-integrated potential and kinetic energy per unit 

mass, scaled by the corresponding value  g h0
2
 / 2 in the undisturbed part of the reservoir. 

 

 


