Deep Background Subtraction with Scene-Specific Convolutional Neural Networks

M. Braham and M. Van Droogenbroeck

INTELSIG, Department of Electrical Engineering and Computer Science, University of Liège, Belgium

IWSSIP 2016 - 23rd International Conference on Systems, Signals and Image Processing - Bratislava, Slovakia - May 2016

Outline

Introduction to background subtraction

- Motion detection in video sequences
- Principle of background subtraction
- Common problems and traditional solutions

Proposed method

- Deep background subtraction with scene-specific ConvNets
- Pipeline of our algorithm
- Network architecture and training

Experimental results

- Methodology
- Quantitative results
- Qualitative results

Conclusion

Introduction to background subtraction

Proposed method Experimental results Conclusion Motion detection in video sequences Principle of background subtraction Common problems and traditional solutions

Motion detection in video sequences

Motion detection in video sequences Principle of background subtraction Common problems and traditional solutions

Principle of background subtraction

Motion detection in video sequences Principle of background subtraction Common problems and traditional solutions

Common problems and traditional solutions

Common problems:

- Camouflage
- Noise
- Light changes
- Oynamic background
- Shadows
- ...

Traditional solutions:

- Complex background modeling strategies (GMM, KDE, Codebook, ViBe, ...)
- Hand-crafted features (Gradient, LBSP, HRI, ...)
- Post-processing (median filtering, area filtering, morphological filtering, ...)
- More recently : feedback loops

Deep background subtraction with scene-specific ConvNets Pipeline of our algorithm Network architecture and training

Deep background subtraction with scene-specific ConvNets

Our main idea is to face the complexity of the task in the subtraction operation itself, not in the background modeling strategy.

Background image

- Simple background model: a single grayscale image
- Deep subtraction operation
- Learned spatial features
- No post-processing or feedback loop
- Scene-specific ConvNet

Deep background subtraction with scene-specific ConvNets Pipeline of our algorithm Network architecture and training

Pipeline of our algorithm

Background image extraction

Pixel-based temporal median filter (150 frames)

Dataset

- Collection of TxT 2-channel patches with central pixel class as target value
- Scene-specific training data
- Automatic labeling with an existing BGS method or human expert labeling

Deep background subtraction with scene-specific ConvNets Pipeline of our algorithm Network architecture and training

Network architecture and training

Convolutions 2@27x27 6@27x27 6@27x27 6@9x9 16@9x9 16@3x3 120 6@point <li

Architecture

Training

- Cross-entropy error function
- RMSProp optimization strategy
- Mini-batch size = 100
- Learning rate = 0.001
- Training stopped after 10000 iterations

- Rectified linear units
- 20243 trainable weights

Methodology Quantitative results Qualitative results

Methodology

- Benchmarking on the 2014 ChangeDetection.net dataset (CDnet 2014)¹
- The first half of each video is used to generate the training data while the second one is used as a test set
- Experiments restricted to sequences with different foreground objects between the training set and the test set (21 videos considered from 9 categories)
- Results compared to those of traditional and state-of-the-art methods on the test set in terms of *F* performance metric:

$$F = \frac{2PrRe}{Pr + Re}$$

2 variants of our method evaluated: ConvNet-GT (dataset labeling by human expert) and ConvNet-IUTIS (dataset labeling by IUTIS-5 BGS algorithm²)

¹ Goyette et al., "A novel video dataset for change detection benchmarking", IEEE Trans. Image Process., 2014

²Bianco *et al.*, "How far can you get by combining change detection algorithms", *arXiv.org*, 2015

Methodology Quantitative results Qualitative results

Quantitative results

Method	$F_{overall}$	$F_{Baseline}$	F_{Jitter}	$F_{DynamicBG}$	$F_{Shadows}$	$F_{Thermal}$	$F_{BadWeather}$	$F_{LowFramerate}$	F_{Night}	$F_{turbulence}$
ConvNet-GT	0.9046	0.9813	0.9020	0.8845	0.9454	0.8543	0.9264	0.9612	0.7565	0.9297
IUTIS-5	0.8093	0.9683	0.8022	0.8389	0.8807	0.7074	0.9043	0.8515	0.5384	0.7924
SuBSENSE	0.8018	0.9603	0.7675	0.7634	0.8732	0.6991	0.9195	0.8441	0.5123	0.8764
PAWCS	0.7984	0.9500	0.8473	0.8965	0.8750	0.7064	0.8587	0.8988	0.4194	0.7335
PSP-MRF	0.7927	0.9566	0.7690	0.7982	0.8735	0.6598	0.9135	0.8109	0.5156	0.8368
ConvNet-IUTIS	0.7897	0.9647	0.8013	0.7923	0.8590	0.7559	0.8849	0.8273	0.4715	0.7506
EFIC	0.7883	0.9231	0.8050	0.5247	0.8270	0.8246	0.8871	0.9336	0.6266	0.7429
Spectral-360	0.7867	0.9477	0.7511	0.7775	0.7156	0.7576	0.8830	0.8797	0.4729	0.8956
SC_SOBS	0.7450	0.9491	0.7073	0.6199	0.8602	0.7874	0.7750	0.7985	0.4031	0.8043
GMM	0.7444	0.9478	0.6103	0.7085	0.8396	0.7397	0.8472	0.8182	0.4004	0.7883
GraphCut	0.7394	0.9304	0.5183	0.7372	0.7543	0.7149	0.9166	0.8208	0.4751	0.7867
KDE	0.7298	0.9623	0.5462	0.5511	0.8357	0.7626	0.8691	0.8580	0.4057	0.7776

Methodology Quantitative results Qualitative results

Qualitative results

Marc Braham and Marc Van Droogenbroeck

The proposed background subtraction algorithm:

- models the background with a single grayscale image
- faces the complexity of the task in the subtraction operation itself
- performs a deep subtraction using a trained convolutional neural network
- requires scene-specific labeled data
- outperforms state-of-the-art methods significantly when prior knowledge about the scene is considered