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Abstract—Probabilistic methods are emerging for operating
electrical networks, driven by the integration of renewable
generation. We present an algorithm that models a stochastic
process as a Markov process using a multivariate Gaussian
Mixture Model, as well as a model selection technique to search
for the adequate Markov order and number of components. The
main motivation is to sample future trajectories of these processes
from their last available observations (i.e. measurements). An
accurate model that can generate these synthetic trajectories is
critical for applications such as security analysis or decision
making based on lookahead models. The proposed approach
is evaluated in a lookahead security analysis framework, i.e.
by estimating the probability of future system states to respect
operational constraints. The evaluation is performed using a 33-
bus distribution test system, for power consumption and wind
speed processes. Empirical results show that the GMM approach
slightly outperforms an ARMA approach.

Index Terms—time series; stochastic process; stochastic mod-
eling; Gaussian mixture model; lookahead simulation; synthetic
trajectory; security analysis; distribution system.

I. INTRODUCTION

The recent massive integration of renewable generation has
increased the level of uncertainty in power systems, to the
extent that probabilistic methods are emerging for operating
electrical networks [1]. This is particularly true for the opera-
tion of distribution systems, which is progressively migrating
from a fit-and-forget doctrine to Active Network Management
(ANM) strategies [2]. This approach relies on short-term poli-
cies that control the power injected by generators and/or taken
off by loads in order to avoid congestion or voltage issues
and requires to solve sequential decision making problems
[3]. An accurate model of this uncertain dynamical system
is critical in order to take adequate control actions. Moreover,
and contrary to wider power systems, the uncertainty about
stochastic quantities (e.g. wind speed, solar irradiance, load
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consumption) is not softened by an averaging effect because
of the local nature of distribution systems.

In this paper, we present an algorithm that models a
stochastic process as a Markov process using a multivariate
Gaussian Mixture Model (GMM). Such a parametric model
learns the transition density of the process from time series
of observations. For a given order of the Markov process
(i.e. the length of the process history that is used to model
the density of the next realization) and a given number of
components in the mixture, the parameters of the GMM are
learned from the data using a maximum likelihood approach. A
model selection technique that relies on a multi-armed bandit
framework [4] is used to search for the adequate order and
number of components of the GMM.

We focus in this paper on the ability of stochastic models
to perform reliable security analyses, i.e. lookahead security
estimates of the operational state of a grid. It leads to the
definition of a quality measure that compares the actual
security state of a grid to the Monte Carlo simulations of a
model. This measure is used both for the model section phase
and for comparison purposes with other modeling approaches.

A. Related works

Existing approaches in the context of power system dynamic
modeling and decision making include forecasting random
variables (loads, PV and wind generation) based on the use
of numerical weather prediction and time series models [5],
[6], [7]. Reference [6] surveys existing approaches for wind
power forecasting while [8] provides insight to short-term
PV generation forecast. Numerical weather prediction uses
meteorological data and models to forecast relevant variables
such as wind, irradiance, etc, and further uses physical models
or statistical techniques to forecast generation productions [5],
[6], [8]. Artificial neural networks or fuzzy neural networks
[5] were also considered for improved forecasting. Time series
models use observed data values (historical data) to forecast
future values of random variables. Auto-Regressive Moving
Average (ARMA) models and its variants - auto regressive
integrated moving average (ARIMA), ARMA with exogenous
input (ARMAX/ARX) - are the most popular type in the time-
series-based approaches for both load and generation forecast-
ing [8], [7]. Neural networks and fuzzy neural networks were



also considered in the context of the use of historical data [5],
[7], [6].

In the context of power system problems, GMMs were only
considered within static decision making where probabilistic
power flow is a common tool to handle uncertainties [9].
GMM is used to approximate non-Gaussian probability density
functions (Beta, Gamma, Weibull, Rayleigh) of loads [10] and
generation [9]. One of the problems related to the use of
GMM in this context is the choice of the number of Gaussian
mixture components to accurately approximate the original
non-Gaussian probability density function. The work presented
in [9] compares three pair-merging methods to reduce the
number of Gaussian mixture components and proposes a fine-
tuning algorithm of integral square difference criterion for
further improvements. On the other hand, a Markov process
modeling approach was considered as an option to forecast
load and wind generation. A Markov-based sensitivity model
was proposed in [11] as a look-ahead capability approach for
load and wind generation short-term forecasting.

To the best knowledge of the authors no work exist that
uses GMMs combined with Markov process modeling for
dynamic modeling and decision making in power systems. In
a wider context, some developments on the use of GMMs for
time series forecasting exist. Reference [12] reports on the
initial results of the use of GMMs for time series but focuses
exclusively on the forecasting abilities of the approach though
the computation of conditional expectations.

II. PROBLEM DESCRIPTION

We aim at building models of stochastic processes that
arise within power systems with the main motivation of
sampling future trajectories of these processes from their last
available observations (i.e. measurements). An accurate model
that can generate these synthetic trajectories is critical for
applications such as security analysis or decision making based
on lookahead models.

A. Problem statement

Let S∗ be a real-valued stochastic process and let

S =


(
o1

1, . . . , o
1
T

)
...

(onS1 , . . . , onST )


be a set of nS real-valued time series of length T that
correspond to observations of S∗. Given this set S, we want
to learn a Markov modelM that approximates the probability
density function p : RL → R+ of the next realization xt,
conditional to the previous L realizations of the process, i.e.
pM(xt|xt−1, . . . , xt−L).

B. Model evaluation

We do not focus on the forecast performance but instead aim
at a model that is relevant to generate synthetic trajectories
in a lookahead context. Models are discriminated based on
their ability at producing good lookahead security estimates.
Such an estimate corresponds to the probability, according to

a model M, that an electrical system D is secure (i.e. its
operational constraints are respected) for some lookahead time
horizon ∆t and given an history x(hist) = (xt−1, . . . , xt−L).
We consider that S∗ is the only stochastic process that
influences the electrical system D and that its state is fully
determined (e.g. through a power flow simulation) given a
time step t ∈ {1, . . . , T} and the realization xt or an estimate
x̂t of S∗. We denote thereafter this state D(t, xt) or D(t, x̂t).

We introduce a score function ηD,∆t,M (M,S) ∈ [0, 1] to
assess the quality of lookahead security estimates produced
through Monte-Carlo simulations ofM, when x(hist) takes as
value every sequence of L successive observations in the set S
of time series, and where M is the number of sampled trajec-
tories for every Monte-Carlo simulation. The score function
relies on a weighted Brier score [13] (i.e. the mean of squared
differences), which is reversed and scaled so that the value of
ηM,∆t(M,S) has the following interpretations:

• 0 means that M’s security estimates are non-informative
(i.e. the probability of every state to be secure is 0.5) at
best;

• 1 means that M’s security estimates match perfectly the
actual security states observed in the set S.

The following pseudo-code details how to compute this
score function:
. Overall procedure
function GET SCORE(D,M,S,M,∆t)

distok,distko, nok, nko ← 0
for i← 1, nS do

for t← L, T −∆t do
xhist ← (o

(i)
t , . . . , o

(i)
t−L+1)

p̂ok ← 0
for m← 1,M do

p̂ok ← p̂ok + IS SECURE(D,M,xhist,t,∆t)
M

if D(t+ ∆t, o
(i)
t+∆t) is secure then

distok ← distok + (1− p̂ok)2

nok ← nok + 1
else

distko ← distko + (p̂ok)2

nko ← nko + 1

score ← 1−
(

distok
nok

+ distko
nko

)
return max(0, score)

. Single security simulation
function IS SECURE(D,M,x(hist), t0,∆t)

t← t0
repeat

x̂← sample pM(·|x(hist))

x(hist) ← (x̂, x
(hist)
1 , . . . , x

(hist)
L−1 )

t← t+ 1
until t = t0 + ∆t
if D(t, x̂) is secure then

return 1
else

return 0



III. GAUSSIAN MIXTURE MODEL

We consider modelsMω(θ), ∀ω ∈ Ω and ∀θ ∈ Θ, that rely
on a mixture of N Gaussian components to build the density
function pMω , where ω = (L,N) are the hyper parameters of
the model and where θ denotes the parameters of the Gaussian
mixture. These latter parameters are the weight, mean, and
covariance matrix of every component i ∈ {1, . . . , N} of
the mixture, they are further denoted by φi, µi, and Σi,
respectively. In particular, we have:

pMω,L(θ)(xt|xt−1,...,xt−L) =
p∩Mω,L(θ)(xt,...,xt−L)∫

R
p∩Mω,L(θ)(xt,...,xt−L)dxt

, (1)

where

p∩Mω,L(θ)(xt, . . . , xt−L) =

N∑
i=1

φiN (xt, . . . , xt−L;µi,Σi) (2)

is the approximation, by modelMω,L(θ), of the joint density
function of L+1 successive realizations. One of the advantages
of using Gaussian components is that the conditional density
function in (1) can be easily determined given the values of
the L previous realizations xpast = (xt−1, . . . , xt−L) ∈ RL of
the process. The resulting density is also a Gaussian mixture
[14] and each component i ∈ {1, . . . , N} has the following
parameters:

φ
t|L
i =

φiN (xpast;µ
L
i ,Σ

LL
i )∑N

j=1 φjN (xpast;µL
j ,Σ

LL
j )

, (3)

µ
t|L
i = µt

i − (Λtt
i )
−1

ΛtL
i

(
xpast − µL

i

)
, (4)

Σ
t|L
i = (Λtt

i )
−1
, (5)

with

µi = (µt
i,µ

L
i ) ,

Σi =

(
Σtt

i ΣtL
i

ΣLt
i ΣLL

i

)
,Σ−1

i =

(
Λtt
i ΛtL

i

ΛLt
i ΛLL

i

)
.

For a given hyper parameter ω = (L,N), learning model
Mω,L(θ) consists in determining the mixture’s parameters θ∗

that approximate at best the density function p∩Mω,L(θ)(·) of the
set L of nS time series, The following procedure allows to
compute θ∗ as the maximum likelihood estimate (MLE) of L:

1) build a set L′ of L+1-length tuples:

L′ =
{

(olt−L, . . . , o
l
t−1, o

l
t), (l, t) ∈ {1, . . . , nL′} × {L, . . . , T − 1}

}
;

2) produce the MLE θ∗ by solving:

θ∗ = arg max
θ∈Θ

∑
x∈L′

log p∩Mω,L(θ)(x) ,

which is the classical MLE equation that can be solved
using an expectation-maximization (EM) algorithm [15].

IV. MODEL SELECTION

In this section, we describe our sampling-based procedure
to navigate within the space of hyper parameters Ω =
{ω1, . . . , ωK}, K ∈ N, using a multi-armed bandit approach.
Our approach relies on the following assumptions: first, we
assume that, for a given hyper parameter ω ∈ Ω, and a
given set of learning data L, we have access to a procedure,
which may not be deterministic, that allows to generate a
model Mω,L (e.g. see Section III). Then, we assume that we
have access to a score function η (e.g. see Section II-B) to
compute noisy empirical evaluations of any model. Finally,
we also assume that we have access to a selection strategy
which allows us to iteratively select which hyper parameter to
sample from based on noisy evaluations observed so far, and
progressively converge towards an optimal hyper parameter.
In the following, a standard UCB-1 algorithm [4] plays the
role of this selection strategy.

Our procedure works as follows. Initially, all index values
are set to +∞:

∀k ∈ {1, . . . ,K}, B(0)
k = +∞

Then, at every iteration i ∈ {1, . . . , N},
1) Select a hyper parameter ω(i) ∈ Ω according to a UCB-1

strategy; let k(i) be the index of ω(i) in the set Ω:

k(i) = arg max
k∈{1,...,K}

B
(i−1)
k

2) Perform a random partition of the set of trajectories into
two subsets of trajectories, a learning set L(i) and a test
set T (i), formalized as follows:

L(i) =


(
o

(i),1
0 , . . . , o

(i),1
T−1

)
...(

o
(i),nL
0 , . . . , o

(i),nL
T−1

)


T (i) =


(o

(i),1
0 , . . . , o

(i),1
T−1)

...
(o

(i),nT
0 , . . . , o

(i),nT
T−1 )


3) Using the learning set L(i) and the hyper parameter ω(i),

compute a model Mω(i),L(i) ;
4) Compute a new noisy evaluation η(i)

k of modelMω(i),L(i)

as:

η
(i)
k = η(Mω(i),L(i) , T (i)) ,

and update the UCB-1 index values as follows:

∀k ∈ {1, . . . ,K}, B(i)
k = η̄k +

√
2 ln(i)

n
(i)
k

where η̄k denotes the empirical average of evaluations
of hyper parameter ωk observed so far and n(i)

k denotes
the number of times the hyper parameter ωk has been
evaluated so far.



V. NUMERICAL RESULTS

We present the results obtained for two different datasets,
with the GMM approach presented in Section III and com-
pared with ARMA models, which were also fitted using a
MLE algorithm. For both approaches, the hyper parameters
were selected using the model selection technique presented
in Section IV. These hyper parameters are:

GMM: the Markov order L and the number of components
N ;

ARMA: the autoregressive order Lar and the moving-average
order Lma.

Both datasets consist in observations acquired every quarter
of hour, and every time serie spans a period of six weeks
(i.e. 576 observations). The first dataset has 14 time series
(i.e. 8064 observations) of the aggregated power consumption
of 200 residential consumers, while the second dataset has
182 time series (i.e. 104832 observations) of wind speed
measurements1. The electrical system D used for security
analyses is the IEEE 33-bus distribution test system with
three additional wind farms, as illustrated in Figure 1. The
considered operational constraints are the voltage limits at
the buses and the thermal limits of the links. Note that the
consumption was assumed to be deterministic when evaluating
the wind speed models, and conversely. When the stochastic
process is the load consumption, the consumption at each bus
is defined as a scaling factor times the consumption process.
For the wind speed process, the production of wind farms is
determined from the wind speed through a usual cubic power
curve.

The performance estimations of the different models for the
wind speed dataset, a lookahead time horizon of 4h (i.e. 16
time steps), and M = 50, are presented in Figure 2 for the
GMM approach and in Figure 3 for the ARMA approach.
The performance of these two sets of models was estimated
by UCB-1 runs of 40h and 20h for the GMM and ARMA
approaches, respectively. Several observations can be made
from these results:
• the best GMM outperforms the best ARMA model;
• the performance of the GMMs is less sensitive to the

choice of the hyper parameters than for the ARMA
models;

• the computational budget (i.e. the average time required
to make one evaluation) is higher for the GMM approach
than for the ARMA approach.

We also report the performance estimations for the con-
sumption dataset and a lookahead time horizon of half an hour
(i.e. 2 time steps). The performance of the two sets of models
was estimated by UCB-1 runs of 3h and 2h for the GMM and
ARMA approaches, respectively. The results are presented in
Figure 4 for the GMM approach and in Figure 5 for the ARMA
one. We now observe that the performance of the best GMM
and best ARMA model is very close. However, the sensitivity

1Both datasets were standardized (i.e. µ = 0 and σ = 1) and diurnal
seasonality was remove.
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Figure 1: Electrical system D, the IEEE 33-bus test system
with three additional wind farms.
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Figure 2: Performance estimations for GMMs for the wind
speed dataset, a lookahead time horizon of 4h (i.e. 16 time
steps), and M = 50, after a UCB-1 run of 40h.
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Figure 3: Performance estimations for ARMA models for the
wind speed dataset, a lookahead time horizon of 4h (i.e. 16
time steps), and M = 50, after a UCB-1 run of 20h.

of the expected score to the hyper parameters is again higher
for the ARMA models.
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Figure 4: Performance estimations for GMMs for the con-
sumption dataset, a lookahead time horizon of half an hour
(i.e. 2 time steps), and M = 50, after a UCB-1 run of 3h.

We report in Figures 6 and 7 the expected performance of
every candidate model for both approaches, both datasets, and
for lookahead time horizons of 15min, 30min, 1h, 2h, and 4h.
The gray scales are defined column-wise and the darkest cell
of a column indicates the best expected score for the associated
lookahead time horizon. We also illustrate in Figures 8 and 9
how the best model of the GMM approach performs compar-
ing the best model of the ARMA approach, for the wind speed
dataset and consumption dataset, respectively. We observe that,
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Figure 5: Performance estimations for ARMA models for the
consumption dataset, a lookahead time horizon of half an hour
(i.e. 2 time steps), and M = 50, after a UCB-1 run of 2h.

with the exception of the lookahead time horizons up to half
an hour, the GMM approach outperforms the ARMA one. In
addition, the lead of the GMM approach seems to get larger
as the lookahead time horizon increases.
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Figure 8: Performance comparison of each approach for the
wind speed dataset, as a function of the lookahead time
horizon (in time steps).

Finally, the values of the parameters that were used for the
simulations are reported in Table I.

TABLE I: Parameters used for the simulations.

nL nT M

Scons 0.8nScons 0.2nScons 50
Swind 0.9nSwind

0.1nSwind
50

VI. IMPLEMENTATION DETAILS

We benefited from the parallelization abilities of Monte-
Carlo methods by running the model selection algorithm in a
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Figure 6: Expected score of every candidate GMM for the both dataset, as a function of the lookahead time horizon (in time
steps).
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    ax2 = ax1.twiny()
    ax2.barh(np.arange(len(perfs)), np.array(runs)[idx], align="center", 
    ax2.set_xlim([0,1.1*max(runs)])
    ax2.set_xlabel("Number of evaluations")
    #_ = ax1.twiny().set_xticks([0.2,0.4],[10,20])

(a) Wind speed dataset

In [4]:

t=1 t=2 t=4 t=8 t=16

(1, 1)

(1, 3)

(1, 5)

(3, 1)

(3, 3)

(3, 5)

(5, 1)

(5, 3)

(5, 5)

Export to plot.ly »

0.9439 0.9266 0.9044 0.8723 0.8447

0.9438 0.9281 0.9017 0.8751 0.8469

0.9436 0.9229 0.9026 0.8754 0.8502

0.9376 0.9230 0.8975 0.8711 0.8418

0.9339 0.9184 0.8968 0.8727 0.8394

0.9384 0.9200 0.8970 0.8689 0.8407

0.9325 0.9210 0.8953 0.8697 0.8361

0.9273 0.9176 0.8971 0.8675 0.8311

0.9318 0.9172 0.8925 0.8677 0.8362

prefix = ["results_load"]
horizon = [t for t in [1,2,4,8,16]]
run = ["ARIMA_model_1_3_5_1_3_5"]; keys = list(itertools.product([1,3,5],[1,3,5]))
#run = ["GM_model_1_3_5_1_5_10_15"]; keys = list(itertools.product([1,3,5],[1,5,10,15]))
heats = np.zeros((len(keys),len(horizon)))
for p,h,r in list(itertools.product(prefix,horizon,run)):
    with open("%s_%d_%s.pick"%(p,h,r),"rb") as f:
        data = pick.load(f)
        scores = data["scores"]
        for k in scores.keys():
            heats[keys.index(k), horizon.index(h)] = np.mean(scores[k])
            
z = np.empty_like(heats)
for col in range(heats.shape[1]):
    z[::,col] = heats[::,col]-heats[::,col].min()
    z[::,col] = z[::,col]/z[::,col].max()

annotations = []
for n, row in enumerate(heats):
    for m, val in enumerate(row):
        annotations.append(
            dict(
                text="%.4f"%heats[n][m],
                x="t=%d"%horizon[m], y=str(keys[n]),
                xref='x1', yref='y1',
                font=dict(color='white' if z[n][m] > 0.5 else 'black'),
                showarrow=False)
            )
data = [
    go.Heatmap(
        z=z.tolist(),
        x=["t="+str(h) for h in horizon],
        y=[str(k) for k in keys],
        colorscale='Greys',
        reversescale=True,
        showscale=False
    )
]
fig = go.Figure(data=data)
fig['layout'].update(
    annotations=annotations,
    width=500,
    height=450
)
iplot(fig)

(b) Consumption dataset

Figure 7: Expected score of every candidate ARMA model for the both dataset, as a function of the lookahead time horizon
(in time steps).
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Figure 9: Performance comparison of each approach for the
consumption dataset, as a function of the lookahead time
horizon (in time steps).

HPC environment. A distinct computing core was dedicated
for every trajectory m ∈ {1, . . . ,M} of the Monte-Carlo
simulations. The program is written in Python and relies on
the Scikit-Learn library [16] to learn Gaussian mixtures, while
ARMA models where fitted to data using R’s arima function
through a R-to-Python interface.

VII. CONCLUSION AND FUTURE WORK

We presented a novel approach that relies on Gaussian
mixtures to model a stochastic process from a set of time
series of observations. The hyper parameters of the model, i.e.
the Markov order and the number of mixture components, are
determined using a multi-armed bandit technique while the
mixture parameters are learned from the data using an EM
algorithm. Empirical results show that the proposed approach
outperforms an ARMA approach for the considered applica-
tion of lookahead security analysis, for datasets of residential
power consumption and of wind speed.

As future work we consider several extensions of the present
work, including simulations for other processes (e.g. solar
irradiance), comparison with alternative modeling approaches
(e.g. ARIMA and GARCH), as well as different test systems.
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