

Relative positioning with Galileo E5 AltBOC code measurements

DEPREZ Cécile

Dissertation submitted to the University of Liège in partial requirements for the degree of Master of Geomatics and Geometrology

Dissertation advisor : R. Warnant

Examiners: R. Billen and A. Demoulin

1. Positioning

Satellite-based positioning principle

Time difference between reception and emission time of a signal sent by a satellite to a receiver:

$$R_r^s = (t_r(t_{r,ref}) - t^s(t_{ref}^s)).c$$

1. Positioning

Time difference= **synchronisation** of the clocks

Never reached in practice!

$$t_{r,ref} = t_r(t_{r,ref}) + \P t_r(t_{r,ref})$$
 $t_{ref}^s = t^s(t_{ref}^s) + \P t^s(t_{ref}^s)$

Unknowns:

- The 3 components of the receiver position: X_r,Y_r,Z_r
- The receiver clock error

Requirements:

- At least 4 visible satellites
- The satellite clock error

$$R_r^s = c.(t_{r,ref} - t_{ref}^s) + c.(\partial t^s(t_{ref}^s) - \partial t_r(t_{r,ref}))$$

$$= D_r^s + c. D\partial t$$

1. Positioning

Errors affecting the signal

- Receiver clock bias $\P t_r(t_{r,ref})$
- Satellite clock bias $\P t^s(t_{ref}^s)$
- Atmospheric errors
 - Tropospheric errors T_r^s
 - Ionospheric errors $I_{r,k}^s$
- Multipath $M_{r,k,m}^s$
- Observation noise $e_{r,k,m}^{s}$
- Satellite hardware delays $d_{k,m}^s$
- Receiver hardware delays $d_{r,k,m}$

1-2 metres

decimetres centimetres – 50 meters

1-2 metres

0.2-1 metres

decimetres - metres

Position equation:

$$R_r^s = D_r^s + c.D\partial t + T_r^s + I_{r,k}^s + M_{r,k,m}^s + d_{r,k,m}^s + d_{r,m}^s + e_{r,k,m}^s$$

2. Observables

Codes pseudoranges

- Expected precision: from decametres to metres
- Basic observable
- Most common for public applications

Position equation:

$$P_r^s = D_r^s + c.D\partial t + T_r^s + I_{r,k}^s + M_{r,k,m}^s + d_{r,k,m}^s + d_{k,m}^s + e_{r,k,m}^s$$

2. Observables

Carrier phases pseudoranges

- Expected precision: from centimetres to millimetres
- Initial ambiguity
- High precision applications

Position equation:

$$F_{r}^{s} = D_{r}^{s} + c.D\partial t + T_{r}^{s} + I_{r,k}^{s} + M_{r,k,j}^{s} + d_{r,k,j}^{s} + d_{k,j}^{s} + C_{r,k,j}^{s} + 1.N_{r,k}^{s}$$

time

Reception

Reference time

3. Global Navigation Satellite Systems

Global Positioning System (GPS)

- American GNSS
- Constellation of 24 satellites
- 12 hours of revolution
- Altitude of 20 200 kilometres
- Operational since 1995
- Modernization:
 - 2 -> 3 carrier frequencies
 - 2 -> 5 codes

Carrier	PRN Code
L1	C/A P
L2	L1C P
L5	L2C L5C (L5I L5Q)

3. Global Navigation Satellite Systems

Galileo

- European GNSS
- Project initialized in 1999
- Altitude of 23 222 kilometres
- Satellites:
 - Prototypes GIOVE-A and GIOVE-B decommissioned in 2012
 - IOV¹ generation: 3 satellites available
 - FOC² generation: 4 satellites under commissioning
- 4 carrier frequencies (E1, E5a, E5b, E6) and 10 codes
- E5a+b obtained with the AltBOC modulation of E5a an E5b

Carrier	PRN code		
E1	E1A		
	E1B		
	E1C		
E6	E1A		
	E1B		
	E1C		
	E5a-I		
E5	E5a-Q		
	E5b-I		
	E5b-Q		

- 1: In orbit Validation phase
- ²: Full Operational Capability phase

4. Hypothesis

Hypothesis:

Galileo E5a+b outperforms other GPS and Galileo signals [Caelen, 2014]:

- lower observation noise
- better multipath mitigation

Assumption: Precision on positioning should be better with Galileo E5a+b than with other signals

Constraints:

- First constraint: solution based on the code-only observable (non ambiguous) to reach decimetre precision on position estimation.
- Second constraint: single-frequency solution, the most common for public applications

Research question:

Could Galileo E5 AltBOC single-frequency code-only measurements be used to reach decimetre-level accuracy on satellite-based position estimations?

Single-frequency code-only methods:

Single point positioning:

Single point positioning results with Galileo E5a+b on DOY 192 of 2015 obtained with a Trimble receiver

Single-frequency code-only methods:

Single point positioning:

Single-frequency code-only methods:

Relative positioning:

Principle: Two receivers **simultaneously** observe the same satellites.

Single difference:

Difference between two receiver observations of the same satellite

Double difference:

Difference between two receiver observations of the two same satellites.

Single-frequency code-only methods:

• Single difference:

Single difference results with Galileo E5a+b on DOY 345 of 2014 obtained with two Trimble receivers

Single-frequency code-only methods:

• Single difference:

Single-frequency code-only methods:

Double difference: configurations

Zero baseline

- Receiver clock bias –
- Satellite clock bias
- Atmospheric errors
 - Tropospheric errors
 - Ionospheric errors
- **Multipath**
- Part of the observation
- noise e_{12}^{ij}
- Satellite hardware delays
- Receiver hardware delays

Short baseline

- Receiver clock bias
- Satellite clock bias
- Atmospheric errors
 - Tropospheric errors
 - Ionospheric errors
- Multipath
- Observation noise
- Satellite hardware delays
- Receiver hardware delays •

Medium baseline

- Receiver clock hize
- Satellite clock hias
- Atmospheric errors
 - Tropospheric errors
 - Ionospheric errors
- Multipath
- Observation noise
- Satellite hardware delays
 - Receiver hardware delays

Position equation:

$$P_{12}^{ij} = D_{12}^{ij} + e_{12}^{ij}$$

$$P_{12}^{ij} = D_{12}^{ij} + M_{12,k,m}^{ij} + \mathcal{C}_{12,k,m}^{ij}$$
 $P_{12}^{ij} = D_{12}^{ij} + T_{12}^{ij} + I_{12,k}^{ij} + M_{12,k,m}^{ij} + \mathcal{C}_{12,k,m}^{ij}$

Position equation:

Position equation:
$$D^{ij} = D^{ij} + T^{ij} + I^{ij} + M^{ij} + A^{ij} + A^{ij}$$

- Least Square Adjustment
- Fixed precise coordinates

- MATLAB program
- Real Time

• Configuration details:

Zero baselines						
Station	Receivers	Distance	DOYs	Year		
ULG0	Trimble NetR9	0 m	343-353	2014		
ULG1	Septentrio X4 and XS	0 m	343-353	2014		
ULG1	Septentrio X4 and XS	0 m	60-180	2015		
Short baselines						
Stations	Receivers	Distance	DOYs	Year		
ULG0-ULG1	Trimble NetR9	5.177 m	180-93	2015		
ULG0-ULG1	Septentrio X4 and XS	5.177 m	180-93	2015		
Medium baselines						
Stations	Receivers	Distance	DOYs	Year		
ULG1-WARE	Septentrio X4 and XS	25 681.953 m	80-100	2015		
ULG1-BRUX	Septentrio X4 and XS	88 676.492 m	80-100	2015		

Very different results obtained with the two types of receivers:

Very different results obtained with the two types of receivers:

18

- Trimble receivers: less precise than the Septentrio's receivers (higher observation noise)
- Septentrio receivers: non simultaneity of the observations
 - Observation precision as computed by our software might be altered
 - Values of position precision are lower
- Three main parameters affect the position precision:
 - PDOP: Position Dilution Of Precision
 - The elevations of the satellites observed
 - The number of visible satellites
- GPS results are compared to Galileo results:
 - Galileo is more affected by PDOP and low elevation satellites
 - Galileo E5 shows the best observation precision
 - Comparison with GPS constellation reduced to 4 satellites: Galileo E5 shows the best position precision

7. Conclusion

Trimble in zero baseline mode:

- Decimetres precision obtained on **observations** with Galileo E1, E5a and E5b signals (correspond to results obtained by [Springer et al., 2013])
- A few centimetres precision on **observations** with Galileo E5 (correspond to expected values with Galileo full constellation [Colomina et al., 2012], [Silva et al., 2012], [Lopes et al., 2012])
- Metres precision on **position** with all Galileo signals and decimetres
 precision when PDOP is low (also reached by [ESA, 2014], [Langley et al., 2012],
 [Steigneberger & Hauschild, 2015] with real data)

Septentrio in zero, short and medium baselines:

- A few centimetres precision on **observations** with all the Galileo signals ([Colomina et al., 2012], [Silva et al., 2012], [Lopes et al., 2012])
- A few decimetres precision on **position** with all the Galileo signals
- When Brussels medium baseline is considered (80 kilometres), the decimetres precision can only be reached when PDOP values are low

8. Prospects

- As high PDOP values were encountered with Galileo signals (due to their reduced constellation), the same study should be undertaken when more satellites will be available
- Issues due to the non simultaneity of the Septentrio receivers should be solved
- Statistics based on more observation days
- Similar study on carrier phase observable
- Combine GPS and Galileo observations

I thank you for your attention