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■ Molecular dynamics is about understanding the behavior and evolution of molecular systems.

■ Basically, in molecular dynamics, many-body systems are treated as collections of individual mass
points whose motion obeys the laws of classical mechanics:

mi
d2ri

dt2
= −∇ri

φ(r1, r2, . . . , rn)
︸ ︷︷ ︸

potentiel function for intermolecular forces
deduced from experiments

or obtained from quantum mechanical considerations

+ f i
︸︷︷︸

external force

, i = 1, 2, . . . , n.

Depending on the particular context (behavior under pressure, behavior at constant tempera-
ture,. . . ), additional terms can be introduced in the equations of motion (friction and random force
consistent with thermal agitation,. . . ).

■ Molecular dynamics increasingly finds many applications in chemistry, physics, mechanics,
biology, material science, medicine,. . .
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Studies of friction and fracture in mechanical engineering.
From: W. Liu et al, CMAME, 2004.
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Study of water molecules passing through cell membrane pores in biology.
From: http://www.ks.uiuc.edu.
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Study of molecular structure of packaging of genome of HIV virus in medicine.
From: http://www.ks.uiuc.edu.
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Here, we will use molecular dynamics to study how adding polymers to fluids can increase viscosity.
blanc
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■ An elastic solid remembers only its initial configuration. For example, concrete and steel. The
constitutive model for a linear isotropic elastic solid reads as

σ = λtr(ǫ)I + 2µǫ,

where σ, I , and ǫ are the stress, identity, and strain tensors, and λ and µ are Lamé’s parameters.

■ A viscous fluid remembers only the very recent past configuration. Correspondingly, its
constitutive model involves only the rate of deformation. For example, classical fluids, such as
water, air, and oil. The constitutive model for a Newtonian viscous fluid reads as

σ =
(
− p+ λvtr(D)

)
I + 2µvD,

where σ, I , and D are the stress, identity, and rate of deformation tensors, p is the pressure, and
λv and µv are the volumetric and deviatoric viscosities.

■ There are also materials whose behavior is intermediate between elastic and viscous. For example,
polymers and various biological meterials, who exhibit viscoelastic material behavior.
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■ One of the prototype viscoelastic materials is the Maxwell viscoelastic material.

■ The Maxwell viscoelastic material can be represented by a damper and a spring in series:

■ In this configuration, the total strain ǫ = ǫv + ǫe is the sum of the viscous strain ǫv in the damper
and the elastic strain ǫe in the spring. From the differentiation of this relationship with respect to time
and from the constitutive models σ = µv

dǫv

dt for the damper and σ = Eǫe for the spring, we obtain
the differential form of the constitutive model for the Maxwell viscoelastic material:

dǫ

dt
=

1

µv
σ +

1

E

dσ

dt
,

where σ is the total stress, which is equal to the both the stress in the damper and the stress in the
spring, µv is the viscosity coefficient of the damper, and E is the elastic modulus of the spring.

■ To this differential form corresponds the following integral form:

σ(t) = exp

(

−E

µv
t

)

σ(0) +

∫ t

0

exp

(

−E

µv
(t− s)

)

︸ ︷︷ ︸

relaxation modulus

E
dǫ

ds
(s)ds.
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■ The integral form of the constitutive model for the Maxwell viscoelastic material indicates that the
stress at the present time depends on the rate of strain at past times with a weighting factor that
decays exponentially as one goes backwards in time. This represents a “fading memory", with a
characteristic time scale of µv

E . The Maxwell viscoelastic material remembers well what it has
recently experienced, but it has only a hazy recollection of events in the more distant past.

■ There exist many other viscoelastic constitutive models, such as the Kelvin–Voigt viscoelastic
material (damper and spring in parallel), the generalized Maxwell viscoelastic material,. . .

■ In the following, we will see that when polymers are added to a (viscous) fluid, these polymers will
contribute to the constitutive behavior of the polymeric fluid thus obtained.

Specifically, we will see that adding polymers to a (viscous) fluid leads to viscoelastic behavior.
Although the constitutive model that we will find does not have the exact same form as that of the
Maxwell viscoelastic material described above, we will find that adding polymers to a (viscous) fluid
leads to increased viscosity, as well as to a “fading memory” whereby the stress depends on the
“history” of the rate of strain for all past times, with a certain characteristic time scale.



Polymeric fluids

ULg, Liège, Belgium MATH0488 – Lecture 2 12 / 24



Bead-spring model

ULg, Liège, Belgium MATH0488 – Lecture 2 13 / 24

■ We will consider a simple model, wherein the polymers are represented by bead-spring chains:

◆ the springs will represent the chemical bonds of the polymers,
◆ friction forces applied to the beads will represent the polymers/fluid drag,
◆ white noise applied to the beads will represent the effects of molecular collisions.

■ As in the case of the Langevin equation for the Brownian motion in the previous lecture, this
bead-spring model is a rather phenomenological model. The intermolecular interactions between
the polymers and the fluid molecules are not modeled explicitly; instead, their entire complexity is
lumped into spring stiffnesses, friction coefficients, and the white-noise assumption.

■ Comparisons with experiments and physical insight have shown that this bead-spring model is
rather crude. Many aspects of the physical behavior are neglected, such as distributed drag along
the polymer, intramolecular interactions along the polymer, finite strength of chemical bonds,. . .

■ To simplify things even further, we will consider the case wherein there are only two beads linked by
a single spring, a case that is also called that of “Hookean dumbbells.”
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■ Using the bead-spring model, we will investigate constitutive behavior in shear flow:

v1 = γ̇r2, v2 = 0, v3 = 0.

r2

r1

v1 = γ̇r2

[L] = Drv =





0 γ̇ 0
0 0 0
0 0 0



 .

■ If there were no polymers, the shear stress developed in the fluid would read as σ12 = µvγ̇.
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■ Lengths and angles of chemical bonds of polymers distort in flow, so that internal forces

corresponding to these distortions will add to the stress state that develops in this flow.

■ The geometrical positioning, orientation, and conformation of the polymers (for example,
homogeneous vs. heterogeneous concentration, random vs. preferred orientation, coiled vs.
extended,. . . ) will greatly determine how lengths and angles of chemical bonds may distort in flow.

■ Polymers can be expected to uncoil and extend in the direction of flow. Such changes in
orientation and conformation can be expected to occur with (a) characteristic time scale(s) that
depend(s) on inertia, friction between polymers and fluid molecules, stiffness of chemical bonds of
polymers,. . . , thus leading to (a) characteristic time scale(s) in the constitutive behavior.

■ Although polymers will tend to uncoil and extend in the direction of flow, intermolecular collisions
due to thermal agitation will tend to restore random orientation and random conformation

consistent with the equilibrium conformational distribution. Increased temperature will make the
intermolecular collisions more vigorous in their attempts to restore randomness, thus leading to
temperature dependence of the constitutive behavior.
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■ Within our simple model, the behavior of the Hookean dumbbell in the shear flow is governed by

R(2)

Q = R(2) −R(1)

R(1)







ζ

(
dR(1)

dt
− [L]R(1)

)

=

(

h(R(2) −R(1))

)

+

(
√

2kBTζ
dW (1)

dt

)

,

ζ

(
dR(2)

dt
− [L]R(2)

)

︸ ︷︷ ︸

polymer/fluid drag

=

(

h(R(1) −R(2))

)

︸ ︷︷ ︸

chemical bonds
stiffness

+

(
√

2kBTζ
dW (2)

dt

)

︸ ︷︷ ︸

molecular
collisions

,

where ζ is the friction coefficient representing the polymer/fluid drag, h is the Hookean spring
stiffness representing the chemical bonds,

√
2kBTζ is the magnitude of the white noise

representing the molecular collisions, and {W (1)(t), t ∈ R
+} and {W (2)(t), t ∈ R

+} are
statistically independent Wiener processes. Inertia is neglected.
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■ We can write this coupled system of SDEs equivalently as an uncoupled system of SDEs by
carrying out a change of variables to the centre of mass and the connector vector:







ζ

(
dRG

dt
− [L]RG

)

=
√

2kBTζ
1√
2

dV (1)

dt
,

ζ

(
dQ

dt
− [L]Q

)

= −2hQ+
√

2kBTζ
√
2
dV (2)

dt
,

where RG = 1
2 (R

(1) +R(2)) is the centre of mass, Q = R(2) −R(1) the connector vector, and

V (1) = 1√
2
(W (1) +W (2)) and V (2) = 1√

2
(W (2) −W (1)). It can be readily verified that

{V (1)(t), t ∈ R
+} and {V (2)(t), t ∈ R

+} are statistically independent Wiener processes.

■ As we saw in the previous lecture, the solution to this uncoupled system of SDEs reads as














RG(t) = exp([L]t)RG(0) +

∫

t

0

exp
(

[L](t− s)
)1

ζ

√

2kBTζ
1√
2
dV

(1)(s),

Q(t) = exp

((

[L]− 2h

ζ
[I]

)

t

)

Q(0) +

∫

t

0

exp

((

[L]− 2h

ζ
[I]

)

(t− s)

)

1

ζ

√

2kBTζ
√
2dV (2)(s),

where [I] denotes the identity matrix. We can see appear a “fading memory” with a
characteristic time scale of ζ

2h .
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■ If the fluid is at rest, that is, [L] = [0], we obtain

E{Q(t)}

= exp

(

−2h

ζ
t

)

E{Q(0)},

E
{(

Q(t)− E{Q(t)}
)(

Q(t)− E{Q(t)}
)T}

= exp

(

−2
2h

ζ
t

)

E
{(

Q(0)− E{Q(0)}
)(

Q(0)− E{Q(0)}
)T}

+
kBT

h

(

1− exp

(

−2
2h

ζ
t

))

[I].

Thus, in a fluid at rest, the Hookean dumbbell will tend to evolve randomly over time in such a way
that the long-time behavior (t → +∞) of its connector vector is governed by a multivariate
Gaussian probability density function with mean zero and covariance matrix kBT

h [I]:

ρ(r(2) − r(1)) =

(

1

2π kBT
h

)3/2

exp

(

−‖r(2) − r(1)‖2
2kBT

h

)

.

The covariance matrix being diagonal and the diagonal elements being equal indicates that in the

fluid at rest, the orientation of the Hookean dumbbell evolves randomly over time without

preferred orientation.
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■ If the fluid is in the shear flow, that is, γ̇ 6= 0 and therefore [L] 6= [0], and if the connector vector is

distributed initially as a multivariate Gaussian with mean zero and covariance matrix kBT
h [I]:

E{Q(t)}
= 0,

E
{(

Q(t)− E{Q(t)}
)(

Q(t)− E{Q(t)}
)T}

= exp

(

−2
2h

ζ
t

)

kBT

h
exp

(

[L]t
)

exp
(

[L]Tt
)

+

∫

t

0

exp

(

−2
2h

ζ
(t− s)

)

2kBT

ζ
exp

(

[L](t− s)
)

exp
(

[L]T(t− s)
)

2ds.

Because the matrix exponential of [L] reads as

exp([L]) = exp









0 γ̇ 0
0 0 0
0 0 0







 =





1 γ̇ 0
0 1 0
0 0 1



 ,

the covariance matrix E
{(

Q(t)−E{Q(t)}
)(
Q(t)−E{Q(t)}

)T}
is no longer diagonal and its

diagonal elements are no longer equal, so that in the fluid in the shear flow, the orientation still

evolves randomly, but this time the shear flow induces a preferred orientation.
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■ From the aforementioned solution to the system of SDEs, quantities relevant to the constitutive

behavior can be determined by evaluating probabilistic averages. Following a method of
calculation proposed by Kramers, the polymer contribution to the stress tensor is obtained as

n

Q

Plane of unit area with unit normal n

‖Q‖

[σp]n = −νkBTn
︸ ︷︷ ︸

osmotic
pressure

+ E
︸︷︷︸

macroscale stress
obtained

as average
over microscale
configurations

{

m
︸︷︷︸

number
of polymers
in solution

n ·Q
V

︸ ︷︷ ︸

probability of finding
polymer with connector vector Q
intersecting the unit area plane

hQ
︸︷︷︸

spring force

}

,

so that

[σp] = −νkBT [I] + νhE{QQT};
here, ν is the concentration of polymers (supposed homogeneous, that is, ν = m

V with m the total
number of polymers in the total volume V occupied by the fluid).
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■ In our case of the Hookean dumbbell in the shear flow, we obtain

[σp](t) = −νkBT [I] + νhE{QQT}

= −νkBT [I] + νkBT exp

(

−4h

ζ
t

)

exp
(
[L]t

)
exp

(
[L]Tt

)

= −νkBT [I] + νkBT
4h

ζ

∫ t

0

exp

(

−4h

ζ
(t− s)

)

exp
(
[L](t− s)

)
exp

(
[L]T(t− s)

)
ds.

With the help of the expression for the matrix exponential given previously, we obtain

σ
p
12(t) = νkBT exp

(

−

4h

ζ
t

)

γ̇t+ νkBT
4h

ζ

∫

t

0
exp

(

−

4h

ζ
(t− s)

)

γ̇(t− s)ds

= νkBT exp

(

−

4h

ζ
t

)

γ̇t+ νkBT
4h

ζ

(

− γ̇t
ζ

4h
exp

(

−

4h

ζ
t

)

+ γ̇

(

ζ

4h

)2

− γ̇

(

ζ

4h

)2

exp

(

−

4h

ζ
t

))

.
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■ In the limit as t → +∞, we obtain

lim
t→+∞

σ
p
12(t) = ν kBT

4h

ζ
γ̇

(
ζ

4h

)2

= ν kBT
ζ

4h
γ̇.

so that the total shear stress in the polymeric fluid reads as

lim
t→+∞

σ12(t) =

(
ζ

4h
µv

ζ

4h
︸ ︷︷ ︸

viscosity of fluid
in which polymers are dissolved

+ ν kBT
ζ

4h
︸ ︷︷ ︸

increased viscosity
due to presence of polymers

)

γ̇.
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1. Implement, by using the explicit Euler method, the Langevin dynamics

ζ

(
dQ

dt
− [L]Q

)

= −2hQ+
√

4kBTζ
dV

dt

where [L] is the velocity gradient corresponding to the shear flow defined on Slide 15/24, and
{V (t), t ∈ R

+} is a Wiener process.

Use values for the physical properties such that ζ
4h = 1, kBT

h = 1, and νkBT = 1.

Plot a few sample paths (components of Q, angle that Q makes with the horizontal,. . . ), first for the
case wherein the fluid is at rest, that is, [L] = [0], and then for the case wherein the fluid is in the
shear flow, that is, γ̇ 6= 0 and therefore [L] 6= [0]. Interpret your results, perhaps with the help of
additional figures, such as scatter plots, histograms,. . .

How would you use your implementation of these Langevin dynamics to estimate the increased
viscosity due to the presence of polymers? Illustrate your answer with numerical results.

2. Formulate yourself an additional question that you find interesting, related to the Brownian motion,
the Wiener process, the Langevin equation, or polymeric fluids, and provide an appropriate answer.
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