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a b s t r a c t

In current practice, structural engineers commonly focus on the wind-resistant design by means of static
wind loads. In the case of non-Gaussianities, there is room for improvement to properly derive these
static loads. First, this paper extends in a non-Gaussian context the concept of the load-response cor-
relation (LRC) method establishing equivalent static wind loads (ESWLs). This is done by a proper
recourse to the new concept of conditional expected static wind load and a proposed bicubic model for
the joint and conditional distribution functions. Second, this paper investigates the envelope recon-
struction problem targeting the efficient reconstruction of the envelope values of a set of non-Gaussian
structural responses by means of principal static wind loads (PSWLs). They have been introduced in a
Gaussian context and are obtained by a singular value decomposition of ESWLs. This paper addresses the
extension of PSWLs to non-Gaussian structural responses, as well. The developments apply to structures
with a linear behavior and subjected to an aerodynamic pressure field exhibiting mildly to strongly non-
Gaussian features. In this context, the well-known load-response correlation and conditional sampling
methods are used for comparisons. This study is undertaken for quasi-static analysis of structures and is
illustrated on a low-rise building.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The design of civil structures subjected to aerodynamic pres-
sure fields by means of static wind loads is usual. Mainly, such an
analysis should provide structural responses similar to the
extreme values that would be provided by a buffeting analysis.
Actually, these extreme values define an envelope and the struc-
tural analysis through static loads may be understood as an
envelope reconstruction problem (Blaise and Denoël, 2013). This
problem consists in the efficient reconstruction of extreme values
of structural responses through a set of static loads. When they are
known, they are readily applied to the structure in a straightfor-
ward analysis without repeating cumbersome dynamical analyses.

Several methods have been developed to tackle the envelope
reconstruction problem (e.g., Repetto and Solari, 2004; Katsumura
et al., 2007; Fiore and Monaco, 2009; Zhou et al., 2011), see Blaise
and Denoël (2013) for a review. In these methods, several
responses may be specified, overcoming the main limitation of the
equivalent static wind loads (ESWLs) initially derived for one
þ32 4 3669192.
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specific structural response. Indeed, an efficient solution of the
envelope reconstruction problem requires to derive a limited
number of static wind loads, each of them aiming at a global
reconstruction; especially for complex structures like stadium
roofs (Blaise et al., 2012). With this objective, Blaise and Denoël
(2013) developed principal static wind loads (PSWLs) in a Gaussian
context. These PSWLs result from the singular value decomposi-
tion to the matrix gathering ESWLs computed for all structural
responses of interest.

The present paper aims at solving the envelope reconstruction
problem with PSWLs in the case of non-Gaussian structural
responses resulting from non-Gaussian aerodynamic pressures. A
first contribution of this paper is the formulation of “non-Gaus-
sian” ESWLs through the novel concept of conditional expected
static wind load. This is discussed for structures with a quasi-static
behavior and subjected to a mildly to strongly non-Gaussian
aerodynamic pressure field. A second contribution is the general-
ization of PSWLs for non-Gaussian responses.

The conditional sampling technique and the load-response cor-
relation (LRC) method are considered in this study for
comparisons.

Holmes (1988) introduced the notion of peak-load pressure
distributions. Each extreme response corresponds to specific wind
load patterns obtained with wind-tunnel tests. The conditional
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sampling technique (Atta, 1974) identifies these peak-load pres-
sure distributions. This technique has been mainly applied to low-
rise buildings (Tamura et al., 1992, 2001). Following the same idea
of a load associated with a maximum response, Kasperski (1992)
established the LRC method giving an ESWL corresponding to an
envelope value obtained by a linear quasi-static analysis in a
Gaussian framework.

The conditional sampling technique, by nature, incorporates
the non-Gaussian aspects in both aerodynamic loads and struc-
tural responses. Conversely, the original gust loading factor and
LRC methods and its extensions (Chen and Kareem, 2001) were
developed assuming Gaussian processes. Actually, Kasperski
(1992) sidesteps the extension to non-Gaussian processes arguing
that, the LRC method would provide “[…] a very close approxima-
tion to the real load pattern […]” even if the aerodynamic pressure
field was non-Gaussian or if the structure had a weakly nonlinear
behavior. However, differences have been shown between the
LRC-based ESWLs and those obtained with statistical treatment of
wind-tunnel measurements (Tamura et al., 2002). This has espe-
cially motivated the study of a non-Gaussian formulation
for ESWLs.

The organization of this paper is as follows. First, non-Gaussian
structural analysis and establishment of the asymmetrical envel-
ope of structural responses are exposed (Section 2). Then the
concept of conditional expected static wind load is introduced and
a non-Gaussian formulation of ESWLs is derived by means of a
bicubic model for the load-response joint distribution function
(Section 3). Generalization of the PSWLs for the reconstruction of
asymmetric envelopes and how to combine them to speed-up the
envelope reconstruction problem are then described (Section 4).
All the developments are illustrated with the non-Gaussian quasi-
static analysis of a low-rise gable-roof building (Section 5).

1.1. Nomenclature

Bold lowercase letters are used to denote vectors while bold
uppercase is preferred for matrices. The ith entry of r is denoted by
ri and the (i,j)th entry of R is denoted by Rij. The ith column of R is
denoted by Ri. While subscripts without bracket are used to spe-
cify entries in a vector or matrix, superscripts are always in bracket
and are used to give additional information. Subscripts in bracket
are only used in Sections 4.2 and 4.3 and denotes the number of
the iteration considered in the envelope reconstruction problem.

We use the prime symbol 0 to indicate a stochastic process with
a non-zero mean, while the zero-mean fluctuation is devoid of this
symbol. Symbols μ� and σ � are used to denote mean and standard
deviation of vector entries respectively. For instance, we write

r0 ¼ μr0 þr;

with μr0≔E r0½ �, μr≔E r½ � ¼ 0 and σ2
r≔diag E rrT

� �� �
.

2. Statement of the problem

2.1. Generalities

We consider a stationary non-Gaussian random aerodynamic
pressure field. This field is discretized with nl reference points,
representing for instance the pressure taps in a wind-tunnel
experiment and the aerodynamic pressures are gathered in an nl �
1 vector p0ðtÞ. We assume that the mesh used for the selection of
these points and the interpolation functions to reconstruct the
field are selected in order to limit the admittance related to this
discretization operation (Denoël and Maquoi, 2012).
The equation of motion of a structure with a linear quasi-static
behavior reads

Kx0 ¼ Ap0; ð1Þ
where K is an nu � nu stiffness matrix, x0ðtÞ is an nu � 1 vector
collecting the nodal displacements and A is an nu � nl transfor-
mation matrix mapping the aerodynamic pressures to external
nodal forces.

Important quantities for the structural design, such as internal
forces or stresses, referred to as structural responses are collected in
an nr � 1 vector r0ðtÞ. We only consider responses obtained by
linear combinations of the aerodynamic pressures, i.e., r0 ¼ B p0,
with B being an nr � nl matrix of influence coefficients. The mean
μr0 and fluctuating part rðtÞ of the response then satisfy

μr0 ¼ B μp0 ; r¼ B p; r0 ¼ μr0 þr: ð2Þ
The variance of the ith structural response reads σ2

ri ¼
Pnl

k ¼ 1Pnl
l ¼ 1 BikBil ρpkpl

σpk
σpl

, where ρpkpl
is the correlation coefficient

between the kth and lth components of pðtÞ.
For practical design purposes, representative extreme values of

rðtÞ are usually defined as the mean smallest minimum rðminÞ and
the mean largest maximum rðmaxÞ on an observation period (e.g.
10 min). The couple rðminÞ; rðmaxÞ� �

defines the envelope. The total
envelope r0ðminÞ; r0ðmaxÞ� �

is then obtained by adding the mean
component μr0 to the envelope rðminÞ; rðmaxÞ� �

.

2.2. Determination of the envelope

In a probabilistic framework, the envelope value associated
with the ith structural response is obtained by

rðmÞ
i ¼ gðmÞ

i σri ; ð3Þ
where the superscript “m” refers to either “min” or “max” and gðmÞ

i
is the peak factor of the ith structural response associated with
either the lower ðminÞ or upper ðmaxÞ side of the envelope. The
envelope value rðminÞ

i (resp. rðmaxÞ
i ) corresponds to the mean smallest

minimum (resp. the mean largest maximum) occurring on a 10-
min observation window during which the wind is considered as
stationary. Under the assumption of Gaussianity, the mean smal-
lest minimum and the mean largest maximum only differ by their
sign, i.e., rðminÞ

i ¼ �rðmaxÞ
i , leading to a symmetric envelope while

non-Gaussian structural responses lead to an asymmetric envelope
and rðminÞ

i a�rðmaxÞ
i .

For a stationary Gaussian random process and assuming that
maxima occur independently of each other (Poisson assumption),
Davenport (1964) gave a convenient approximation of the peak
factor. In the presence of non-Gaussian excitation and nonlinear
structural behavior, Winterstein (1988) formulated Hermite
moment models to approximate the PDF of the random process
targeting the first four cumulants. Based on this work, Kareem and
Zhao (1994) derived a convenient non-Gaussian peak factor for-
mulation that is used to compute the peak factors in this paper
(Kwon and Kareem, 2011). The extension of the PSWLs concept for
asymmetric envelopes undertaken in Section 4 is not tributary of
the peak factor model.
3. Conditional expected static wind loads

3.1. Definition

Following common usage, the static analysis under the ESWL
pðe;mÞ targets one envelope value, say rðmÞ

i where the superscript “e”
stands for “equivalent” static wind load and “m” refers to either
min or max envelope value. The static responses are given by

rðe;mÞ ¼ Bpðe;mÞ; ð4Þ
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and, by the interpretation we give the equivalence, the ith struc-
tural response under pðe;mÞ should in principle satisfy

rðe;mÞ
i ¼ rðmÞ

i ; ð5Þ

which defines the envelope value condition. In other words, an
ESWL statically applied to the structure, should produce the exact
envelope value of the targeted structural response.

Considering the envelope reconstruction problem, it would be
desired that the static analysis under pðe;mÞ satisfies (5) and the
following non-overestimation condition (of the envelope)

rðminÞ
j rrðe;mÞ

j rrðmaxÞ
j ; 8 jA 1;nr½ �: ð6Þ

Indeed, an ESWL derived for a specific response should not pro-
duce responses in other locations larger than their envelope
values. If these two conditions are met, the reconstructed envelope
obtained with a sufficiently large number of static analyses should
reconstruct the real envelope, at least if all ESWLs (2nr) are con-
sidered. However, depending on the formulation of ESWLs, these
two conditions may not be guaranteed, as shown later. At last, the
total ESWL p0ðe;mÞ ¼ μp0 þpðe;mÞ targeting one total envelope value is
obtained by adding the mean wind loading μp0 to the
corresponding ESWL.

The uniqueness of the equivalent static wind load is not
ensured by the conditions (5)–(6) and moreover, even completely
unrealistic pressure distributions may satisfy them without being
plausible at all. Thinking with possible realisations of the pressure
field, there exists an infinite collection of pressure distributions
producing static responses satisfying the envelope value condition.
To all these plausible static wind loads might be attributed a cer-
tain likelihood, which is measured here as the conditional multi-
variate PDF of the pressure field given the structural response ri

ψpj ri p1;…;pnl
; ri

� �
¼
ψpri p1;…;pnl

; ri
� �
ψ ri ðriÞ

; ð7Þ

where ψpri ðp1;…;pnl
; riÞ is the joint nlþ1-dimensional PDF of the

pressure field and the considered structural response and ψ ri ðriÞ is
the marginal PDF of the considered structural response. We
introduce the Conditional Expected Static Wind Load (CESWL) as
the average of these plausible static wind loads conditioned upon
recovery of the considered response. Mathematically, it is defined
by

pðE;mÞ ¼ E pj ri ¼ rðmÞ
i

h i
¼ μpj ri ðr

ðmÞ
i Þ; ð8Þ

where the symbol “E” stands for “conditional Expected” and the
kth component of the conditional expected static wind load is
simply obtained as

μpk j ri ðr
ðmÞ
i Þ ¼

Z
R

pk ψpk j ri pk; r
ðmÞ
i

� �
dpk; ð9Þ

where ψpk j ri pk; r
ðmÞ
i

� �
is the conditional PDF of the kth aero-

dynamic pressure given the ith envelope value ri ¼ rðmÞ
i . The PDF of

the aerodynamic pressure pk conditioned on the structural
response ri is obtained by a multi-fold integration of the condi-
tional multivariate PDF (7) with respect to all other aerodynamic
pressures

ψpk j ri pk; ri
� �¼ Z1

�1

⋯
Z1
�1

ψpj ri p1;…;pnl
; ri

� �
dp1⋯dpk�1dpkþ1⋯dpnl

: ð10Þ

As such, each component of the CESWL (9) might be derived from
the sole knowledge of the conditional distribution (10) of each
aerodynamic pressure given a structural response.
The loading given by (8) is such that the corresponding static
response rðE;mÞ ¼ BpðE;mÞ satisfies the envelope value condition

rðE;mÞ
i ¼

Xnl
k ¼ 1

Bikp
ðE;mÞ
k ¼

Xnl
k ¼ 1

BikE pk j ri ¼ rðmÞ
i

h i

¼ E
Xnl

k ¼ 1

Bikpk

 !
j ri ¼ rðmÞ

i

" #
¼ E ri j ri ¼ rðmÞ

i

h i
¼ rðmÞ

i : ð11Þ

Also, the non-overestimation condition is an inherent feature of
the conditional expected static wind load since we have

rðminÞ
j rE rj j ri ¼ rðmÞ

i

h i
rrðmaxÞ

j ; 8 jA 1;nr½ �; ð12Þ

where E rj j ri ¼ rðmÞ
i

h i
is the average of the jth response conditioned

on ri ¼ rðmÞ
i . In a Gaussian-context, Eq. (12) reads

gðminÞ
j rgðmÞ

i ρrjri rgðmaxÞ
j ; 8 jA 1;nr½ �: ð13Þ

Because of the properties (11) and (12), the envelope value and
non-overestimation conditions are ipso facto fulfilled and the
conditional expected static wind load introduced in (8) is a formal
kind of ESWL, that is readily applicable in non-Gaussian frame-
works. This observation is central to the following developments
and provides the necessary information to extend the classical
notions of ESWL in a non-Gaussian framework. Indeed, what
Kasperski (1992) used to call “[…] the most probable extreme load
[…]” could actually be understood as the average load (not the
mode nor the median) conditioned upon recovery of the con-
sidered response, and, in some sense, the conditional expected
static wind load extends the definition of the LRC-based ESWL into
a non-Gaussian framework.

The developments aiming at the establishment of such condi-
tional expected static wind loads (8) are classified as Conditional
Expected Load (CEL) method.

3.2. The bicubic model

In this section, we now derive a model for the conditional load-
response PDF ψpk j ri ðpk; riÞ such that the non-Gaussian conditional
expected SWL formulation seeks (i) consistency, the model should
develop into the Gaussian formulation as a limit case, (ii) applic-
ability, large ranges of non-Gaussianity in the random processes
shall be covered, (iii) accuracy with available statistical informa-
tion and (iv) simplicity of the analytical formulation. The latter
ensures a computational efficiency which is required for the sub-
sequent envelope reconstruction problem.

In this study, we consider the Hermite moment model intro-
duced by Winterstein (1988) for the approximation of the PDF. We
motivate this choice by several reasons. The model is convenient
and well-known in the wind engineering community for different
applications. Also, it is the cornerstone of the model for non-
Gaussian peak factor developed by Kareem and Zhao (1994) which
has a large applicability and accuracy. Finally, using this model for
non-Gaussian peak factors, a consistent approach requires that the
Hermite moment model should be kept for the PDF.

Driven by the definition we gave the conditional expected SWL,
the establishment of a non-Gaussian ESWL requires the condi-
tional PDF of the loading given an envelope value. This implies to
first approximate the marginal PDFs, the joint PDF and, then, the
conditional PDF of the loads and responses.

Probability density function: We briefly review the Hermite
polynomial transformation method. We model an aerodynamic
pressure p and a structural response r as two cubic monotonic
transformations g �ð Þ and h �ð Þ of two correlated standard Gaussian



Fig. 2. Gaussian PDF ψN
p ðpÞ and non-Gaussian PDF ψC

pðpÞ obtained by the Hermite
moment model, Eq. (16), of a standard random variable p.
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variables u and v such that

p¼ gðuÞ ¼ αu

bu

u3

3
þauu2þðbu�1Þu�au

� 	
; ð14Þ

r¼ hðvÞ ¼ αv

bv

v3

3
þavv2þðbv�1Þv�av

� 	
; ð15Þ

where the parameters αu; au; bu are tuned to match the variance
σ2
p, skewness coefficient γ3;p and excess coefficient γe;p of the zero-

mean random variable p and the parameters αv, av and bv are
tuned to match the variance σ2

r , skewness coefficient γ3;r and
excess coefficient γe;r of the zero-mean random variable r. Pro-
vided g(u) and h(v) are monotonic, the PDFs of the variables p and
r read

ψ C
pðpÞ ¼

ψN
u ðuðpÞÞ

dg
du

ðuðpÞÞ











; ψ C

r ðrÞ ¼
ψN

v ðvðrÞÞ
dh
dv

ðvðrÞÞ











; ð16Þ

where the symbol “C” stands for “Cubic model”, ψN
u ðuÞ ¼

ð1=
ffiffiffiffiffiffi
2π

p
Þ exp �u2=2

� �
is the normal PDF (the symbol “N ” stands

for “N ormal”) and uðpÞ ¼ g�1ðpÞ, vðrÞ ¼ h�1ðrÞ read

uðpÞ ¼ ζuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cuþζ2u

q� 
1=3
þ ζu�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cuþζ2u

q� 
1=3
�au; ð17Þ

vðrÞ ¼ ζvþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvþζ2v

q� 
1=3
þ ζv�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvþζ2v

q� 
1=3
�av; ð18Þ

with cu ¼ ðbu�1�a2uÞ3, ζuðpÞ ¼ 3
2bu auþp=αu
� ��a3u and cv ¼ ðbv�

1�a2v Þ3, ζvðrÞ ¼ 3
2bv avþr=αv
� ��a3v . Eq. (16) requires that the cubic

transformations (14)–(15) are monotonic. This is ensured by the
monotone limitations bu�1�a2uZ0 and bv�1�a2vZ0 (Choi and
Sweetman, 2010).

The monotone limitation limits the effective region of skew-
ness γ3 and excess γe coefficients where the approximation of
random variables using the cubic transformation is applicable. In
the case of slight deviations from the monotone limitation,
adjustments are nevertheless proposed in Peng et al. (2014). This
limitation is illustrated by the curve in Fig. 1 and the dot identifies
the couple of ðγ3; γeÞ for which the PDF, Eq. (16), is illustrated
in Fig. 2.

Joint probability density function: The joint PDF of the aero-
dynamic pressure p and the structural response r modeled as two
cubic monotonic transformations is given by

ψB
prðp; rÞ ¼

ψN
uvðu pð Þ; v rð ÞÞ

j Jðu pð Þ; v rð ÞÞj ; ð19Þ

where
ψN

uvðu; vÞ¼1= 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ρ2uv

p� �
exp −u2þ2ρuv u v−v2

� �
= 2−2ρ2uv
� �� �

is
the Gaussian joint PDF of u and v, the symbol “B” stands for
Fig. 1. The domain of applicability of the Hermite moment model is the
hatched area.
“Bicubic model”, and Jðu; vÞ ¼ ðdg=duÞ dh=dv is the Jacobian of the
transformation (Papoulis, 1965). The cross-moments of the ran-
dom variables p and r are defined by

E½pmrn� ¼∬R2gðuÞmhðvÞnψN
uvðu; vÞ du dv; ð20Þ

where m and n are the orders of p and r, respectively. We propose
to use a bicubic model with 7 parameters, αu;αv; au; av;bu; bv;ρuv.
These 7 parameters are used to fit 7 statistical moments σp;σr;
γ3;p; γe;p; γ3;r; γe;r;ρpr respectively. In our bicubic model of joint PDF
(19), the correlation coefficient ρpr ¼ E½pr�=ðσpσrÞ is thus the only
imposed cross-moment. Actually, one could want to derive a joint
PDF targeting other cross-moments. However, this is not our scope
because the mathematical formulations may rapidly become
complex. This explanation supports the primary choice to only
target one cross-moment, through the correlation coefficient, as a
compromise between accuracy and simplicity. The correlation
coefficient between p and r is obtained as a function of parameters
of the bicubic model, including the correlation ρuv of the two
Gaussian processes u and v, by plugging g uð Þ and h vð Þ into the
definition of the correlation coefficient, and working out the
algebra,

ρpr ¼
1

σpσr
∬R2gðuÞhðvÞψN

uvðu; vÞ du dv;

¼ αuαv

σpσr
ρuv 1þ2auav

bubv
ρuvþ

2
3bubv

ρ2
uv

� 	
: ð21Þ

The solution of the cubic Eq. (21) in ρuv reads

ρuvðρprÞ ¼ dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qþd2

q� 	1=3

þ d�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qþd2

q� 	1=3

�auav; ð22Þ

where d¼ 3
4 auavbubv�a3ua

3
vþ3bubvρprσpσr= 4αuαvð Þ and q¼ bubv=

�
2�a2ua

2
v Þ3 with the condition bubv=2�a2ua

2
vZ0.

Fig. 3 illustrates the joint PDFs computed from Eq. (19) for
correlation coefficients ρpr equal to 0 and 0.5, and for three sets of
ðγ3; γeÞ. Fig. 3(a) and (d) shows limit cases where the variables are
Gaussian. The intermediate case of joint PDFs of one normal
variable and another non-Gaussian is illustrated in Fig. 3(b) and
(e). For two non-Gaussian variables, the joint PDFs are drawn in
Fig. 3(c) and (f). These illustrations show that a wide variety of
joint PDF might be spanned by this bicubic transformation
method.

Conditional probability density function: The conditional PDF of
p given r is written

ψB
pj rðp; rÞ ¼

ψN
uj vðuðpÞ; vðrÞÞ
dg
du

ðuðpÞÞ











; ð23Þ



Fig. 3. Joint PDFs ψB
prðp; rÞ obtained by the bicubic model, Eq. (19), of two standard random variables p and r for different couples ðγ3 ; γeÞ and two correlation coefficients

0 and 0.5.

Fig. 4. Gaussian conditional PDF ψN
pj rðp; rÞ and non-Gaussian conditional PDF ψB

pj rðp; rÞ obtained by the bicubic model, Eq. (23), of p given r¼ 3:5 for different couples ðγ3 ; γeÞ
and a correlation coefficient ρpr ¼ 0:5.
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where ψN
uj vðu; vÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2

uv

p ffiffiffiffiffiffi
2π

p� �
exp �ðu�vρuvÞ2=ð2�2ρ2

uvÞ
h i

is the Gaussian joint PDF of u given v. The conditional mean of p
given r is obtained by

μB
pj rðrÞ ¼

Z
R

gðuÞψN
uj vðuðpÞ; vðrÞÞdu; ¼

αu

3bu
vðrÞ3�3vðrÞ
� �

ρ3
uv

�

þ3au vðrÞ2�1
� �

ρ2
uvþ3buvðrÞρuv

�
: ð24Þ

For standard variables p and r, Fig. 4 illustrates the conditional
PDFs of p given r¼ 3:5 computed from Eq. (23) with a correlation
coefficient ρpr ¼ 0:5. Two intermediate cases are shown in Fig. 4:
(a) the random variable p is normal and r is not and (b) the ran-
dom variable p is non-Gaussian and r is normal. Fig. 4(c) illustrates
the case for two non-Gaussian random variables. Significant dif-
ferences between the conditional mean value obtained through
the bicubic model μB

pj rð3:5Þ and the Gaussian one, μN
pj rð3:5Þ ¼

rρpr ¼ 1:75, can be observed in Fig. 4.
Formulation of the conditional expected SWL with the bicubic

model: The kth loading component of the ESWL (pðe;mÞ ¼ pðB;mÞ)
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that targets the ith envelope value rðmÞ
i is defined as

pðB;mÞ
k ¼ μB

pk j ri rðmÞ
i

� �
; ð25Þ

where μB
pk j ri ðr

ðmÞ
i Þ is given by Eq. (24) with p� pk and r� ri given

ri ¼ rðmÞ
i . The ESWL given by (25) is an approximation of the exact

conditional expected SWL (8), i.e., pðB;mÞ
k � pðE;mÞ

k , since the joint and
conditional PDFs are approximations through the proposed bicu-
bic model of the formal ones. As a consequence, the envelope
value (5) and non-overestimation (12) conditions may be not
fulfilled, as studied in the illustrations.

In case both variables p and r are Gaussian random variables,
the parameters of the cubic transformations become

αu-σp; αv-σr; bu-1; bv-1; au-0; av-0; ð26Þ
which yields ρpr ¼ ρuv in Eq. (22) and in Eq. (24) the conditional
mean value of p given r becomes

μN
pj rðrÞ ¼

r
σr
ρprσp: ð27Þ

Finally the kth loading component expressed by Eq. (25) degen-
erates into the LRC formulation

pðL;mÞ
k ¼ μN

pk j ri ðr
ðmÞ
i Þ ¼ rðmÞ

i

σri
ρpkri

σpk
; ð28Þ

as a limit case, where the symbol “L” stands for “Load”-response
correlation method. In a Gaussian context, the ESWL given by (28)
is the exact conditional expected SWL (8), i.e., pðL;mÞ

k ¼ pðE;mÞ
k , since

the joint and conditional PDFs are Gaussian ones and no approx-
imation is made. The envelope value (5) and non-overestimation
(13) conditions are therefore fulfilled with the LRC-based ESWLs in
a Gaussian context. If the LRC-based ESWLs are used in the case of
non-Gaussianities along with “non-Gaussian” peak factors, the
envelope value condition is still satisfied since

rðmÞ
i ¼ gðmÞ

i σri ¼
Xnl

k ¼ 1

Bik gðmÞ
i

Xnl

l ¼ 1

Bilρpkpl
σpk

σpl
=σri

 !
; ð29Þ

and the term in parenthesis corresponds to the LRC-based ESWLs
with ρpkri

¼ Pnl
l ¼ 1 Bilρpkpl

σpl
=σri . This demonstrates that the

envelope value condition is not a sufficient condition to ensure
that the ESWL is the conditional expected one.

3.3. Conditional sampling technique

Common practice consists in identifying extreme values of
structural responses on each observation window and sampling
the associated pressure distributions (Holmes, 1988; Tamura et al.,
2002). The common CST-based ESWL (pðe;mÞ ¼ pðS;mÞ) is then
defined as the statistical average of these sampled load patterns

pðS;mÞ ¼mean
nT

p̂ðtkÞ; kA ½1;…;nT � ð30Þ

where p̂ðtkÞ is the kth load pattern associated with the extreme
value r̂ i of a structural response on the kth observation window
and occurring at time tk. The average is made on load patterns
producing the extreme values on each observation window, each
one being slightly different from the envelope value, i.e., r̂ iarðmÞ

i .
In a statistical framework, where time series are available,

envelope values of structural responses may also be obtained with
inferential statistics on realizations. The observed extreme values
of the ith structural response are identified on each observation
window and their average, tends to the exact envelope value,
denoted E r̂ i

� �
, as the number of observation windows increases.

In a Gaussian framework, the CESWL pðE;mÞ associated with the
ith structural response is linear with respect to the value given to
ri, see Eq. (27). Hence, if the envelope value computed is the exact
one, i.e., rðmÞ

i ¼ E r̂ i
� �

, the formulation given by Eq. (30) tends to the
conditional expected SWL as the number of observation window
increases, i.e., pðS;mÞ-pðE;mÞ.

In a non-Gaussian framework, the CESWL pðE;mÞ associated with
the ith structural response is nonlinear with respect to the value
given to ri and thus the loading pðS;mÞ does not converge toward
the conditional expected SWL as the number of observation win-
dow increases, i.e., pðS;mÞ↛pðE;mÞ, even if the peak factor is the exact
one. The more the number of observation windows is considered,
the more the envelope value condition (5) is fulfilled while the
non-overestimation condition (6) is not naturally fulfilled, as stu-
died in the illustrations.

3.4. Two-step adjustment method

The above developments have shown that the equivalent static
wind loads pðe;mÞ with e�L (LRC), e� S (common conditional
sampling) or e� B (bicubic model), do not necessarily satisfy the
envelope value condition, nor the non-overestimation condition.

If the envelope value condition is not fulfilled under the original
ESWLs pðe;mÞ, scaled ESWLs ~pðe;mÞ are defined for this purpose by

~pðe;mÞ ¼ αðe;mÞpðe;mÞ; ð31Þ
where the scaling coefficient αðe;mÞ is determined to ensure the
envelope value condition. Should the fulfillment of the non-
overestimation condition fail under scaled ESWLs, it is always
possible to define adjusted ESWLs �pðe;mÞ, satisfying the 2 condi-
tions, by

�pðe;mÞ ¼ βðe;mÞ○αðe;mÞpðe;mÞ; ð32Þ
where the local coefficients βðe;mÞ, an nl � 1 vector, adjust the
scaled ESWLs ~pðe;mÞ in order to fulfill the non-overestimation
condition. These local coefficients should slightly increase or
decrease the components of the ESWL without distorting too
much the scaled ESWL. These coefficients have to be as close to
unity as possible but make sure the non-overestimation condition
is met. Computation of the local coefficients vector βðe;mÞ is for-
malized here as a constrained nonlinear optimization. We want to
hold the envelope value condition and to satisfy the non-
overestimation condition by finding the minimum of a problem
specified by

min
βðe;mÞ

Xnl

j ¼ 1

βðe;mÞ
j �1




 


γ ; ð33Þ

under the linear constraints

þBp� ðe;mÞ �rðmaxÞ r0;

�Bp� ðe;mÞ þrðminÞ r0;Xnl
j ¼ 1

Bijp�
ðe;mÞ
j ¼ rðmÞ

i :

8>>>>><
>>>>>:

ð34Þ

The first two constraints in Eq. (34) are the non-overestimation
condition while the third one corresponds to the envelope value
condition. Symbol γ is a positive coefficient taken here equal to
2 as a compromise between accuracy and convergence of the
optimization. The magnitudes of αðe;mÞ and βðe;mÞ are used in the
illustrations to compare ESWL formulations and identify
optimal ones.
4. Principal static wind loads

4.1. Extension in a non-Gaussian framework

This section provides a generalized definition of (the basis) of
PSWLs for non-Gaussian structural responses. It must be
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emphasized that this new definition is in accordance with the one
given in Blaise and Denoël (2013) in the particular case of Gaussian
structural responses.

The nl � nr ESWL matrices Pðe;minÞ and Pðe;maxÞ consist of columns
collecting the ESWLs pðe;mÞ, with eA L;S;Bf g, computed for all
envelope values, minima and maxima, respectively. We define an
nl � 2nr matrix PðeÞ collecting all ESWLs

PðeÞ ¼ ½Pðe;minÞPðe;maxÞ�: ð35Þ
The PSWLs are defined as the columns of the principal matrix PðpÞ

resulting from the singular value decomposition (SVD) of PðeÞ

P eð Þ ¼ P pð ÞSV⊤: ð36Þ
The main diagonal of S gathers the principal coordinates, while V
collects the combination coefficients to reconstruct the matrix PðeÞ.
PSWLs are ordered by decreasing variance and only the first few
modes are retained for the envelope reconstruction problem
(Blaise and Denoël, 2013).

The PSWLs, derived from Eq. (36), require normalization before
the envelope reconstruction. Two normalized PSWLs, Pðp;1Þ

i and
Pðp;2Þ
i , are defined for each PSWL by

Pðp;1Þ
i ¼ αðp;1Þ

i PðpÞ
i ; Pðp;2Þ

i ¼ αðp;2Þ
i �PðpÞ

i

� �
; ð37Þ

where αðp;1Þ
i and αðp;2Þ

i are two positive coefficients applied to
satisfy the tangency condition. Note that in a Gaussian framework:
αðp;1Þ
i ¼ αðp;2Þ

i . The tangency condition is such that the ith static
response Rðp;1Þ

i ¼ BPðp;1Þ
i under a PSWL is somewhere tangent to the

envelope, while there is no overestimation anywhere else. The
same definition holds for Rðp;2Þ

i . Mathematically, we may write

8 i; ð( jA 1;nr½ � : Rðp;1Þ
ji ¼ rðmaxÞ

j or Rðp;1Þ
ji ¼ rðminÞ

j Þ
4 ðrðminÞ

j rRðp;1Þ
ji rrðmaxÞ

j 8 jA 1;nr½ �Þ: ð38Þ

PSWLs are not derived from adjusted ESWLs but from the original
ones. Indeed, even if ESWLs do not fulfill the envelope value and
non-overestimation conditions, PSWLs anyway have to be nor-
malized to fulfill the tangency condition. Furthermore in the case
of large non-Gaussianity, adjusted loadings may be significantly
different from the original ones; this is shown later in the illus-
trations. However, both ESWL bases have been investigated by the
authors and it was observed that the efficiency of the PSWLs for
the envelope reconstruction problem is sometimes better, some-
times worse, considering adjusted ESWLs rather than the original
ones for the SVD operation. Besides, this positive or negative
impact on the envelope reconstruction is rather low. The
demanding computation of the local coefficients βðe;mÞ is therefore
not justified. Thence we recommend the use of the original ESWLs
for computing PSWLs and only this approach is illustrated in the
present paper.

4.2. Envelope reconstruction without combinations

The sequential reconstruction ~r ðminÞ
ðkÞ ; ~r ðmaxÞ

ðkÞ
� �

of the envelope

rðminÞ; rðmaxÞ� �
after considering the first k normalized PSWLs is

expressed by the recursive relations for k odd

~r ðmaxÞ
ðkÞ ¼max ~r ðmaxÞ

ðk�1Þ;R
ðp;1Þ
kþ 1
2

� 	
;

~r ðminÞ
ðkÞ ¼min ~r ðminÞ

ðk�1Þ; R
ðp;1Þ
kþ 1
2

� 	
;

~r ðmaxÞ
ðkþ1Þ ¼max ~r ðmaxÞ

ðkÞ ;Rðp;2Þ
kþ 1
2

� 	
;

~r ðminÞ
ðkþ1Þ ¼min ~rðminÞ

ðkÞ ; Rðp;2Þ
kþ 1
2

� 	
; ð39Þ
with ~r ðmÞ
ð0Þ ¼ 0. Furthermore, the total envelope r0ðminÞ;

�
r0ðmaxÞ� is

approximated by adding to ~r ðminÞ
ðkÞ ; ~r ðmaxÞ

ðkÞ
� �

the vector of mean
responses μr0 .

4.3. Envelope reconstruction with combinations

Combining a reduced set of PSWLs performs better for the
envelope reconstruction than applying successively each normal-
ized PSWL separately (Blaise et al., 2012). For these reasons, only
the first few np PSWLs are retained and combinations of them are
considered instead

pðcÞ
ðkÞ ¼ ½PðpÞ

1 ;PðpÞ
2 ;…;PðpÞ

np
�qðcÞ

ðkÞ; ð40Þ

with qðcÞ
ðkÞ being an np � 1 vector of combination coefficients and

pðcÞ
ðkÞ an nl � 1 vector representing a static wind load obtained by

combinations of the first np PSWLs. The combination coefficients
in qðcÞ

ðkÞ are such that the static responses rðcÞðkÞ ¼ BpðcÞ
ðkÞ, associated

with the combinations of PSWLs satisfy the tangency condition.
The envelope reconstruction problem requires the determination
of a sufficient number of PSWLs and combinations thereof, such
that the envelope ~r ðmÞ

ðkÞ of the structural responses be close enough
—within an a priori given accuracy, and metrics— to the actual
envelope rðmÞ. This reconstruction of the envelope may be seen in
an iterative manner, seeking at each step the combination that will
appropriately fill the gaps between the actual envelope and the
envelope reconstructed with the former iterations.

At the kth iteration, the sequential reconstruction ~r ðminÞ
ðkÞ ; ~r ðmaxÞ

ðkÞ
� �

of the envelope rðminÞ; rðmaxÞ� �
is expressed by the recursive relations

~r ðminÞ
ðkÞ ¼min ~rðminÞ

ðk�1Þ; r
ðcÞ
ðkÞ

� �
;

~r ðmaxÞ
ðkÞ ¼max ~r ðmaxÞ

ðk�1Þ; r
ðcÞ
ðkÞ

� �
: ð41Þ

The relative errors between the envelope and its reconstruction
are estimated by

εðmÞ
ðkÞ ¼ ~r ðmÞ

ðkÞ �rðmÞ
� �

CrðmÞ; ð42Þ

where division is performed element by element.
The combination coefficients qðcÞ

ðkÞ are determined with a con-
strained nonlinear optimization problem chosen as

min
qðcÞ
ðkÞ

f εðmÞ
ðkÞ

� �
¼ εðminÞ

ðkÞ




 





 



1
þ εðmaxÞ

ðkÞ




 





 



1
; ð43Þ

under the linear constraints of the non-overestimation conditions

þB½PðpÞ
1 ;PðpÞ

2 ;…;PðpÞ
np �q

ðcÞ
ðkÞ �rðmaxÞr0;

�B½PðpÞ
1 ;PðpÞ

2 ;…;PðpÞ
np �q

ðcÞ
ðkÞ þrðminÞr0:

8<
: ð44Þ

The cost function (43) to be minimized aims at the minimization
of the relative reconstruction errors.

A procedure to guess a good initial set of combination coeffi-
cients to start the optimization is described. First, each retained
PSWL for combinations is multiplied by coefficients chosen in the
triplet �αðp;2Þ

i ;0;αðp;1Þ
i

n o
. Second, all possible combinations of each

coefficient of PSWL are considered. Discarding the trivial combi-
nation, for np PSWLs, the number of possible combinations
amounts to 3np �1. For instance, for np ¼ 2 PSWLs, the 8 sets of
combination coefficients are given by each column of the matrix
below

�αðp;2Þ
1 �αðp;2Þ

1 �αðp;2Þ
1 0 0 αðp;1Þ

1 αðp;1Þ
1 αðp;1Þ

1

�αðp;2Þ
2 0 αðp;1Þ

2 �αðp;2Þ
2 αðp;1Þ

2 �αðp;2Þ
2 0 αðp;1Þ

2

2
4

3
5:

Third, each set of combination coefficients (each column above) is
scaled by a scalar to fulfill the tangency condition. Fourth, the cost
function is evaluated for each set of combination coefficients and
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the set providing the minimum cost function is selected as the
initial value q0ðkÞ for the optimization. After optimization, the
reconstructed envelope is updated and we proceed to the next
iteration. We recommend the sequential quadratic programming
method for this constrained nonlinear optimization.
5. Illustrations

A rigid gable-roofed low-rise building is analyzed under wind
actions. Extensive wind-tunnel tests have been performed to study
the aerodynamic pressure field on these usual structures. For
normal dimensions, they are common to build for many applica-
tions, mainly residential and industrial. The structure used for
illustrations has sharp edges between the vertical walls and the
roof. Depending on the angle of attack of the wind, the aero-
dynamic pressure field for this roof configuration is known to
exhibit mildly to strongly non-Gaussianities. The roof is supported
by a collection of frames and we focus on two specific ones for the
illustrations.

5.1. Wind tunnel tests

The dimensions of the structure are a width of 36.6 m (120 ft),
an eave height of 3.65 m (12 ft), a length of 57.2 m (187.5 ft) and a
roof slope of 1:12. Wind-tunnel measurements have been done at
the Boundary Layer Wind Tunnel Laboratory of the University of
Western Ontario (Ho et al., 2005), see the scaled model in Fig. 5.

The pressure time series are available from (Main, 2006) and
can be used through windPressure (Main and Fritz, 2006), a
Matlab-based Database-Assisted Design software available on the
internet. The length scale is 1:100, the sampling frequency in the
wind-tunnel is 500 Hz and the terrain condition is suburban,
corresponding to a roughness length of 0.3 m. The mean wind
speed at eave height is equal to 5.91 m/s in the wind tunnel. In full
scale, the mean wind speed V at eave height is equal to 14.73 m/s
and the velocity and time scales are 1/2.5 and 1/40.1, respectively.
The sampling frequency corresponds to 12.5 Hz in full scale (a time
step equal to 0.08 seconds). Each measurement lasts about 66.6
min full scale. The leakage case is no opening in the building.

Pressure coefficients are usually referenced using the mean
wind speed at a reference height V; they are defined from the
aerodynamic pressures by

c0p ¼
1

1=2ρV2p
0;

along with

cðe;mÞ
p ¼ 1

1=2ρV2p
ðe;mÞ; CðpÞ

p ¼ 1

1=2ρV2P
ðpÞ;

and where ρ¼ 1:225 kg/m3 is the air density. A positive pressure
coefficient means aerodynamic pressure acts towards the inner of
Fig. 5. Picture of the rigid gable-roofed building in the wind-tunnel. From wind-
Pressure (Main and Fritz, 2006).
the building while a negative coefficient indicates suction (with
reference to the atmospheric pressure). For convenience, ESWLs as
well as PSWLs are illustrated with the pressure coefficients.

Fig. 6 shows, in an exploded view, the tap array (indicated by
the dots) as well as tributary areas for each pressure tap (nl ¼ 395)
on the vertical faces along the length of the building and on
the roof.

The vertical faces and the two slopes of the roof are slightly
shifted each other for clarity. Taps on the vertical faces along the
width of the building are disregarded in the structural analysis and
are thus not shown in Fig. 6. The wind direction θ¼340° is chosen
for illustration, see Fig. 6.

Fig. 7 shows the maps of the mean and standard deviations
along with the skewness and excess coefficients of the pressure
coefficients.

The roof is mainly loaded close to the sharp edge roof con-
nection with the gable end about a quarter of the length of the
building, along Frame #2. The mean loading is suction and large
standard deviations close to the gable end is explained by the flow
detachment intensity which is important on this windward side of
the roof since the air flow encounters the structure's roof with its
sharp edge connection between the horizontal and vertical parts.
The aerodynamic pressure field exhibits also large skewness and
excess coefficients, up to �2 and 8, respectively. This must be
taken into account in a non-Gaussian analysis.

5.2. Description of the structure

The roof is supported by 11 fixed-base frames placed every
5.72 m. The second and third internal structural frames are used
for illustrations and their positions are identified with triangles in
Fig. 6, numbered from bottom to top in the figure.

Each frame is clamped and the connections are considered as
infinitely rigid. Columns are HE 450 AA and beams are IPE 450
with a 235 MPa steel grade and a 205,000 MPa Young's modulus.
The finite element model of one frame, see Fig. 8, is an assembly of
classical 2-D beam elements with three degrees of freedom per
node (rotation, horizontal and vertical displacements).

Each frame is divided into 40 finite elements and the number of
degrees of freedom is thus equal to 123 per frame. The aero-
dynamic pressure field acting on the cladding is transferred by the
girts and purlins to each frame of the building (Main and Fritz,
2006). Girts and purlins, considered as hinged-hinged beams, are
not modeled and each frame is analyzed separately. The design of
the steel frames has been done following the Eurocode (2005).

Only two structural responses in the second and third frames,
the bending moments at the nodes identified in Fig. 8 and labeled
A and B, are considered to illustrate ESWLs. However, the bending
moments at each node of the model are considered for the
envelope reconstruction problem ðnr ¼ 880Þ and the computation
of the PSWLs. Envelope reconstruction using PSWLs is illustrated
with both considered frames.

5.3. Determination of the envelope

Fig. 9 represents each step to compute the total envelope of the
bending moments in both considered frames. For sake of clarity,
only a scale is given for each graph and the numerical values for
the two considered bending moments are reported in Table 1.

The total envelope results from an element-by-element multi-
plication of the peak factors and the standard deviations and by
adding the mean component. Bending moments in the second
frame exhibit large skewness and excess coefficients resulting in
an asymmetric envelope rðminÞ; rðmaxÞ� �

. On the opposite, bending
moments in the third frame exhibit moderate skewness and
excess coefficients resulting in a nearly symmetric envelope, close



Fig. 6. (a) Exploded view of the tap array with varying tap density, the triangles identify two frames considered for illustrations. Only aerodynamic pressures measured at
the taps contributing to the reaction forces of the girts and purlins attached to (b) Frame #2 and (c) Frame #3 are used, respectively, for illustrations. The wind direction
θ¼ 3401 is studied.
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Fig. 7. Maps of (a) mean, (b) standard deviation, (c) skewness and (d) excess of the pressure coefficients for a 340° wind direction.

Exploded View

A, Frame#2

B, Frame#3

Fig. 8. Elevation of a frame. The dots identify the nodes of the finite element
model. The bending moments at the two nodes A and B and identified by the circles
are considered for the illustrations of ESWLs. The exploded view is used for the
illustrations.
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to the limit case for Gaussian structural responses. Indeed, the
aerodynamic pressure field acting on the third frame is nearly
Gaussian.

Fig. 10 depicts the skewness and excess coefficients for the
recorded aerodynamic pressures and the bending moments. Some
processes are close to the monotone limitation and only a few (5
out of 1275 processes) are slightly outside. When necessary, the
vertical mapping consisting in finding on the monotone limitation
the skewness coefficient for the exact excess coefficient is applied,
as recommended in Peng et al. (2014).
5.4. Equivalent static wind loads

This section aims at comparing ESWLs computed with the
3 different methods described in Section 3: the Gaussian (LRC
method), the non-Gaussian (CEL method with the bicubic model)
and the conditional sampling technique. The magnitude of the
coefficients, αðe;mÞ and βðe;mÞ, applied to satisfy the envelope and
non-overestimation conditions are compared to assess the for-
mulation accuracy, i.e., those with the coefficients closest to unity
are considered as more accurate. For the usual sampling technique,
the load scaling coefficient αðe;mÞ has to be understood as the ratio
between the envelope value and the one that would have been
obtained from realisations.

Fig. 11 illustrates the surfaces of influence, load-response cor-
relation coefficients and response-response correlation coeffi-
cients for the two considered bending moments A (min) and B
(max). The load-response correlation and the response-response
correlation coefficients help understanding the ESWL and struc-
tural response patterns, respectively. For example, the ESWL
associated with response A produces the envelope value of the
bending moment at the left support (Frame #2); furthermore
bending moments close to their envelope values are also expected
in both frames at the connection between columns and beams and



Fig. 9. Mean, standard deviation, skewness coefficient, excess coefficient, peak factors, envelope and total envelope for the bending moments of both considered frames.

Table 1
Numerical data associated with the two bending moments in Frame #2 and Frame #3, respectively.

Considered
response

μr0 (kNm) σr (kNm) γ3;r (–) γe;r (–) gðmaxÞ (–) gðminÞ (–) rðmaxÞ (kNm) rðminÞ (kNm)

A (min), Frame #2 32.8 19.0 1.0 2.3 6.4 �3.0 121.5 �57.9
B (max), Frame #3 �9.4 9.9 �0.2 0.4 3.9 �4.6 38.8 �45.2
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at mid-span where the correlation coefficients are large. This is
confirmed in Fig. 13.

Fig. 12 illustrates the ESWLs associated with the mean largest
minimum and maximum of the considered responses A and B,
respectively. First, third and fourth columns illustrate the original
ESWLs, the coefficients βðe;mÞ and the adjusted ESWLs. Also the
coefficients αðe;mÞ are given for each method. For response A, the
three methods produce original (unadjusted) ESWLs which have
similar patterns with slight differences in magnitude. This is not
the case for the response B, for which the leading edge is less
loaded with the ESWL computed from the sampling technique
than with the two other methods.

The target bending moment A is underestimated with the
original ESWLs, i.e., the envelope value condition is satisfied with
scaling coefficients larger than one, namely αðe;minÞ ¼ 1:13 for the
sampling technique and αðe;minÞ ¼ 1:10 for the non-Gaussian
method. Nevertheless the target bending moment B is under-
estimated with the sampling technique (αðe;maxÞ ¼ 1:12) and
slightly overestimated (αðe;maxÞ ¼ 0:98) with the non-Gaussian
method.
The range of variation for coefficients βðe;mÞ is also larger for
response A (up to 1.8) than for response B. For both responses, the
coefficients βðe;mÞ obtained with the sampling technique and the
non-Gaussian method are lower than those necessary for the LRC
method. For response B, the coefficients βðe;mÞ obtained with the
sampling technique and the non-Gaussian method are close to
one, i.e., the non-overestimation condition is nearly fulfilled under
the scaled ESWL; slight adjustments are sufficient. Conversely for
the LRC method, a larger range of variation for the coefficients
βðe;mÞ is necessary.

Figs. 13 and 14 illustrate the static bending moments in the
structure under the two scaled ESWLs associated with the bending
moments A and B, respectively. The bending moments under the
original and the adjusted ESWLs provide very similar profiles. The
responses under the three kinds of loadings (original, scaled and
adjusted) are distinguished with a discrepancy indicator εðeÞ that
measures the relative differences between the envelope
rðmaxÞ; rðminÞ� �

and the responses rðe;mÞ under the ESWLs, such as

εðeÞ ¼max rðe;mÞ �rðminÞ� �
CrðminÞ; rðe;mÞ �rðmaxÞ� �

CrðmaxÞ� �
;



0 2 4 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 2 4 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 10. Skewness γ3 and excess γe coefficients for (a) aerodynamic pressures and
for (b) bending moments.

0.5

0.36

Response A, Frame #2

Fr
am

e 
#2

Fr
am

e 
#3

−3 −2 −1 0

−0.6 −0.4 −0.2 0

Fig. 11. (a) Surface of influence, (b) load-response correlation coefficients and res

N. Blaise et al. / J. Wind Eng. Ind. Aerodyn. 149 (2016) 59–76 69
where division is performed element by element. Three such
indicators exist and are represented in Figs. 13 and 14.

For the bending moment A (in Frame #2), after scaling and
before adjustment of the ESWL (Fig. 13, o markers), over-
estimations do not occur in sections adjacent to the considered
bending moment but in other parts of Frame #2, where the cor-
relation with the bending moment A is large. No overestimation
occurs in Frame #3 when considering the ESWLs associated with
bending moment A. For the bending moment B (in Frame #3),
after scaling and before adjustment of the ESWL (Fig. 14, o mar-
kers), largest overestimations occur with the LRC method, hence
the highest range of variation for the coefficients βðe;maxÞ. With the
LRC method, no overestimation occurs in Frame #3 but very large
overestimations (nearly 40%) occur in Frame #2. These over-
estimations take place where (i) correlation with the bending
moment B is large, Fig. 11, and (ii) peak factors, Fig. 9, are very
different, as demonstrated by Eq. (13).

We have also computed the ESWLs for each bending moment
(in Frames #2 and #3) and for both envelopes (min and max).
Fig. 15 illustrates the associated scaling coefficients αðe;mÞ and also
maximum of the relative differences εðeÞ to the envelope of the
static responses under the scaled ESWLs. A similar range of var-
iation for the scaling coefficients αðe;mÞ are observed for the sam-
pling technique and the non-Gaussian method. For the sampling
technique, the fact that the envelope value condition is not ful-
filled is due to the low number of 10-min observation windows.
Indeed, provided the peak factor used for the envelope is the exact
one no scaling coefficient would be needed. We also recall that the
scaling coefficients αðe;mÞ are exactly equal to unity for the LRC
method. In terms of overestimation of the envelopes rðe;mÞ under
the scaled ESWLs, it is observed that (i) in Frame #2, larger over-
estimations are observed (up to 60%) with the LRC method (cross
0.36
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Response B, Frame #3
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ponse-response correlation coefficients in (c) Frame #2 and in (d) Frame #3.
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Fig. 12. Original (left) and adjusted (right) ESWLs and coefficients αðe;mÞ and βðe;mÞ for the bending moments A (m�min) and B (m�max). Conditional sampling technique
(e� S), LRC method (e�L) and conditional expected load method with the bicubic model (e� B).
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markers) than with the two other methods and (ii) in Frame #3,
large overestimations are only observed with the LRC method
while the other two methods perform very well. Note that the
sampling technique performs slightly better than the non-
Gaussian method, especially for the bending moments in Frame
#2.

To summarize, the non-overestimation condition seems to be
more easily fulfilled with the ESWLs derived from the sampling
technique and the non-Gaussian method than with the LRC
method. The extension of the original LRC method to a non-
Gaussian formalism improves the fulfillment of the non-
overestimation condition, i.e., smaller coefficients βðe;mÞ are
necessary than those obtained with the LRC method.

In the light of these results, the use of ESWLs with non-
Gaussian structural responses should receive more attention and
we should opt for the ESWLs derived from the sampling technique
or the proposed non-Gaussian method instead of the LRC method.
An additional reason why we advise the use of PSWLs for the ERP:
the problem of overestimation of the envelope does not occur.

5.5. Principal static wind loads

This section assesses the envelope reconstruction efficiency of
the bending moments in the eleven frames using combinations of
a limited number of PSWLs. The matrix PðpÞ collecting PSWLs
results from the singular value decomposition of PðeÞ, the
395�1760 (nl � 2nrÞ matrix collecting all ESWLs obtained either
by the conditional sampling technique (CST-based PSWLs) or the
LRC method (LRC-based PSWLs) or the CEL method with the
bicubic model (CEL-based PSWLs). This matrix factorization is
straightforward and the PSWLs are obtained right away. The nor-
malized cumulative summation of the principal coordinates Sii is
shown in Fig. 16.

The LRC method has the largest principal coordinates while the
sampling technique has the smallest. The ESWL basis obtained
with the sampling technique are actually more dissimilar than in
the two other approaches. The ESWLs are sampled from pressure
field and the small number of 10-min observation windows makes
it such that there is more variability in the ESWLs associated with
different responses, than what the LRC or CEL approaches—based
on smooth models—provide.

PSWLs have to be first normalized before using them for the
envelope reconstruction problem and Fig. 17 illustrates the first
four normalized PSWLs.

The first three principal loadings show important similarities in
their pattern and magnitude for the three methods while the
fourth principal loading obtained with the sampling technique is
completely different. The first principal loading produces a suction
on the entire roof while the second and third exhibit asymmetric
patterns, between the windward edge and the roof behind and
between the western and eastern parts of the roof, respectively.



Fig. 13. Static bending moments rðe;minÞ under scaled ESWLs associated with bending moment A. Relative differences εðeÞ between the envelope of the bending moments and
the bending moments obtained under the original, the scaled and the adjusted ESWLs. Positive relative differences (overestimations) are depicted outside the frame. Large
(unimportant) negative relative differences (depicted inside the frame) are not shown for sake of clarity.
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The second normalization for any PSWL is obtained with

Cðp;2Þ
p;i ¼ �αðp;2Þ

i

αðp;1Þ
i

Cðp;1Þ
p;i ;

see Eq. (37). Note that the ratio αðp;2Þ
i =αðp;1Þ

i , given in Fig. 17, has a
large range of variation [0.49 1.79] here while it is equal to one in a
Gaussian framework.

Fig. 18 illustrates the static bending moments under Cðp;1Þ
p;1 ; Cðp;2Þ

p;1 ;

Cðp;1Þ
p;3 and Cðp;2Þ

p;3 in Frames #2 and #3 as well as relative differences

between the static responses Rðp;1Þ
i and the envelope, defined as

εðp;1Þi ¼max Rðp;1Þ
i �rðminÞ

� �
CrðminÞ; Rðp;1Þ

i �rðmaxÞ
� �

CrðmaxÞ
n o

:

Bending moments under the PSWLs computed with the LRC
method and the non-Gaussian method are almost similar while
disparities are observed with the bending moments under Cðp;1Þ

p;1

and Cðp;2Þ
p;1 computed with the sampling technique. For the sampling

technique, lower relative differences are observed under Cðp;1Þ
p;1 in

comparison with the two other methods, but larger relative dif-
ferences are observed under Cðp;2Þ

p;1 . Notice that the PSWLs Cðp;1Þ
p;3 and

Cðp;2Þ
p;3 produce large bending moments at the specific sections

where the bending moments under Cðp;1Þ
p;1 and Cðp;2Þ

p;1 are rather low,
see at mid-height of the columns and at quarter-span and three
quarter-span of the roof.

Fig. 19 illustrates the reconstructed envelope with ten load
cases: (i) the first five PSWLs along with both normalizations are
applied successively (no combinations) and (ii) with optimized
combinations of the first four PSWLs. As expected, the recon-
structed envelopes in both frames have the same range of relative
errors, since PSWLs and combinations thereof aim at a global
reconstruction of the bending moments in the whole structure
(eleven frames). The reconstructed envelope is not satisfactory
applying the first 5 PSWLs without combination: relative errors
are large, up to �65%. For the same number of load cases, ten
combinations of the first 4 PSWLs produce a satisfactory recon-
struction of the envelope; the largest relative errors are observed
in sections where the bending moments are low.

The overall envelope reconstruction accuracy is assessed by
computing first two indicators

RðmÞ
ðkÞ ¼ E ~r ðmÞ

ðkÞ CrðmÞ
h i

; ð45Þ

chosen here as the percentage of reconstruction for each side of
the envelope in average and next

RðkÞ ¼
RðminÞ

ðkÞ þRðmaxÞ
ðkÞ

2
; ð46Þ

that is called the envelope reconstruction indicator.
The indicator of reconstruction RðkÞ gives a global picture of the

whole reconstruction of the bending moments in the entire
structure, i.e., in all 11 frames. The evolution of RðkÞ is depicted as a
function of number of load cases (from 2 to 10) derived by suc-
cessive applications of PSWLs (no combinations), or combinations
of them (two, four and eight PSWLs are combined), see Fig. 20. The
evolution of RðkÞ features a slow monotonic increase.

The reconstruction obtained with the conditional sampling
technique performs slightly worse than with the two other
approaches but this is not significant. Applying PSWLs without
combination gives a value of RðkÞ around 80% for 10 load cases and
10 combinations of the first 2 PSWLs do not bring a significant
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Fig. 14. Static bending moments rðe;maxÞ under scaled ESWLs associated with bending moment B. Relative differences εðeÞ between the envelope of the bending moments and
the bending moments obtained under the original, the scaled and the adjusted ESWLs. Positive relative differences (overestimations) are depicted inside the frame. Large
(unimportant) negative relative differences (depicted inside the frame) are not shown for sake of clarity.
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Fig. 15. Coefficients αðe;mÞ that scale the original ESWLs computed for both envelope values for each bending moment in Frame #2 and Frame #3. Maximum of the relative
differences εðeÞ to the envelope of the static responses under scaled ESWLs computed for each bending moment in Frame #2 and Frame #3.
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improvement. However, combinations of the first 4 and 8 PSWLs
give a value of RðkÞ around 90% and 95%, respectively. The com-
promise is to find a minimum number of load cases required to
achieve a fixed-level for RðkÞ by minimizing the number np of
PSWLs used for combinations. If the number of load cases nc or the
number np of PSWLs used for combinations to consider is too



Fig. 16. Normalized cumulative summation of the principal coordinates of the
principal loadings.

Fig. 17. First four nor
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large, one should re-consider another value for RðkÞ or relax the
tangency condition, i.e., accept overestimations of the envelope in
order to achieve a minimum level for RðkÞ.
6. Summary

Equivalent static wind loads have been derived and directly
used as a valuable tool in the design of structures. Further
researches put the concept forward by deriving static wind loads
that are no longer associated with one specific structural response,
to tackle more efficiently the envelope reconstruction problem. In
malized PSWLs.



61 kN 27 kN 

41 % 37 %

61 kN 27 kN 

43 % 42 %

61 kN 27 kN 

50 % 50 %

61 kN 27 kN 

49 % 50 %

Fig. 18. Static bending moments and relative differences with the envelope under Cðp;1Þ
p;1 ; Cðp;2Þ

p;1 ; Cðp;1Þ
p;3 and Cðp;2Þ

p;3 in Frames #2 and #3.
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Fig. 19. Reconstructed envelope and associated relative errors with ten load cases.
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Fig. 20. Evolution of the envelope reconstruction indicator RðkÞ as a function of the number of load cases.
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a Gaussian framework, the PSWL concept has been recently
introduced as an optimum basis for this purpose.

Since aerodynamic pressures may exhibit mildly to strongly
non-Gaussianities and therefore produce non-Gaussian structural
responses, we have extended the method of PSWLs to a non-
Gaussian framework. Substantial modifications to the original
formulation are made to deal with asymmetric envelopes of
structural responses. A methodology to combine efficiently several
PSWLs is proposed using constrained nonlinear optimization. It
has been demonstrated that PSWLs are still well-suited to form a
reduced basis of loadings and, by combination, produce an accu-
rate reconstruction of asymmetric envelopes.

PSWLs are derived from an SVD operation of ESWLs, hence a
novel formulation of ESWL for structures with quasi-static beha-
vior and subjected to non-Gaussian aerodynamic pressures has
been studied. Inspired by the LRC method in which Gaussian
conditional probability densities as well as their mean values are
required, the concept of conditional expected static wind load is
introduced. It is defined as the average wind loads conditioned
upon recovery of the considered response and a novel non-
Gaussian formulation of an ESWL has been obtained from a
bicubic model of non-Gaussian conditional probability density. We
have shown that this approach regularly extends the well-know
LRC method. Two other methods have been considered for com-
parison: the conditional sampling pressure technique and the
original LRC method.

In order to compare those methods, two required properties of
an ESWL have been formulated and investigated: the envelope
value and non-overestimation conditions. Indeed, the studied
ESWL formulations may not naturally satisfy these two conditions
and a procedure is proposed to scale and adjust original ESWLs
whenever necessary. It has been illustrated that the LRC method
may encounter some difficulties to satisfy the non-overestimation
condition, i.e., large local coefficients have to be applied to the
original ESWLs. Actually, the conditional sampling technique and
the proposed non-Gaussian method are better suited: they satisfy
the non-overestimation condition without excessively distorting
original ESWLs, i.e., adjusted ESWLs remain close to the original
ones. Computing ESWLs and using them as such, we thus
recommend the use of the proposed conditional expected load
method or the sampling technique instead of the LRC method in
the case of non-Gaussian structural responses.

However, concerning the envelope reconstruction efficiency, no
significant differences on the reconstruction efficiency are
observed between PSWLs based on the ESWLs obtained with any
of the three investigated methods.
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