
Computing k-binomial equivalence

& avoiding binomial repetitions

Michel Rigo

http://www.discmath.ulg.ac.be/

http://hdl.handle.net/2268/187305

28th October 2015

The notion of binomial coefficient of words is classical in COW.
See, for instance, Sakarovitch & Simon, Lothaire.

(
w

x

)

number of times x appears as a (scattered) subword of w

i.e., x occurs as a subsequence of w

We count the number of increasing maps
ϕ : {1, . . . , |x |} → {1, . . . , |w |} such that

ϕ(1) < · · · < ϕ(|x |)

wϕ(1) · · ·wϕ(|x |) = x

(
aabbab

ab

)

= 7

It generalizes the usual binomial coefficients for integers

(
am

an

)

=

(
m

n

)

, m,n ∈ N

Observe that

(
w

a

)

= |w |a , a ∈ A

We can easily compute coefficients:

(
w

ε

)

= 1,

(
w

x

)

= 0, if |w | < |x |

u, v ∈ A∗, a, b ∈ A,

(
ua

vb

)

=

(
u

vb

)

+ δa,b

(
u

v

)

coeff[u_, v_] := coeff[u, v] =

If[Length[v] == 0, 1,

If[Length[u] < Length[v], 0,

coeff[Drop[u, -1], v]

+ ((Last[u] == Last[v]) /. {True -> 1, False -> 0})

coeff[Drop[u, -1], Drop[v, -1]]

]

]

Definition

Let k ≥ 1. Two words u, v are k -binomially equivalent

u ≡k v

if and only if (
u

x

)

=

(
v

x

)

∀x ∈ A≤k .

Remark: 1-binomial equivalence = abelian equivalence.

One also finds the notion of k -spectrum of a word u

which is the (formal) polynomial in N〈A∗〉 of degree k

Specu,k =
∑

x∈A≤k

(
u

x

)

x .

Two words are k -binomially equivalent iff they have the same

k -spectrum. full information.

Example

The 2-spectrum of the word u = abbab is

Specu,2 = 1ε+ 2a + 3b + aa + 4ab + 2ba + 3bb.

The 3-spectrum of this word is

Specu,3 = Specu,2 + aab + 2aba + 3abb + 2bab + bba + bbb.

Note that the k -spectrum contains

(#A)k+1 − 1

(#A)− 1
(possibly zero) coefficients.

 grows exponentially with k .

2 + 3 =

(
5

1

)

, 1 + 4 + 2+ 3 =

(
5

2

)

, 1 + 2 + 3+ 2+ 1+ 1 =

(
5

3

)

In COW, there is a zoo of equivalence relations :

◮ abelian equivalence (since Erdős in 1961)

abbacba ∼ab cababba

◮ k -abelian equivalence (Karhumäki et al.)

|u|x = |v |x ∀x ∈ A≤k

◮ k -binomial equivalence

◮ (Parikh) matrix equivalence (Salomaa et al. 2000)

◮ Simon’s congruence (1975, Karandikar et al. 2015)

Supp(Specu,k) = Supp(Specv ,k)

applications to piecewise testable languages

Link with Parikh matrices.

A = {a1, . . . , ak}. The Parikh matrix mapping

ψk : A∗ → N
(k+1)×(k+1)

is the morphism defined by the condition:
if ψk (aq) = (mi ,j)1≤i ,j≤k+1, then for each i ∈ {1, . . . , k + 1},

mi ,i = 1, mq ,q+1 = 1,

all other elements of the matrix ψk (aq) being 0.

definition

Two words are M -equivalent, or matrix equivalent,
if they have the same Parikh matrix.

Example, #A = 2

Consider A = {a, b}. We have

ψ2(a) =

1 1 0
0 1 0
0 0 1

 , ψ2(b) =

1 0 0
0 1 1
0 0 1

and

ψ2(abbab) = ψ2(a)ψ2(b)ψ2(b)ψ2(a)ψ2(b) =

1 2 4
0 1 3
0 0 1

 .

Parikh matrices for an alphabet of cardinality k encode

k(k + 1)/2

of the binomial coefficients of a word w for subwords of length ≤ k .

Theorem (A. Mateescu, A. Salomaa, K. Salomaa, S. Yu 2001)

Let A = {a1, . . . , ak} be an (ordered) alphabet.
Let w be a finite word and ψk (w) = (mi ,j)1≤i ,j≤k+1.
Then

mi ,j+1 =

(
w

ai · · · aj

)

for all 1 ≤ i ≤ j ≤ k .

 partial information : O(k2) vs. Ω((#A)k)

Example over A = {a, b, c}

ψ3(w) =

1
(
w
a

) (
w
ab

) (
w
abc

)

0 1
(
w
b

) (
w
bc

)

0 0 1
(
w
c

)

0 0 0 1

ψ3(wb) =

1
(
w
a

) (
w
ab

) (
w
abc

)

0 1
(
w
b

) (
w
bc

)

0 0 1
(
w
c

)

0 0 0 1

1 0 0 0

0 1 1 0

0 0 1 0

0 0 0 1

For instance, (
wb

ab

)

=

(
w

a

)

+

(
w

ab

)

Also generalized Parikh mappings ψu , for all words u ∈ A∗,
can be defined.

Let u = u1 · · · uℓ.
If ψu(a) = (mi ,j)1≤i ,j≤ℓ+1, then for each i ∈ {1, . . . , ℓ+ 1},
mi ,i = 1, and for each i ∈ {1, . . . , ℓ},

mi ,i+1 = δa,ui ,

all other elements of the matrix ψu(a) being 0.

Remark

We get back to the ’classical’ Parikh matrices with

u = a1a2 · · · ak

if A = {a1, . . . , ak}.

We have

ψabba(a) =

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

, ψabba(b) =

1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

.

Natural generalization of the theorem of Mateescu et al.

Theorem (Şerbănuţă 2004)

Let u = u1 · · · uℓ and w a word. Let ψu(w) = (mi ,j)1≤i ,j≤ℓ+1.
Then, for all 1 ≤ i ≤ j ≤ ℓ,

mi ,j+1 =

(
w

ui · · · uj

)

.

In particular, the first row of ψu (w) contains the coefficients
corresponding to the prefixes of w :
(
w
ε

)
,
(
w
u1

)
,
(

w
u1u2

)
, . . . ,

(
w

u1···uℓ−1

)
,
(
w
u

)
.

Similarly, the last column of ψu(w) contains the coefficients
corresponding to the suffixes:
(
w
u

)
,
(

w
u2···uℓ

)
, . . . ,

(
w
u1

)
,
(
w
ε

)
.

Example

ψabba (w) =

1
(
w
a

) (
w
ab

) (
w
abb

) (
w

abba

)

0 1
(
w
b

) (
w
bb

) (
w
bba

)

0 0 1
(
w
b

) (
w
ba

)

0 0 0 1
(
w
a

)

0 0 0 0 1

Link between k -binomial equivalence and matrix equivalence

Proposition

Over a 2-letter alphabet, two words are 2-binomially equivalent
if and only if they have the same Parikh matrix.

ψ2(w) =

1
(
w
a

) (
w
ab

)

0 1
(
w
b

)

0 0 1

⇒ clear !
⇐ (

w

aa

)

=

(
|w |a
2

)

(
w

aa

)

+

(
w

ab

)

+

(
w

ba

)

+

(
w

bb

)

=

(
|w |

2

)

Unfortunately, we do not have more.

Two words over {a, b, c},

u = abcbabcbabcbab and v = bacabbcabbcbba

◮ not 3-binomially equivalent:
(

u
abb

)
= 34 and

(
v
abb

)
= 36,

◮ BUT with the same Parikh matrix ψ3(u) = ψ3(v).

Note: they do not have the same generalized Parikh matrix

ψabb(u) 6= ψabb(v).

Erasing the c’s, we get two words over {a, b}

u ′ = abbabbabbab and v ′ = baabbabbbba

◮ not 3-binomially equivalent :
(
u′

abb

)
= 34,

(
v ′

abb

)
= 36

◮ BUT with the same Parikh matrix

1 4 16
0 1 7
0 0 1

Indeed, 3-binomial equivalence is a strict refinement of 2-binomial
equivalence.

Finally, two words over {a, b, c}

u = bccaa and v = cacab

◮ not 2-binomially equivalent:
(
u
ca

)
= 4 and

(
v
ca

)
= 3,

◮ BUT with the same Parikh matrix ψ3(u) = ψ3(v).

1 2 0 0
0 1 1 2
0 0 1 2
0 0 0 1

Theorem (A. Salomaa 2010)

Over a 2-letter alphabet A, two words have the same Parikh matrix
if and only if one can be obtain from the other by a finite sequence
of transformations of the form

xabybaz → xbayabz

where a, b ∈ A and x , y , z ∈ A∗.

Recall, it also works for 2-binomial equivalence.

1011001001011 ≡2 1101001000111 ≡2 1100110000111

#[0 · · · 01 · · · 1]≡2 = 1

#({a, b}n/≡2) =
n3 + 5n + 6

6

Remark

If x ≡k−1 y , then
pxqyr ≡k pyqxr

But it is not clear that the previous result can be generalized.

Over a 3-letter alphabet:

2100221 ≡2 0221102

but 2100221 cannot be factorized into pxqyr with x ≡ab y .

Questions

Avoidance is a classical topic in COW (back to Thue early 1900).

◮ #A = 2, any word of length ≥ 4 contains a square uu

◮ #A = 2, cubes (even overlaps) can be avoided

abbabaabbaababbabaababbaabbabaab · · ·

◮ #A = 3, squares can be avoided

(abb)(ab)(a)(abb)(a)(ab)(abb)(ab)(a)(ab)(abb)(a)(abb)(ab) · · ·

0 7→ 012, 1 7→ 02, 2 7→ 1

◮ #A = 3, abelian squares are unavoidable

◮ #A = 4, abelian squares can be avoided (V. Keränen)

◮ #A = 3, abelian cubes can be avoided (F. M. Dekking)

Questions

We can define a 2-binomial square uv where u ≡2 v

“abelian square ≺ 2-binomial square ≺ · · · ≺ square”

◮ squares are avoidable over a 3-letter alphabet

◮ abelian squares are avoidable over a 4-letter alphabet

 are 2-binomial squares avoidable over a 3-letter alphabet?

0 7→ 012, 1 7→ 02, 2 7→ 1

Remark: k -binomial squares avoidable over a 3-letter alphabet,
∀k ≥ 2.

Questions

We can define a 2-binomial square uv where u ≡2 v

“abelian square ≺ 2-binomial square ≺ · · · ≺ square”

◮ squares are avoidable over a 3-letter alphabet

◮ abelian squares are avoidable over a 4-letter alphabet

 are 2-binomial squares avoidable over a 3-letter alphabet?

0 7→ 012, 1 7→ 02, 2 7→ 1

Remark: k -binomial squares avoidable over a 3-letter alphabet,
∀k ≥ 2.

Questions

We can define a 2-binomial cube uvw where u ≡2 v , v ≡2 w

abbabaabbaab

“abelian cube ≺ 2-binomial cube ≺ · · · ≺ cube”

◮ cubes are avoidable over a 2-letter alphabet

◮ abelian cubes are avoidable over a 3-letter alphabet

 are 2-binomial cubes avoidable over a 2-letter alphabet?

0 7→ 001, 1 7→ 011

M. Rao, M. Rigo, P. Salimov, Avoiding 2-binomial squares and
cubes, Theoret. Comput. Sci. 572 (2015), 83-–91.

Questions

We can define a 2-binomial cube uvw where u ≡2 v , v ≡2 w

abbabaabbaab

“abelian cube ≺ 2-binomial cube ≺ · · · ≺ cube”

◮ cubes are avoidable over a 2-letter alphabet

◮ abelian cubes are avoidable over a 3-letter alphabet

 are 2-binomial cubes avoidable over a 2-letter alphabet?

0 7→ 001, 1 7→ 011

M. Rao, M. Rigo, P. Salimov, Avoiding 2-binomial squares and
cubes, Theoret. Comput. Sci. 572 (2015), 83-–91.

Questions

Sakarovitch and Simon already asked how to better characterize or
evaluate #(An/ ∼k) where ∼k is the Simon congruence.

◮ Given k ≥ 1 and two words u, v of length n

decide, in polynomial time w.r.t. n, k , whether or not u ≡k v .

◮ Given k ≥ 1 and two words w , x

find, in polynomial time, all occurrences of factors of w

which are k -binomially equivalent to x .

◮ Given two u, v of length n,

find the largest k such that u ≡k v .

Also, see k -abelian pattern matching, T. Ehlers, F. Manea,
R. Mercas, D. Nowotka, DLT 2014. (in linear time)

Main ideas of the paper
’Testing k -binomial equivalence’

arXiv:1509.00622

D. Freydenberger et al.

We consider the first question.

First answer, given a word w of length n and an integer k
 build a NFA Aw ,k with nk + 1 states

abcde

n 4,1 5,1

5,2

1,1 2,1 3,1

2,2 3,2 4,2

5,34,33,32,31,3

1,2

n

k

◮ All states are final,

◮ accepts exactly the subwords of w of length ≤ k

◮ a subword x is accepted
(
w
x

)
times !

w = abbab, k = 3

Aw ,3

4,1 5,1

5,2

1,1 2,1 3,1

2,2 3,2 4,2

5,34,33,32,31,3

1,2

(
w

abb

)

= 3,

(
w

ba

)

= 2

Two automata are equivalent if
they accept the same language with the same multiplicities.

Given two words u, v

◮ build Au,k and Av ,k

◮ u ≡k v reduces to ’are Au,k and Av ,k equivalent ?’

W. Tzeng, SIAM J. Computing 1992

 polynomial algorithm, at least in n3. . .

From Tzeng’s paper abstract:

Two probabilistic automata are equivalent if
for any string x , the two automata accept x

with equal probability. This paper presents
an O((n1 + n2)

4) algorithm for determining
whether two probabilistic automata U1 and U2

are equivalent, where n1 and n2 are the number
of states in U1 and U2, respectively.

• S. Kiefer, A. S. Murawski, et al. On the complexity of the

equivalence problem for probabilistic automata, LNCS 7213

(2012), 467–481.

• M.-P. Schützenberger, On the definition of a family of automata,
Inf. and Control, 245–270, 1961. (about the minimization of
weighted automata)

Second answer, a randomized algorithm

Definition

Given a word w ∈ {0, 1}∗ of length n and an integer k ,

Qw ,k(X) :=
∑

v∈A≤k

(
w

v

)

X val2(1v)

Q0010,2(X) = X + 3X 2 + X 3 + 3X 4 + X 5 + X 6

Similar to the k -spectrum, it contains full information.

Example

The 2-spectrum of the word abbab is

1 ε
︸︷︷︸

1

+2 a
︸︷︷︸

10

+3 b
︸︷︷︸

11

+ aa
︸︷︷︸

100

+4 ab
︸︷︷︸

101

+2 ba
︸︷︷︸

110

+3 bb
︸︷︷︸

111

.

Q01101,2(X) = X + 2X 2 + 3X 3 +X 4 + 4X 5 + 2X 6 + 3X 7.

Remark

Qw ,k is of degree

val(1 1 · · · 1
︸ ︷︷ ︸

k times

) = 2k+1 − 1

 grows exponentially with k .

Remark

Two words u, v are k -binomially equivalent if and only if

Qu,k (X) = Qv ,k(X).

At first glance, we need to compute all the coefficients !

Let p be a (well-chosen) large prime,
Qu,k (X) and Qv ,k(X) can be seen as polynomials over Fp [X]

If u 6≡k v , then Qu,k (X)−Qv ,k(X) is a non-zero polynomial of
degree d and has at most d roots. If we randomly choose α ∈ Fp ,

P((Qu,k −Qv ,k)(α) = 0) ≤ d/p.

If u ≡k v , then Qu,k (X)−Qv ,k(X) = 0.
For all α ∈ Fp , Qu,k −Qv ,k(α) = 0

Remark

Two words u, v are k -binomially equivalent if and only if

Qu,k (X) = Qv ,k(X).

At first glance, we need to compute all the coefficients !

Let p be a (well-chosen) large prime,
Qu,k (X) and Qv ,k(X) can be seen as polynomials over Fp [X]

If u 6≡k v , then Qu,k (X)−Qv ,k(X) is a non-zero polynomial of
degree d and has at most d roots. If we randomly choose α ∈ Fp ,

P((Qu,k −Qv ,k)(α) = 0) ≤ d/p.

If u ≡k v , then Qu,k (X)−Qv ,k(X) = 0.
For all α ∈ Fp , Qu,k −Qv ,k(α) = 0

A Monte–Carlo algorithm

Assume that d/p is ’small’, then randomly pick α ∈ Fp [X].
Assume that we can ’easily’ compute Qu,k (α) and Qv ,k(α).

◮ If Qu,k (α) 6= Qv ,k(α), then u 6≡k v .
 The algorithm returns u 6≡k v .

◮ If Qu,k (α) = Qv ,k(α), then almost surely u ≡k v .
 The algorithm returns u ≡k v .

We have Qu,k (α) = Qv ,k(α) and u 6≡k v , only when we have
picked a root of the non-zero polynomial (Qu,k −Qv ,k)(X).

 We could have a wrong conclusion u ≡k v when u 6≡k v ,
with probability at most d/p.

Choice of p ?

The coefficients in Qw ,k ∈ Fp [X] are less than nk , indeed

(
an

ak

)

=

(
n

k

)

=
n(n − 1) · · · (n − k + 1)

k !
< nk

Take a prime p ∈ [nk , 2nk]

This is not an issue for polynomial running time:

◮ AKS polynomial in log(n)

◮ probabilistic test of Miller–Rabin,
deterministic if Riemann hypothesis holds.

Qw ,k (X) is of degree 2k+1 − 1 and p ≥ nk

probability of error :
d

p
≤

2k+1 − 1

nk

n→+∞
−→ 0

For long enough words u, v , we are fairly sure of the result of the
algorithm when it returns ’u ≡k v ’.

Main result for this algorithm

Let w be a word of length n. Let α ∈ Fp .
The value Qw ,k (α) can be computed in O(k2n) time.

Qw ,k(X) =
∑

|v |≤k

(
w

v

)

X val2(1v) =
k∑

ℓ=1

X 2ℓ

∑

|v |=ℓ

(
w

v

)

X val2(v)

︸ ︷︷ ︸

=:Rw,ℓ(X)

 We need to determine the Rw ,ℓ(α) for all ℓ ∈ {1, . . . , k}

w = w1 · · ·wn w [i ,n] = wi · · ·wn

Use dynamic programming to compute the following k × n table
and the values

Rw [i ,n],t(α), i ∈ {1, . . . ,n}, t ∈ {1, . . . , k}

Rw,k Rw[2,n],k Rw[3,n],k · · · · · · Rw[n,n],k 0

Rw,k−1 Rw[2,n],k−1 Rw[3,n],k−1 · · · · · · Rw[n,n],k−1 0

Rw,k−2 Rw[2,n],k−2 Rw[3,n],k−2 · · · · · · Rw[n,n],k−2 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rw[i,n],t Rw[i+1,n],t
Rw[i+1,n],t−1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Rw,1 Rw[2,n],1 Rw[3,n],1 · · · · · · Rw[n,n],1 0

1 1 1 · · · · · · 1 1

Rw [n + 1,n]
︸ ︷︷ ︸

=ε

,t
= 0 if t > 0; Rw [i ,n],0 = 1 for all 1 ≤ i ≤ n + 1

Rw [i ,n],t , i ≤ n, t ≥ 1,
depends only on Rw [i+1,n],t and Rw [i+1,n],t−1

Let i ≤ n, t ≥ 1, we have

Rw [i ,n],t(X) = Rw [i+1,n],t(X) + Rw [i+1,n],t−1(X), if wi = 0

Rw [i ,n],t(X) = Rw [i+1,n],t(X) + X 2tRw [i+1,n],t−1(X), if wi = 1

Recall that

Rw [i ,n],t(X) =
∑

|v |=t

(
wi · · ·wn

v

)

X val2(v)

Rw [i ,n],t(X)
︸ ︷︷ ︸

↓

= Rw [i+1,n],t(X) + Rw [i+1,n],t−1(X), if wi = 0

∑

|v |=t

(0wi+1···wn

v

)
X val2(v)

v starts with 0 or 1

=
∑

|u|=t−1

(0wi+1···wn

0u

)
X val2(0u) +

∑

|u|=t−1

(0wi+1···wn

1u

)
X val2(1u)

=
∑

|u|=t−1

(
wi+1···wn

u

)
X val2(u) +

∑

|u|=t−1

(
wi+1···wn

0u

)
X val2(0u)

+
∑

|u|=t−1

(
wi+1···wn

1u

)
X val2(1u)

=

Rw[i+1,n],t−1(X)
︷ ︸︸ ︷
∑

|u|=t−1

(
wi+1 · · ·wn

u

)

X val2(u)

+
∑

|u|=t−1

(
wi+1 · · ·wn

0u

)

X val2(0u) +
∑

|u|=t−1

(
wi+1 · · ·wn

1u

)

X val2(1u)

︸ ︷︷ ︸

Rw[i+1,n],t (X)

Summary

◮ Computing one element Rw [i ,n],t(α) of the table

is just one addition in Fp and p ∼ nk .
It requires O(log p) = O(k log n) — classical finite field arithmetic

◮ We have to compute k × n such elements
 O(k2n log n)

◮ Finally, we compute

Qw ,k (α) =
k∑

ℓ=1

α2ℓRw ,ℓ(α)

k products, each one needs O(log2 p) = O(k2 log2 n)
 O(k3 log2 n)

References

◮ P. Karandikar, M. Kufleitner, Ph. Schnoebelen. On the index
of Simon’s congruence for piecewise testability, Information

Processing Letters 15 (2015), 515–519.

◮ J. Maňuch, Characterization of a word by its subwords, in:
G. Rozenberg, W. Thomas (Eds.), Developments in Language
Theory, World Scientific Publ. Co., Singapore, 2000,
pp. 210–219.

◮ A. Mateescu, A. Salomaa, K. Salomaa, Yu Sheng, A
Sharpening of the Parikh Mapping, RAIRO-Theoretical
Informatics and Applications 35 (2001), 551–564.

◮ M. Rigo, P. Salimov, Another generalization of abelian
equivalence: Binomial complexity of infinite words, Theoret.
Comput. Sci. 601 (2015), 47—57.

References

◮ J. Sakarovitch, I. Simon, Subwords, in: M. Lothaire (Ed.),
Combinatorics on Words, Addison-Wesley, Reading, MA,
1983, pp. 105–142.

◮ A. Salomaa, Counting (scattered) subwords, EATCS Bull. 81

(2003) 165–179.

◮ A. Salomaa, Connections between subwords and certain matrix
mappings, Theoret. Comput. Sci. 340 (2005) 188–203.

◮ A. Salomaa, Criteria for the matrix equivalence of words,
Theoret. Comput. Sci. 411 (2010) 1818–1827.

◮ T.-F. Şerbănuţă, Extending Parikh matrices, Theoret.
Comput. Sci. 310 (2004), 23–246.

16th Mons TCS Days — Liège
September 5th – 9th, 2016

http://www.cant.ulg.ac.be/jm2016/

4th CANT School & Conference — CIRM, Marseille
Combinatorics, Automata and Number Theory

November 28th – December 2nd, 2016
http://www.cant.ulg.ac.be/cant2016/

http://scientific-events.weebly.com/1502.html

