COMPUTING k-BINOMIAL EQUIVALENCE
& AVOIDING BINOMIAL REPETITIONS

Michel Rigo

http://www.discmath.ulg.ac.be/
http://hdl.handle.net/2268/187305
28th October 2015

Université
de Liége !:_

The notion of binomial coefficient of words is classical in COW.
See, for instance, Sakarovitch & Simon, Lothaire.

w .
<) number of times x appears as a (scattered) subword of w
-

i.e., T occurs as a subsequence of w

We count the number of increasing maps
e :{1,...,]z|} = {1,...,|w|} such that

p(1) <+ < (lz])

Wo(1) =" We(la|) = L

aabbab
=7
()
It generalizes the usual binomial coefficients for integers

(5)-(3). moer
am” n

Observe that (w) =lwl|,, a€A
a

We can easily compute coefficients

<w> —1, <w> =0, if |w| < |zl

€ z

u,v€ A%, a,b € A, wy (¢ + g Y
vb vb A\ v

coefflu_, v_] := coefflu, v] =
If[Lengthl[v] == 0, 1,
If [Length[u] < Length[v], O,
coeff [Drop[u, -1]1, v]
+ ((Last[u] == Last[v]) /. {True -> 1, False —> 0})
coeff [Drop[u, -1], Droplv, -1]]

]
]

DEFINITION

Let £ > 1. Two words u, v are k-binomially equivalent

U= v

(2) = () e

Remark: 1-binomial equivalence = abelian equivalence.

if and only if

One also finds the notion of k-spectrum of a word u
which is the (formal) polynomial in N(A*) of degree k

u
Spec,, , = Z <x) x.
TEASk

Two words are k-binomially equivalent iff they have the same
k-spectrum. ~- full information.

EXAMPLE

The 2-spectrum of the word u = abbab is
Spec, o = le +2a + 3b + aa + 4ab + 2ba + 3bb.
The 3-spectrum of this word is

Spec,, 3 = Spec,, o + aab + 2aba + 3abb + 2bab + bba + bbb.

Note that the k-spectrum contains

(#A)HH 1
#A)—1

~> grows exponentially with k.

(possibly zero) coefficients.

5
2+3= (i) 1+4+2+3= <2> 1+2+43+24+141= (3)

In COW, there is a zoo of equivalence relations :

» abelian equivalence (since Erdés in 1961)

abbacba ~ 4 cababba

v

k-abelian equivalence (Karhumiki et al.)

lulp, = |v], Vz e ASF

v

k-binomial equivalence

v

(Parikh) matrix equivalence (Salomaa et al. 2000)
Simon's congruence (1975, Karandikar et al. 2015)

v

Supp(Spec,,) = Supp(Spec, 1)

applications to piecewise testable languages

Link with Parikh matrices.
A={ay,...,a;}. The Parikh matrix mapping
Yy o A = NEFDX ()

is the morphism defined by the condition:
if wk(aq) = (mi,j)lgw'gk_'_l, then for each i € {1, o k+ 1},

mg = 1, Mg,q+1 = 1,

all other elements of the matrix v;(a,) being 0.

DEFINITION

Two words are M -equivalent, or matrix equivalent,
if they have the same Parikh matrix.

EXAMPLE, #A =2

Consider A = {a, b}. We have

and

Parikh matrices for an alphabet of cardinality ¥ encode
k(k+1)/2

of the binomial coefficients of a word w for subwords of length < k.

THEOREI\[(A. MATEESCU, A. SALOMAA, K. SALoMAA, S. YU 2001)

Let A ={as,...,a;} be an (ordered) alphabet.
Let w be a finite word and 9 (w) = (Mij)1<ij<k+1-

Then
w
m; iyl =
)+ ai...aj

forall1 < <5<k,
~~ partial information : O(k2) vs. Q((#A4)¥)

Example over A = {a, b, c}

Y3(w) =

o o o =

Also generalized Parikh mappings ., for all words u € A*,
can be defined.

Let u = uy -+ - uyp.

If ¢u(a) = (mi,j)lgi,jﬁf—i-lv then for each i € {1, N 1},
m;; =1, and for each i € {1,...,/},

mgi+1 = 5a,u“
all other elements of the matrix 1, (a) being 0.

REMARK

We get back to the 'classical’ Parikh matrices with
U= ayay---a

ifA:{al,...,ak}.

We have

).

o O OO H
SO —= - O
O~ - O O
o —H O O O
— O O O O
N~

Il

—

=

~—

S

~

=

S

=
~_
SO O o
S OO —H O
OO —H O O
— - O O O
— O O O O
N~

Il

—

3

~—

S

=

~

S

=

Natural generalization of the theorem of Mateescu et al.

THEOREM (SERBANUTA 2004)

Let u = u;---up and w a word. Let 9, (w) = (M ;)1<ij<e+1-
Then, forall1 <i <5</,

w
ms; i1 = .

In particular, the first row of ¢, (w) contains the coefficients
corresponding to the prefixes of w:

() G G Gt) G

Similarly, the last column of ¢, (w) contains the coefficients
corresponding to the suffixes:

G () G (2):

Example

Yabba (’LU)

Link between k-binomial equivalence and matrix equivalence

PROPOSITION

Over a 2-letter alphabet, two words are 2-binomially equivalent
if and only if they have the same Parikh matrix.

= clear !

Unfortunately, we do not have more.

Two words over {a, b, c},

u = abcbabebabebab and v = bacabbcabbebba

» not 3-binomially equivalent: (;gb) = 34 and (azb) = 36,

» BUT with the same Parikh matrix ¥3(u) = v3(v).

Note: they do not have the same generalized Parikh matrix

VYaby (1) 7 Yapp (V).

Erasing the ¢'s, we get two words over {a, b}

u' = abbabbabbab and v’ = baabbabbbba

» not 3-binomially equivalent : (a%lb) = 34, (;;;b) =36
» BUT with the same Parikh matrix

1 4 16
01 7
0 0 1

Indeed, 3-binomial equivalence is a strict refinement of 2-binomial
equivalence.

Finally, two words over {a, b, c}

u = becaa and v = cacab

» not 2-binomially equivalent: (%) =4 and () =3,
» BUT with the same Parikh matrix ¢3(u) = ¥3(v).
1 200
01 1 2
0 01 2
0001

THEOREM (A. SALOMAA 2010)

Over a 2-letter alphabet A, two words have the same Parikh matrix
if and only if one can be obtain from the other by a finite sequence
of transformations of the form

xabybaz — xbayabz
where a,b € A and z,y,z € A*.

Recall, it also works for 2-binomial equivalence.

1011001001011 =5 1101001000111 =5 1100110000111

#({a, b} j=g) = OO

REMARK
If 2 =¢_1 vy, then
prqyr = pyqrr

But it is not clear that the previous result can be generalized.
Over a 3-letter alphabet:

2100221 =9 0221102

but 2100221 cannot be factorized into pzqyr with z = y.

(QUESTIONS

Avoidance is a classical topic in COW (back to Thue early 1900).
» #A =2, any word of length > 4 contains a square uu

» #A =2, cubes (even overlaps) can be avoided
abbabaabbaababbabaababbaabbabaab - - -

» #A = 3, squares can be avoided

(abb)(ab)(a)(abb)(a)(ab)(abb)(ab)(a)(ab)(abb)(a)(abb)(ab)---

0—012, 1—02, 2—1

» #A = 3, abelian squares are unavoidable
» #A =4, abelian squares can be avoided (V. Kerinen)
» #A =3, abelian cubes can be avoided (F. M. Dekking)

(QUESTIONS

We can define a 2-binomial square uv where u =5 v

“abelian square < 2-binomial square < --- < square”

> squares are avoidable over a 3-letter alphabet

» abelian squares are avoidable over a 4-letter alphabet

~ are 2-binomial squares avoidable over a 3-letter alphabet?

(QUESTIONS

We can define a 2-binomial square uv where u =5 v

“abelian square < 2-binomial square < --- < square”

> squares are avoidable over a 3-letter alphabet

» abelian squares are avoidable over a 4-letter alphabet

~ are 2-binomial squares avoidable over a 3-letter alphabet?
0—012, 1—02, 21

Remark: k-binomial squares avoidable over a 3-letter alphabet,
vk > 2.

(QUESTIONS

We can define a 2-binomial cube wvw where u =9 v, v =9 w
abbabaabbaab

“abelian cube < 2-binomial cube < --- < cube”

» cubes are avoidable over a 2-letter alphabet

> abelian cubes are avoidable over a 3-letter alphabet

~> are 2-binomial cubes avoidable over a 2-letter alphabet?

(QUESTIONS

We can define a 2-binomial cube wvw where u =9 v, v =9 w
abbabaabbaab

“abelian cube < 2-binomial cube < --- < cube”

» cubes are avoidable over a 2-letter alphabet

> abelian cubes are avoidable over a 3-letter alphabet

~> are 2-binomial cubes avoidable over a 2-letter alphabet?
0+~ 001, 1+~ 011

M. Rao, M. Rigo, P. Salimov, Avoiding 2-binomial squares and
cubes, Theoret. Comput. Sci. 572 (2015), 83--91.

(QUESTIONS

Sakarovitch and Simon already asked how to better characterize or
evaluate #(A"/ ~) where ~ is the Simon congruence.

» Given k£ > 1 and two words u, v of length n
decide, in polynomial time w.r.t. n, k, whether or not u =j, v.
» Given k£ > 1 and two words w, z

find, in polynomial time, all occurrences of factors of w
which are k-binomially equivalent to x.

» Given two u, v of length n,

find the largest k such that u = v.

Also, see k-abelian pattern matching, T. Ehlers, F. Manea,
R. Mercas, D. Nowotka, DLT 2014. (in linear time)

Main ideas of the paper
"Testing k-binomial equivalence’
arXiv:1509.00622
D. Freydenberger et al.

We consider the first question.

First answer, given a word w of length n and an integer &
~> build a NFA A, ;, with nk + 1 states

abcd
n 11 21 31 41 51
N
J K
12 22 32 42 52

|
13 23 33 43 53

» All states are final,
> accepts exactly the subwords of w of length < k

» a subword z is accepted (Z’) times !

w = abbab, k =3

Aw,?)
11 21 31 41 51
12 22 32 42 52

13 23 33 43 53

<alll7}b> = (22) =2

Two automata are equivalent if
they accept the same language with the same multiplicities.

Given two words u, v
> build A, and A, ;

> u = v reduces to 'are A, and A, ; equivalent 7'

W. Tzeng, SIAM J. Computing 1992

~ polynomial algorithm, at least in n3. ..

From Tzeng's paper abstract:

Two probabilistic automata are equivalent if
for any string z, the two automata accept z
with equal probability. This paper presents
an O((ny + ng)*) algorithm for determining
whether two probabilistic automata U; and U,
are equivalent, where n; and ny are the number
of states in Uy and Uy, respectively.

e S. Kiefer, A. S. Murawski, et al. On the complexity of the
equivalence problem for probabilistic automata, LNCS 7213
(2012), 467-481.

e M.-P. Schiitzenberger, On the definition of a family of automata,
Inf. and Control, 245-270, 1961. (about the minimization of
weighted automata)

Second answer, a randomized algorithm

DEFINITION

Given a word w € {0, 1}* of length n and an integer k,

Qw,k(X) = Z <1;)>Xvalz(lv)

vEASK

Qoor02(X) = X +3X2 + X3 +3X% + X° 4 X6

Similar to the k-spectrum, it contains full information.

EXAMPLE

The 2-spectrum of the word abbab is

1 ¢ 42 a +3 b + aa +4 ab +2 ba +3 bb .
1 10 11 100 101 110 111

Qor1012(X) = X +2X2 +3X3 + X* +-4X5 + 2X°% 4 3X7.

REMARK

Qu, is of degree

val(11---1) =2k —1
——

k times

~> grows exponentially with k.

REMARK

Two words u, v are k-binomially equivalent if and only if

Qu,k(X) = Qv,k(X)'

At first glance, we need to compute all the coefficients !

REMARK

Two words u, v are k-binomially equivalent if and only if

Qu,k(X) = Qv,k(X)'

At first glance, we need to compute all the coefficients !

Let p be a (well-chosen) large prime,
Qu.x(X) and @, 1(X) can be seen as polynomials over [F,,[X]

If uwy v, then Qyr(X) — @y x(X) is a non-zero polynomial of
degree d and has at most d roots. If we randomly choose o € I,

P((Quk — Qui)(a) =0) < d/p.

If w =} v, then quk(X) - vik(X) =0.
Foralla e Fp, Qui — Qui(e) =0

A MONTE-CARLO ALGORITHM

Assume that d/p is 'small', then randomly pick a € F),[X].
Assume that we can 'easily’ compute @, x(a) and @, ().

> 1If Qui(a) # Qu i), then u #j v.
~> The algorithm returns u #;, v.

> If Qui(a) = Qu i), then almost surely u =, v.
~> The algorithm returns u =;, v.

We have @, ;(a) = @y x(v) and u #j, v, only when we have
picked a root of the non-zero polynomial (Qy 1 — @y 1)(X).

~> We could have a wrong conclusion u = v when u #; v,

with probability at most d/p.

Choice of p 7

The coefficients in Q1 € F,[X] are less than n*, indeed

(i}) _ (Z) _ n(n—1)--l-€!(n—k+1) o

Take a prime p € [n¥,2nF]

This is not an issue for polynomial running time:
» AKS polynomial in log(n)

» probabilistic test of Miller—Rabin,
deterministic if Riemann hypothesis holds.

Qu x(X) is of degree 25¥1 — 1 and p > nF

d 2k+1 -1
probability of error : — < marey)
p

nk

For long enough words u, v, we are fairly sure of the result of the
algorithm when it returns 'u =5 v'.

MAIN RESULT FOR THIS ALGORITHM

Let w be a word of length n. Let o € IF),.
The value Q () can be computed in O(k?n) time.

k
Qw,k(X) = Z <7“;}> xvelk(lv) _ ZXQZ Z <:l}}> yvala(v)

/=1 |v|=¢

::R'u),Z(X)

~+ We need to determine the R, ¢(c) for all £ € {1,...,k}

w=w - w, wi,n]=uw---w,

Use dynamic programming to compute the following £ x n table
and the values

Rw[i,n},t(a)a ie{l,...,n},te{l,.... k}

Ry K Ry(2,n],k Roy(3,n],k Run,n,k 0
Ry k-1 Ry2n]k—1 Bu@a)e—1 - s Ryn,n)k—1 | O
Ry k—2 BRyl2,n),k—2 Buw3,n]k—2 Ruynnl,k—2 | O

wlin], b Buwlit1,n],t
Rylit1,n],t—1

Ry 1 Ruyl2.n],1 Ry[3.n],1 s s Ruln,n],1
1 1 T 1 T

Rw[n—l—l,n],t =0ift>0; Rypjpo=1foralll1<i<n+1
T
Rw[i,n},tv i S n, t Z 1v
depends only on Ry(i11,5),¢ and Ryfii1,n),t-1

Let : < n, t > 1, we have
Rw[i,n],t(X) = Rw[i-l—l,n],t(X) + Rw[i—i—l,n},t—l(X)» if w; =0

Rw[i,n},t(X) = Rw[i—i—l,n},t(X) + XQtRw[i-l-l,n],t—l(X)v if w; =1

Recall that

Wi+ Wy vals (v
Rw[i,n},t(X) = Z < v >X =(v)

Royfing,t(X) = Rufig1,n),t(X) + Ruyfigr,n),e—1(X), if w;i =0
—_———
i
Z|U|:t (OWi_‘—l'”wn) XUalQ(U) v starts with O or 1
— Z|u‘:t_1 (071/7-‘blu wn)XUGlQ(OU + Z‘u|:t_1 (O'LUFEIU wn)X'l)(llQ(lu)

Z|u‘ . 1(’UJL+1 wn)X'UalQ +Z‘u| . 1(w7,+(1] U/n)X'l)alQ(O'u)
+Z|u\:t—1 ('lUL+1 wn)Xvalg(lu)

lu

Rw [t+1,n],t— l(X)

Z <ZU2+1 >Xvalg(u)

|u|=t—1
+ Z <’U}z+l >Xva12(0u) + Z <wi+11' .. wn) Xvalg(lu)
lu[=t—1 st U

Royfit1,n],t(X)

Summary

» Computing one element R,[; ,j ;(«) of the table
is just one addition in F,, and p ~ nk.
It requires O(log p) = O(k log n) — classical finite field arithmetic
» We have to compute k£ x n such elements
~ O(k*n logn)

» Finally, we compute

k

Qw,k(a) = Z OZQZRM,E(O‘)

(=1

k products, each one needs O(log? p) = O(k?log? n)
~ O(k® log? n)

REFERENCES

v

P. Karandikar, M. Kufleitner, Ph. Schnoebelen. On the index
of Simon's congruence for piecewise testability, Information
Processing Letters 15 (2015), 515-519.

J. Maiiuch, Characterization of a word by its subwords, in:

G. Rozenberg, W. Thomas (Eds.), Developments in Language
Theory, World Scientific Publ. Co., Singapore, 2000,

pp. 210-219.

A. Mateescu, A. Salomaa, K. Salomaa, Yu Sheng, A
Sharpening of the Parikh Mapping, RAIRO-Theoretical
Informatics and Applications 35 (2001), 551-564.

M. Rigo, P. Salimov, Another generalization of abelian
equivalence: Binomial complexity of infinite words, Theoret.
Comput. Sci. 601 (2015), 47—57.

REFERENCES

v

J. Sakarovitch, I. Simon, Subwords, in: M. Lothaire (Ed.),
Combinatorics on Words, Addison-Wesley, Reading, MA,
1983, pp. 105-142.

A. Salomaa, Counting (scattered) subwords, EATCS Bull. 81
(2003) 165-179.

A. Salomaa, Connections between subwords and certain matrix
mappings, Theoret. Comput. Sci. 340 (2005) 188-203.

A. Salomaa, Criteria for the matrix equivalence of words,
Theoret. Comput. Sci. 411 (2010) 1818-1827.

T.-F. Serbdnuta, Extending Parikh matrices, Theoret.
Comput. Sci. 310 (2004), 23-246.

v

v

v

v

16th Mons TCS Days — Liege
September 5th — 9th, 2016
http://www.cant.ulg.ac.be/jm2016/

4th CANT School & Conference — CIRM, Marseille
Combinatorics, Automata and Number Theory
November 28th — December 2nd, 2016
http://www.cant.ulg.ac.be/cant2016/
http://scientific-events.weebly.com/1502.html

