Computing k-BINOMIAL EQUIVALENCE \& AVOIDING BINOMIAL REPETITIONS

Michel Rigo

http://www.discmath.ulg.ac.be/
http://hdl.handle.net/2268/187305
28th October 2015

The notion of binomial coefficient of words is classical in COW. See, for instance, Sakarovitch \& Simon, Lothaire.
$\binom{w}{x}$ number of times x appears as a (scattered) subword of w
i.e., x occurs as a subsequence of w

We count the number of increasing maps $\varphi:\{1, \ldots,|x|\} \rightarrow\{1, \ldots,|w|\}$ such that

$$
\begin{gathered}
\varphi(1)<\cdots<\varphi(|x|) \\
w_{\varphi(1)} \cdots w_{\varphi(|x|)}=x
\end{gathered}
$$

$$
\binom{a a b b a b}{a b}=7
$$

It generalizes the usual binomial coefficients for integers

$$
\binom{a^{m}}{a^{n}}=\binom{m}{n}, \quad m, n \in \mathbb{N}
$$

Observe that $\binom{w}{a}=|w|_{a}, \quad a \in A$

We can easily compute coefficients:

$$
\begin{gathered}
\binom{w}{\varepsilon}=1, \quad\binom{w}{x}=0, \quad \text { if }|w|<|x| \\
u, v \in A^{*}, a, b \in A, \quad\binom{u a}{v b}=\binom{u}{v b}+\delta_{a, b}\binom{u}{v}
\end{gathered}
$$

coeff [u_, $\left.\mathrm{v}_{-}\right]:=\operatorname{coeff}[\mathrm{u}, \mathrm{v}]=$
If [Length[v] == 0, 1,
If [Length[u] < Length[v], 0, coeff[Drop[u, -1], v]

+ ((Last[u] == Last[v]) /. \{True -> 1, False -> 0\}) coeff[Drop[u, -1], Drop[v, -1]]

DEFINITION

Let $k \geq 1$. Two words u, v are k-binomially equivalent

$$
u \equiv_{k} v
$$

if and only if

$$
\binom{u}{x}=\binom{v}{x} \quad \forall x \in A^{\leq k} .
$$

Remark: 1-binomial equivalence $=$ abelian equivalence.
One also finds the notion of k-spectrum of a word u which is the (formal) polynomial in $\mathbb{N}\left\langle A^{*}\right\rangle$ of degree k

$$
\operatorname{Spec}_{u, k}=\sum_{x \in A \leq k}\binom{u}{x} x .
$$

Two words are k-binomially equivalent iff they have the same k-spectrum. \rightsquigarrow full information.

ExAMPLE

The 2-spectrum of the word $u=a b b a b$ is

$$
\text { Spec }_{u, 2}=1 \varepsilon+2 a+3 b+a a+4 a b+2 b a+3 b b .
$$

The 3 -spectrum of this word is

$$
\text { Spec }_{u, 3}=\text { Spec }_{u, 2}+a a b+2 a b a+3 a b b+2 b a b+b b a+b b b .
$$

Note that the k-spectrum contains

$$
\frac{(\# A)^{k+1}-1}{(\# A)-1} \text { (possibly zero) coefficients. }
$$

\rightsquigarrow grows exponentially with k.

$$
2+3=\binom{5}{1}, 1+4+2+3=\binom{5}{2}, 1+2+3+2+1+1=\binom{5}{3}
$$

In COW, there is a zoo of equivalence relations:

- abelian equivalence (since Erdős in 1961)

$$
a b b a c b a \sim_{a b} c a b a b b a
$$

- k-abelian equivalence (Karhumäki et al.)

$$
|u|_{x}=|v|_{x} \quad \forall x \in A^{\leq k}
$$

- k-binomial equivalence
- (Parikh) matrix equivalence (Salomaa et al. 2000)
- Simon's congruence (1975, Karandikar et al. 2015)

$$
\operatorname{Supp}\left(\operatorname{Spec}_{u, k}\right)=\operatorname{Supp}\left(\operatorname{Spec}_{v, k}\right)
$$

applications to piecewise testable languages

Link with Parikh matrices.

$A=\left\{a_{1}, \ldots, a_{k}\right\}$. The Parikh matrix mapping

$$
\psi_{k}: A^{*} \rightarrow \mathbb{N}^{(k+1) \times(k+1)}
$$

is the morphism defined by the condition:
if $\psi_{k}\left(a_{q}\right)=\left(m_{i, j}\right)_{1 \leq i, j \leq k+1}$, then for each $i \in\{1, \ldots, k+1\}$,

$$
m_{i, i}=1, \quad m_{q, q+1}=1
$$

all other elements of the matrix $\psi_{k}\left(a_{q}\right)$ being 0 .

DEFINITION

Two words are M-equivalent, or matrix equivalent, if they have the same Parikh matrix.

Example, $\# A=2$

Consider $A=\{a, b\}$. We have

$$
\psi_{2}(a)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \psi_{2}(b)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

and

$$
\psi_{2}(a b b a b)=\psi_{2}(a) \psi_{2}(b) \psi_{2}(b) \psi_{2}(a) \psi_{2}(b)=\left(\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right) .
$$

Parikh matrices for an alphabet of cardinality k encode

$$
k(k+1) / 2
$$

of the binomial coefficients of a word w for subwords of length $\leq k$.

Theorem (a. matbiscu, A. salomaa, K. Salomaa, S. yu 2001)

Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ be an (ordered) alphabet.
Let w be a finite word and $\psi_{k}(w)=\left(m_{i, j}\right)_{1 \leq i, j \leq k+1}$.
Then

$$
m_{i, j+1}=\binom{w}{a_{i} \cdots a_{j}}
$$

for all $1 \leq i \leq j \leq k$.
\rightsquigarrow partial information: $\mathcal{O}\left(k^{2}\right)$ vs. $\Omega\left((\# A)^{k}\right)$

Example over $A=\{a, b, c\}$

$$
\psi_{3}(w)=\left(\begin{array}{cccc}
1 & \binom{w}{a} & \binom{w}{a b} & \left(\begin{array}{c}
w \\
a b c
\end{array}\right. \\
0 & 1 & \binom{w}{b}
\end{array}\right)\binom{w}{b c}
$$

For instance,

$$
\binom{w b}{a b}=\binom{w}{a}+\binom{w}{a b}
$$

Also generalized Parikh mappings ψ_{u}, for all words $u \in A^{*}$, can be defined.

Let $u=u_{1} \cdots u_{\ell}$.
If $\psi_{u}(a)=\left(m_{i, j}\right)_{1 \leq i, j \leq \ell+1}$, then for each $i \in\{1, \ldots, \ell+1\}$, $m_{i, i}=1$, and for each $i \in\{1, \ldots, \ell\}$,

$$
m_{i, i+1}=\delta_{a, u_{i}}
$$

all other elements of the matrix $\psi_{u}(a)$ being 0 .

Remark

We get back to the 'classical' Parikh matrices with

$$
u=a_{1} a_{2} \cdots a_{k}
$$

if $A=\left\{a_{1}, \ldots, a_{k}\right\}$.

We have

$$
\psi_{a b b a}(a)=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \psi_{a b b a}(b)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Natural generalization of the theorem of Mateescu et al.

THEOREM (§ॄbßล̆Nựã 2004)

Let $u=u_{1} \cdots u_{\ell}$ and w a word. Let $\psi_{u}(w)=\left(m_{i, j}\right)_{1 \leq i, j \leq \ell+1}$. Then, for all $1 \leq i \leq j \leq \ell$,

$$
m_{i, j+1}=\binom{w}{u_{i} \cdots u_{j}}
$$

In particular, the first row of $\psi_{u}(w)$ contains the coefficients corresponding to the prefixes of w :
$\binom{w}{\varepsilon},\binom{w}{u_{1}},\binom{w}{u_{1} u_{2}}, \ldots,\binom{w}{u_{1} \cdots u_{\ell-1}},\binom{w}{u}$.
Similarly, the last column of $\psi_{u}(w)$ contains the coefficients corresponding to the suffixes:
$\binom{w}{u},\binom{w}{u_{2} \cdots u_{\ell}}, \ldots,\binom{w}{u_{1}},\binom{w}{\varepsilon}$.

Example

Link between k-binomial equivalence and matrix equivalence

Proposition

Over a 2-letter alphabet, two words are 2-binomially equivalent if and only if they have the same Parikh matrix.

$$
\psi_{2}(w)=\left(\begin{array}{ccc}
1 & \binom{w}{a} & \binom{w}{a b} \\
0 & 1 & \binom{w}{b} \\
0 & 0 & 1
\end{array}\right)
$$

\Rightarrow clear!
\Leftarrow

$$
\begin{gathered}
\binom{w}{a a}=\binom{|w|_{a}}{2} \\
\binom{w}{a a}+\binom{w}{a b}+\binom{w}{b a}+\binom{w}{b b}=\binom{|w|}{2}
\end{gathered}
$$

Unfortunately, we do not have more.

Two words over $\{a, b, c\}$,

$$
u=a b c b a b c b a b c b a b \text { and } v=b a c a b b c a b b c b b a
$$

- not 3-binomially equivalent: $\binom{u}{a b b}=34$ and $\binom{v}{a b b}=36$, - BUT with the same Parikh matrix $\psi_{3}(u)=\psi_{3}(v)$.

Note: they do not have the same generalized Parikh matrix

$$
\psi_{a b b}(u) \neq \psi_{a b b}(v)
$$

Erasing the c 's, we get two words over $\{a, b\}$

$$
u^{\prime}=a b b a b b a b b a b \text { and } v^{\prime}=b a a b b a b b b b a
$$

- not 3 -binomially equivalent : $\binom{u^{\prime}}{a b b}=34,\binom{v^{\prime}}{a b b}=36$
- BUT with the same Parikh matrix

$$
\left(\begin{array}{ccc}
1 & 4 & 16 \\
0 & 1 & 7 \\
0 & 0 & 1
\end{array}\right)
$$

Indeed, 3 -binomial equivalence is a strict refinement of 2 -binomial equivalence.

Finally, two words over $\{a, b, c\}$

$$
u=b c c a a \text { and } v=c a c a b
$$

- not 2-binomially equivalent: $\binom{u}{c a}=4$ and $\binom{v}{c a}=3$,
- BUT with the same Parikh matrix $\psi_{3}(u)=\psi_{3}(v)$.

$$
\left(\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Theorem (A. Salomai 2010)

Over a 2-letter alphabet A, two words have the same Parikh matrix if and only if one can be obtain from the other by a finite sequence of transformations of the form

$$
x a b y b a z \rightarrow x b a y a b z
$$

where $a, b \in A$ and $x, y, z \in A^{*}$.
Recall, it also works for 2-binomial equivalence.

$$
\begin{gathered}
1011001001011 \equiv_{2} 1101001000111 \equiv_{2} 1100110000111 \\
\#[0 \cdots 01 \cdots 1]_{\equiv_{2}}=1
\end{gathered}
$$

$$
\#\left(\{a, b\}^{n} / \equiv_{2}\right)=\frac{n^{3}+5 n+6}{6}
$$

Remark

If $x \equiv_{k-1} y$, then

$$
p x q y r \equiv_{k} p y q x r
$$

But it is not clear that the previous result can be generalized.
Over a 3-letter alphabet:

$$
2100221 \equiv_{2} 0221102
$$

but 2100221 cannot be factorized into pxqyr with $x \equiv_{a b} y$.

Questions

Avoidance is a classical topic in COW (back to Thue early 1900).

- $\# A=2$, any word of length ≥ 4 contains a square $u u$
- \#A $=2$, cubes (even overlaps) can be avoided

> abbabaabbaababbabaababbaabbabaab ...

- $\# A=3$, squares can be avoided

$$
\begin{gathered}
(a b b)(a b)(a)(a b b)(a)(a b)(a b b)(a b)(a)(a b)(a b b)(a)(a b b)(a b) \cdots \\
0 \mapsto 012,1 \mapsto 02,2 \mapsto 1
\end{gathered}
$$

- $\# A=3$, abelian squares are unavoidable
- $\# A=4$, abelian squares can be avoided (V. Keränen)
- $\# A=3$, abelian cubes can be avoided (F. M. Dekking)

Questions

We can define a 2-binomial square $u v$ where $u \equiv_{2} v$

$$
\text { "abelian square } \prec 2 \text {-binomial square } \prec \cdots \prec \text { square" }
$$

- squares are avoidable over a 3-letter alphabet
- abelian squares are avoidable over a 4-letter alphabet \rightsquigarrow are 2-binomial squares avoidable over a 3-letter alphabet?

Remark: k-binomial squares avoidable over a 3-letter alphabet, $\forall k \geq 2$.

Questions

We can define a 2-binomial square $u v$ where $u \equiv_{2} v$

$$
\text { "abelian square } \prec 2 \text {-binomial square } \prec \cdots \prec \text { square" }
$$

- squares are avoidable over a 3-letter alphabet
- abelian squares are avoidable over a 4-letter alphabet \rightsquigarrow are 2-binomial squares avoidable over a 3-letter alphabet?

$$
0 \mapsto 012,1 \mapsto 02,2 \mapsto 1
$$

Remark: k-binomial squares avoidable over a 3-letter alphabet, $\forall k \geq 2$.

Questions

We can define a 2-binomial cube $u v w$ where $u \equiv_{2} v, v \equiv_{2} w$

$$
a b b a b a a b b a a b
$$

$$
\text { "abelian cube } \prec 2 \text {-binomial cube } \prec \cdots \prec \text { cube" }
$$

- cubes are avoidable over a 2-letter alphabet
- abelian cubes are avoidable over a 3-letter alphabet
\rightsquigarrow are 2-binomial cubes avoidable over a 2-letter alphabet?

> M. Rao, M. Rigo, P. Salimov, Avoiding 2-binomial squares and cubes, Theoret. Comput. Sci. 572 (2015), 83--91.

Questions

We can define a 2-binomial cube $u v w$ where $u \equiv_{2} v, v \equiv_{2} w$

$$
a b b a b a a b b a a b
$$

"abelian cube $\prec 2$-binomial cube $\prec \cdots \prec$ cube"

- cubes are avoidable over a 2-letter alphabet
- abelian cubes are avoidable over a 3-letter alphabet
\rightsquigarrow are 2-binomial cubes avoidable over a 2-letter alphabet?

$$
0 \mapsto 001, \quad 1 \mapsto 011
$$

M. Rao, M. Rigo, P. Salimov, Avoiding 2-binomial squares and cubes, Theoret. Comput. Sci. 572 (2015), 83--91.

Questions

Sakarovitch and Simon already asked how to better characterize or evaluate $\#\left(A^{n} / \sim_{k}\right)$ where \sim_{k} is the Simon congruence.

- Given $k \geq 1$ and two words u, v of length n decide, in polynomial time w.r.t. n, k, whether or not $u \equiv_{k} v$.
- Given $k \geq 1$ and two words w, x
find, in polynomial time, all occurrences of factors of w which are k-binomially equivalent to x.
- Given two u, v of length n, find the largest k such that $u \equiv_{k} v$.

Also, see k-abelian pattern matching, T. Ehlers, F. Manea, R. Mercas, D. Nowotka, DLT 2014. (in linear time)

Main ideas of the paper
'Testing k-binomial equivalence'
arXiv:1509.00622
D. Freydenberger et al.

We consider the first question.

First answer, given a word w of length n and an integer k \rightsquigarrow build a NFA $\mathcal{A}_{w, k}$ with $n k+1$ states

- All states are final,
- accepts exactly the subwords of w of length $\leq k$
- a subword x is accepted $\binom{w}{x}$ times !

$$
w=a b b a b, k=3
$$

Two automata are equivalent if they accept the same language with the same multiplicities.

Given two words u, v

- build $\mathcal{A}_{u, k}$ and $\mathcal{A}_{v, k}$
- $u \equiv_{k} v$ reduces to 'are $\mathcal{A}_{u, k}$ and $\mathcal{A}_{v, k}$ equivalent ?'
W. Tzeng, SIAM J. Computing 1992
\rightsquigarrow polynomial algorithm, at least in $n^{3} \ldots$

From Tzeng's paper abstract:
Two probabilistic automata are equivalent if for any string x, the two automata accept x with equal probability. This paper presents an $\mathcal{O}\left(\left(n_{1}+n_{2}\right)^{4}\right)$ algorithm for determining whether two probabilistic automata U_{1} and U_{2} are equivalent, where n_{1} and n_{2} are the number of states in U_{1} and U_{2}, respectively.

- S. Kiefer, A. S. Murawski, et al. On the complexity of the equivalence problem for probabilistic automata, LNCS 7213 (2012), 467-481.
- M.-P. Schützenberger, On the definition of a family of automata, Inf. and Control, 245-270, 1961. (about the minimization of weighted automata)

Second answer, a randomized algorithm

Definition

Given a word $w \in\{0,1\}^{*}$ of length n and an integer k,

$$
Q_{w, k}(X):=\sum_{v \in A \leq k}\binom{w}{v} X^{v a a_{2}(1 v)}
$$

$$
Q_{0010,2}(X)=X+3 X^{2}+X^{3}+3 X^{4}+X^{5}+X^{6}
$$

Similar to the k-spectrum, it contains full information.

ExAMPLE

The 2-spectrum of the word $a b b a b$ is

$$
1 \underbrace{\varepsilon}_{1}+2 \underbrace{a}_{10}+3 \underbrace{b^{b}}_{11}+\underbrace{a a}_{100}+4 \underbrace{a b}_{101}+2 \underbrace{b a}_{110}+3 \underbrace{b b}_{111}
$$

$$
Q_{01101,2}(X)=X+2 X^{2}+3 X^{3}+X^{4}+4 X^{5}+2 X^{6}+3 X^{7}
$$

Remark

$Q_{w, k}$ is of degree

$$
\operatorname{val}(1 \underbrace{1 \cdots 1}_{k \text { times }})=2^{k+1}-1
$$

\rightsquigarrow grows exponentially with k.

REMARK

Two words u, v are k-binomially equivalent if and only if

$$
Q_{u, k}(X)=Q_{v, k}(X)
$$

At first glance, we need to compute all the coefficients !

```
Let p be a (well-chosen) large prime,
Qu,k}(X)\mathrm{ and }\mp@subsup{Q}{v,k}{}(X)\mathrm{ can be seen as polynomials over }\mp@subsup{\mathbb{F}}{p}{}[X
If u\not\equivk}
degree d}\mathrm{ and has at most d roots. If we randomly choose }\alpha\in\mp@subsup{\mathbb{F}}{p}{}\mathrm{ ,
\[
\mathbb{P}\left(\left(Q_{u, k}-Q_{v, k}\right)(\alpha)=0\right) \leq d / p .
\]
If \(u \equiv_{k} v\), then \(Q_{u, k}(X)-Q_{v, k}(X)=0\).
\(\square\)
```


Remark

Two words u, v are k-binomially equivalent if and only if

$$
Q_{u, k}(X)=Q_{v, k}(X) .
$$

At first glance, we need to compute all the coefficients !
Let p be a (well-chosen) large prime, $Q_{u, k}(X)$ and $Q_{v, k}(X)$ can be seen as polynomials over $\mathbb{F}_{p}[X]$

If $u \not 三_{k} v$, then $Q_{u, k}(X)-Q_{v, k}(X)$ is a non-zero polynomial of degree d and has at most d roots. If we randomly choose $\alpha \in \mathbb{F}_{p}$,

$$
\mathbb{P}\left(\left(Q_{u, k}-Q_{v, k}\right)(\alpha)=0\right) \leq d / p
$$

If $u \equiv_{k} v$, then $Q_{u, k}(X)-Q_{v, k}(X)=0$.
For all $\alpha \in \mathbb{F}_{p}, Q_{u, k}-Q_{v, k}(\alpha)=0$

A Monte－Carlo algorithm

Assume that d / p is＇small＇，then randomly pick $\alpha \in \mathbb{F}_{p}[X]$ ． Assume that we can＇easily＇compute $Q_{u, k}(\alpha)$ and $Q_{v, k}(\alpha)$ ．
－If $Q_{u, k}(\alpha) \neq Q_{v, k}(\alpha)$ ，then $u \not 三_{k} v$ ． \rightsquigarrow The algorithm returns $u \not 三_{k} v$ ．
－If $Q_{u, k}(\alpha)=Q_{v, k}(\alpha)$ ，then almost surely $u \equiv_{k} v$ ． \rightsquigarrow The algorithm returns $u \equiv_{k} v$ ．

We have $Q_{u, k}(\alpha)=Q_{v, k}(\alpha)$ and $u \not 三_{k} v$ ，only when we have picked a root of the non－zero polynomial $\left(Q_{u, k}-Q_{v, k}\right)(X)$ ．
\rightsquigarrow We could have a wrong conclusion $u \equiv_{k} v$ when $u \not 三_{k} v$ ， with probability at most d / p ．

Choice of p ?
The coefficients in $Q_{w, k} \in \mathbb{F}_{p}[X]$ are less than n^{k}, indeed

$$
\binom{a^{n}}{a^{k}}=\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}<n^{k}
$$

Take a prime $p \in\left[n^{k}, 2 n^{k}\right]$

This is not an issue for polynomial running time:

- AKS polynomial in $\log (n)$
- probabilistic test of Miller-Rabin, deterministic if Riemann hypothesis holds.
$Q_{w, k}(X)$ is of degree $2^{k+1}-1$ and $p \geq n^{k}$

$$
\text { probability of error }: \frac{d}{p} \leq \frac{2^{k+1}-1}{n^{k}} \xrightarrow{n \rightarrow+\infty} 0
$$

For long enough words u, v, we are fairly sure of the result of the algorithm when it returns ' $u \equiv_{k} v^{\prime}$.

MAIN RESULT FOR THIS ALGORITHM

Let w be a word of length n. Let $\alpha \in \mathbb{F}_{p}$. The value $Q_{w, k}(\alpha)$ can be computed in $\mathcal{O}\left(k^{2} n\right)$ time.

$$
Q_{w, k}(X)=\sum_{|v| \leq k}\binom{w}{v} X^{v a l_{2}(1 v)}=\sum_{\ell=1}^{k} X^{2^{\ell}}(\underbrace{\sum_{|v|=\ell}\binom{w}{v} X^{v a l_{2}(v)}}_{=: R_{w, \ell}(X)})
$$

\rightsquigarrow We need to determine the $R_{w, \ell}(\alpha)$ for all $\ell \in\{1, \ldots, k\}$
$w=w_{1} \cdots w_{n} \quad w[i, n]=w_{i} \cdots w_{n}$
Use dynamic programming to compute the following $k \times n$ table and the values

$$
R_{w[i, n], t}(\alpha), \quad i \in\{1, \ldots, n\}, t \in\{1, \ldots, k\}
$$

$R_{w, k}$	$R_{w[2, n], k}$	$R_{w[3, n], k}$	\cdots	\cdots	$R_{w[n, n], k}$	0
$R_{w, k-1}$	$R_{w[2, n], k-1}$	$R_{w[3, n], k-1}$	\cdots	\cdots	$R_{w[n, n], k-1}$	0
$R_{w, k-2}$	$R_{w[2, n], k-2}$	$R_{w[3, n], k-2}$	\cdots	\cdots	$R_{w[n, n], k-2}$	0
\vdots	\vdots	\vdots				\vdots
			$R_{w[i, n], t}$	$R_{w[i+1, n], t}$		\vdots
\vdots	\vdots	\vdots		$R_{w[i+1, n], t-1}$		
$R_{w, 1}$	$R_{w[2, n], 1}$	$R_{w[3, n], 1}$	\cdots	\cdots	\vdots	
1	1	1	\cdots	\cdots	$R_{w[n, n], 1}$	0

$R_{\underbrace{}_{=\varepsilon}[n+1, n], t}=0$ if $t>0 ; R_{w[i, n], 0}=1$ for all $1 \leq i \leq n+1$

$$
R_{w[i, n], t}, i \leq n, t \geq 1,
$$

depends only on $R_{w[i+1, n], t}$ and $R_{w[i+1, n], t-1}$

Let $i \leq n, t \geq 1$, we have

$$
\begin{gathered}
R_{w[i, n], t}(X)=R_{w[i+1, n], t}(X)+R_{w[i+1, n], t-1}(X), \text { if } w_{i}=0 \\
R_{w[i, n], t}(X)=R_{w[i+1, n], t}(X)+X^{2^{t}} R_{w[i+1, n], t-1}(X), \text { if } w_{i}=1
\end{gathered}
$$

Recall that

$$
R_{w[i, n], t}(X)=\sum_{|v|=t}\binom{w_{i} \cdots w_{n}}{v} X^{v a l_{2}(v)}
$$

$$
\underbrace{R_{w[i, n], t}(X)}=R_{w[i+1, n], t}(X)+R_{w[i+1, n], t-1}(X), \text { if } w_{i}=0
$$

$$
\sum_{|v|=t}\binom{0 w_{i+1} \cdots w_{n}}{v} X^{v a l_{2}(v)} \quad v \text { starts with } 0 \text { or } 1
$$

$$
=\sum_{|u|=t-1}\binom{0 w_{i+1} \cdots w_{n}}{0 u} X^{v a l_{2}(0 u)}+\sum_{|u|=t-1}\binom{0 w_{i+1} \cdots w_{n}}{1 u} X^{v a l_{2}(1 u)}
$$

$$
=\sum_{|u|=t-1}\binom{w_{i+1} \cdots w_{n}}{u} X^{v a l_{2}(u)}+\sum_{|u|=t-1}\binom{w_{i+1} \cdots w_{n}}{0 u} X^{v a l_{2}(0 u)}
$$

$$
+\sum_{|u|=t-1}\binom{w_{i+1} \cdots w_{n}}{1 u} X^{v a l_{2}(1 u)}
$$

$$
=\overbrace{\sum_{|u|=t-1}\binom{w_{i+1} \cdots w_{n}}{u} X^{v a l_{2}(u)}}^{R_{w[i+1, n], t-1}(X)}
$$

$$
+\sum_{|u|=t-1}\binom{w_{i+1} \cdots w_{n}}{0 u} X^{{v a l_{2}(0 u)}^{|u|}+\sum_{|u|=t-1}\binom{w_{i+1} \cdots w_{n}}{1 u} X^{v a l_{2}(1 u)}}
$$

Summary

- Computing one element $R_{w[i, n], t}(\alpha)$ of the table is just one addition in \mathbb{F}_{p} and $p \sim n^{k}$.
It requires $\mathcal{O}(\log p)=\mathcal{O}(k \log n)$ - classical finite field arithmetic
- We have to compute $k \times n$ such elements
$\rightsquigarrow \mathcal{O}\left(k^{2} n \log n\right)$
- Finally, we compute

$$
Q_{w, k}(\alpha)=\sum_{\ell=1}^{k} \alpha^{2^{\ell}} R_{w, \ell}(\alpha)
$$

k products, each one needs $\mathcal{O}\left(\log ^{2} p\right)=\mathcal{O}\left(k^{2} \log ^{2} n\right)$
$\rightsquigarrow \mathcal{O}\left(k^{3} \log ^{2} n\right)$

References

- P. Karandikar, M. Kufleitner, Ph. Schnoebelen. On the index of Simon's congruence for piecewise testability, Information Processing Letters 15 (2015), 515-519.
- J. Maňuch, Characterization of a word by its subwords, in:
G. Rozenberg, W. Thomas (Eds.), Developments in Language Theory, World Scientific Publ. Co., Singapore, 2000, pp. 210-219.
- A. Mateescu, A. Salomaa, K. Salomaa, Yu Sheng, A Sharpening of the Parikh Mapping, RAIRO-Theoretical Informatics and Applications 35 (2001), 551-564.
- M. Rigo, P. Salimov, Another generalization of abelian equivalence: Binomial complexity of infinite words, Theoret. Comput. Sci. 601 (2015), 47-57.

References

- J. Sakarovitch, I. Simon, Subwords, in: M. Lothaire (Ed.), Combinatorics on Words, Addison-Wesley, Reading, MA, 1983, pp. 105-142.
- A. Salomaa, Counting (scattered) subwords, EATCS Bull. 81 (2003) 165-179.
- A. Salomaa, Connections between subwords and certain matrix mappings, Theoret. Comput. Sci. 340 (2005) 188-203.
- A. Salomaa, Criteria for the matrix equivalence of words, Theoret. Comput. Sci. 411 (2010) 1818-1827.
- T.-F. Şerbănuță, Extending Parikh matrices, Theoret. Comput. Sci. 310 (2004), 23-246.

> 16th Mons TCS Days — Liège September 5th - 9th, 2016 http://www.cant.ulg.ac.be/jm2016/

4th CANT School \& Conference - CIRM, Marseille
Combinatorics, Automata and Number Theory
November 28th - December 2nd, 2016 http://www.cant.ulg.ac.be/cant2016/ http://scientific-events.weebly.com/1502.html

