

S. Habran, Th. Desaive, Ph. Morimont, B. Lambermont and P.C. Dauby

Pulmonary insufficiency

Intensive care unit

- Severe pulmonary diseases
 - Ventilator
 - o ECLS
- Protective ventilation
 - High FIO2
 - High respiratory frequency
 - Low tidal volume
 - \Rightarrow High pCO₂
 - ⇒ blood acidosis

Pulmonary insufficiency

Intensive care unit

- Severe pulmonary diseases
 - Ventilator
 - o ECLS
- Protective ventilation
 - High FIO2
 - High respiratory frequency
 - Low tidal volume
 - \Rightarrow High pCO₂
 - ⇒ blood acidosis

Pulmonarv insufficiencv

Intensive care unit

- Severe pulmonary diseases
 - Ventilator
 - ECLS
- Protective ventilation
 - o High FIO2
 - High respiratory frequency
 - Low tidal volume
 - \Rightarrow High pCO₂
 - ⇒ blood acidosis
- \Leftrightarrow ECCO₂R = vv-ECLS with low blood flow
- \Leftrightarrow ECCO₂R => pCO₂ decrease
- The goal: decrease the pCO₂ rapidely with small canula
- ⇒ Find an optimal blood flow across the device

Pulmonary insufficiency

Intensive care unit

Recovery

- Severe pulmonary diseases
 - Ventilator
 - o ECLS
- Protective ventilation
 - o High FIO2
 - High respiratory frequency
 - Low tidal volume
 - \Rightarrow High pCO₂

⇒ blood aci

 $ECCO_2R =$

 $ECCO_2R = 3$

w blood flow

rapidely with small

anula

Find an optimal blood flow across the device

Methods

 $\mathbf{F_{I,CO_2}}$ F_{L,CO_2} $F_{L,O2}$ C_{l,CO_2} $\mathbf{(1-f_s)\cdot Q_c}$ $f_s \cdot Q_c$ $\mathrm{C_{a,CO_2}}$ $C_{vd,CO}$ $\mathrm{C_{vd,O_2}}$ C_{v,CO_2}

- Lumped parameters model with 3 compartments
 - o Lung
 - Tissues
 - ECCO₂R device

- The mathematical model considers
 - Pulmonary shunt
 - Equilibrium between alveoli and pulmonary capillaries

❖ Data:

- Weight
- Cardiac output

- Respiratory frequency
- Arterial and venous blood samples
- =>The mathematical simulation is specific to the subject

Results

Blood flow sensibility

- Decrease is faster for large values of the flow
- 0.6 I/min seems to be a good compromise.
- ❖ First step towards an optimized clinical use of ECCO₂R.

Additional results

Validation

Good agreements between the experimental and calculated time evolution of pCO₂ and pH in arteries