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Abstract

Total stressed blood volume is an important parameter for both doctors and
engineers. From a medical point of view, it has been associated with the success
or failure of fluid therapy, a primary treatment to manage acute circulatory fail-
ure. From an engineering point of view, it dictates the cardiovascular system’s
behaviour in changing physiological situations. Current methods to determine
this parameter involve repeated phases of circulatory arrests followed by fluid
administration. In this work, a more straightforward method is developed using
data from a preload reduction manoeuvre. A simple six-chamber cardiovascular
system model is used and its parameters are adjusted to pig experimental data.
The parameter adjustment process has three steps: (1) compute nominal values
for all model parameters; (2) determine the five most sensitive parameters; and
(3) adjust only these five parameters. Stressed blood volume was selected by
the algorithm, which emphasizes the importance of this parameter. The model
was able to track experimental trends with a maximal root mean squared er-
ror of 29.2 %. Computed stressed blood volume equals 486 4 117 ml or 15.7
+ 3.6 ml/kg, which matches previous independent experiments on pigs, dogs
and humans. The method proposed in this work thus provides a simple way to
compute total stressed blood volume from usual hemodynamic data.
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1. Introduction

This study focuses on the computation of total stressed blood volume (SBV),
a virtual volume defined as the total pressure-generating blood volume in the
circulation [3, 18]. It is an important parameter for both physicians and engi-
neers.

From the clinician’s point of view, SBV has recently regained interest in the
context of fluid therapy. This therapy aims to improve cardiac output (CO)
by increasing the quantity of fluid in the circulation and is frequently used to
manage acute circulatory failure [19]. It has been shown to be effective only for
low preload levels, leading to a distinction among patients between responders
and non-responders. Consequently, clinicians have been searching for various
indices of fluid responsiveness. In this context, Maas et al. have recently shown
that, the lower the SBV, the higher the likelihood a patient would be a responder
to fluid therapy [18].

To assist physicians, engineers have developed a wide range of mathematical
models, in particular of the cardiovascular system (CVS). For these tools to
be usable at an intensive care unit (ICU) bedside, they have to be fast. This
requirement has led to a focus on lumped-parameter models [6, 8, 24, 29, 31].

Lumped-parameter CVS models can either be open [6, 29] or closed-loop
[8, 24, 31]. Open-loop models only represent a section of the CVS and thus,
have input and output flows. Closed-loop models represent the whole CVS and
thus, have neither input nor output flows. In other words, the total quantity of
blood in such models is fixed and conserved. When using a closed-loop model, it
is thus paramount to know the total blood volume in the model. More precisely,
most CVS models rely on the concept of SBV.

However, this importance is often underestimated, because most studies
focusing on CVS models aim at simulating situations in which the determi-
nants of CO (inotropy, preload, afterload and heart rate [14]) are constant
[1, 5, 6, 27, 28, 29, 31, 32, 33, 34], while the effect of SBV only appears in
simulations in which these determinants change. Nevertheless, this type of sim-
ulation is the most useful, because in real life, these determinants are constantly
changing due to breathing, exercise, etc., and sudden larger changes occur in
dysfunctions. It is equally important clinically, where changes in state must be
managed by treatment. Paradoxically, to our knowledge, few works have sought
to determine this SBV value and many authors do not even mention the value
used in simulation.

All previous studies to experimentally compute SBV relied on the following
principle. First, the heart is stopped to let the CVS reach its equilibrium pres-
sure, called the mean circulatory filling pressure (MCFP) [11]. Then, a given
fluid volume is infused in the CVS and the heart is stopped again. The MCFP is
now higher than before fluid infusion. These steps of fluid infusion and cardiac
arrest can be repeated. Finally, a linear regression of the infused volume-MCFP
points allows estimation of SBV as the volume that should be withdrawn for
MCFP to be zero. The method is illustrated in Figure 1.

Such experiments have been performed in pigs [21] and dogs [7, 10, 16, 17,
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Figure 1: Illustration of the experimental method for determination of SBV.

22, 30], but are inconceivable and unethical in humans. For humans, Maas et al.
[18] recently determined SBV by stopping blood flow (and measuring MCFP)
in the arm instead of the whole body.

This method has many drawbacks. First, it involves repeated circulatory
arrests (either global or regional). Second, fluid has to be infused, which can
be harmful if the patient is a non-responder. Third, it is time-consuming (more
than 20 minutes [18]). Fourth, it is highly invasive as it requires the use of at
least one pressure catheter. Finally, it relies on the concept of MCFP, which is
not a pressure encountered in normal situations.

This work presents a new method to estimate SBV without requiring cir-
culatory arrests or fluid administration. This method is based on the use of a
closed-loop CVS model, of which SBV is a parameter. The model is described
in Section 2.1. Identification of the model parameters on preload reduction ma-
noeuvres provides a value for SBV. This novel method is a valuable tool to track
the evolution of SBV during fluid therapies.

2. Methods

2.1. Cardiovascular System Model

The CVS model used has been previously described by Smith et al. [31].
It has been validated in several animal experiments [28, 32, 33, 34]. In this
work, direct ventricular interaction is neglected for simplicity. The CVS model
comprises six chambers representing the two ventricles (lv and rv) and the
systemic and pulmonary arteries (ao and pa) and veins (vc and pu). The model
chambers are joined by flow resistances representing the heart valves and the
systemic and pulmonary circulations. The valvular behavior is implemented by
means of the flow equivalent of a diode. The model is represented in Figure 2.

The arteries and veins are represented by purely passive chambers, where
pressure P; and volume V; are linked by

Pi(t) = E; (Vi(t) — Vi) (1)
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Figure 2: Cardiovascular system model.

with 7 = ao, pa, vc and pu. The parameter F; is the elastance of the chamber.
Instead of having to specify the unstressed volumes Vi;; for all sections of the
CVS taken into account, a common, simpler procedure is to perform the change
of variables

Vs,i(t) = Vi(t) — Vu, (2)

and to work only with stressed blood volumes Vs ;. Doing so, (1) becomes
Pi(t) = E; Vg,(t). (3)
The ventricles are described by a time-varying pressure-volume relationship

Plv(t) = elv(t) Elv (Wv(t) - VU,lv) = elv(t) Elv VS,lv(t>a (4)
Prv(t) = erv(t) B, (Vrv(t) - VU,TU) = em(t) E,., VS,rv(t) (5)

where the E; are the end-systolic elastances, the Vi;; are the (constant) un-
stressed volumes, the Vg, are the stressed volumes and the e;(t) denote the
normalized time-varying elastance functions, which can be described by [31]

2

ei(t) = exp {WZ ((t mod T) — %) ] (6)
where W; dictates the width of the Gaussian function and T is the cardiac
period. This formulation of the driver function is the simplest possible, involving
only two parameters. It was chosen to make the model and the parameter
identification process as simple as possible. However, such a symmetric driver
function is not physiologically realistic and other models exist, but involve more
parameters [1, 3, 5, 6, 8, 24].

As mentioned previously, the six model chambers are linked by flow resis-
tances R;, representing the four heart valves (j = mt, av, tc and pv) and the
systemic and pulmonary capillaries (j = sys and pul). Flows Qsys and Qpu
through the systemic and pulmonary resistances R,ys and Rp,; are described
by means of Poiseuille’s equation

_AP(1)

Q;(t) R,

for j = sys and pul (7)



where AP; represents the pressure difference across the resistance. In the case
of the heart valves, there is flow only if the pressure difference is positive. Hence

AP(D) i AP,
Qm{ R EAF(0H>0 (8)

0 otherwise

for j = mt, av, tc and pv.
Finally, the rate of volume change in a model chamber i is dictated by the
continuity equation

Vi(t) = VSz(t) = Qin,i(t) — Qout,i(t) 9)

where Qin,;(t) and Qou,;(t) respectively represent flow going in and coming out
of the chamber 1.
Summing (9) for all six model chambers gives

Z Vs,i(t) = Z Qin.i(t) — Z Qout.i(t). (10)

If the model is closed-loop, the flow coming out of a chamber is the flow going
into the next, and the right-hand side cancels out. Consequently, the total
stressed blood volume contained in the system is a constant

> Vsi(t) = SBV. (11)

The model equations are summarised in Appendix A. These equations are
solved using MATLAB’s ode45 solver (2010a, MathWorks, Natick, MA). Over-
all, the model counts 16 parameters (6 elastances E;, 6 resistances R;, 2 width
parameters W, and W,.,, the cardiac period T and SBV). Parameter identifi-
cation is used to assign values to the parameters from clinical data.

2.2. Rationale for Identification of the Stressed Blood Volume

This section presents the basic idea behind computation of SBV. When the
CVS model is simulated in steady conditions, there is a practical indetermina-
tion between venous elastances and SBV. Indeed, SBV can be chosen completely
arbitrarily if the venous elastances are adapted so that the veins store enough
blood, hence resulting in the same mean venous pressures. For instance, Figure
3 shows simulated left ventricular volume, pulmonary vein pressure, left ventric-
ular pressure and aortic pressure for the two different parameter sets given in
Table 1. As shown in this table, the SBV of the second set is one third of the one
from the first set. Venous elastances of the second set have been increased to
compensate for this lower SBV. As can be seen in Figure 3, simulated variables
are nearly identical for the two parameter sets. Consequently, venous chamber
elastances and SBV cannot simultaneously be determined from measurements of
left ventricular volume, pulmonary vein pressure, left ventricular pressures and
aortic pressure in constant conditions. Using such data, the model is practically
non-identifiable [25].
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Figure 3: Simulations of the CVS model using the parameters of Table 1. Left: simulation 1,
right: simulation 2. Full line: left ventricular pressure, dotted line: pulmonary vein pressure,
dashed line: aortic pressure, grey line: left ventricular volume.

Table 1: Parameter values used for simulations of Figures 3 and 4.

Parameter Units Simulation 1  Simulation 2
Wi, s 80 80
W s2 80 80

T S 0.6 0.6
SBV ml 1500 500

£, mmHg/ml 2 2
E,., mmHg/ml 0.8 0.8
E, mmHg/ml 2.5 2.5
E,. mmHg/ml 0.01 0.027
Epq mmHg/ml 2.1 2.1
Epu mmHg/ml 0.01 0.067
Rsys mmHg s/ml 2.5 2.5
Rpu mmHg s/ml 0.4 0.4
Rt mmHg s/ml 0.05 0.05
Ra. mmHg s/ml 0.04 0.04
R, mmHg s/ml 0.04 0.04
Ry mmHg s/ml 0.03 0.03

However, when preload or afterload are changing, the indetermination be-
tween venous elastances and SBV vanishes. To show it, the model reaction to
a preload reduction manoeuvre is simulated. The preload reduction manoeuvre
is modeled as a sudden twofold increase of tricuspid valve resistance R;. at an
instant chosen to be ¢ = 0. (This way of reproducing the experimental setup
is discussed in Section 4.) The model reaction for the two parameter sets of
Table 1 is displayed in Figure 4. As can be seen in this figure, pressures and
volumes change faster in the model with a smaller SBV and larger venous elas-
tances. This behaviour was to be expected since larger elastances mean that a
given change in volume will cause larger changes in pressure. Note that the new



steady state reached after the preload change is also different (not shown). SBV
is thus important when preload is varying. This idea will be used to compute
SBV from experimental data.
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Figure 4: Simulations of the CVS model using the parameters of Table 1. Tricuspid valve
resistance is doubled at ¢ = 0 s. Left: simulation 1, right: simulation 2. Full line: left
ventricular pressure, dotted line: pulmonary vein pressure, dashed line: aortic pressure, grey
line: left ventricular volume.

2.3. Ezperimental data

To identify model parameters and prove the concept, experimental animal
data were used. These data came from basal state measurements on seven pigs
(numbered 1 to 7), performed with the approval of the Ethics Committee of
the Medical Faculty of the University of Liege. Details on the experimental
procedures are available elsewhere [9, 15]. Measurements comprise continuous
recording of:

e left and right ventricular volumes Vi, (t) and V,.,(t),
e left and right ventricular pressures Py, (t) and P, (t),
e systemic and pulmonary arterial pressures Pyo(t) and Pp,q(t).

The pigs were also weighed at the beginning of the experiments.

A Fogarty balloon catheter was introduced in the inferior vena cava of each
animal. After all sensors were correctly positioned, preload was transiently re-
duced by inflating this balloon. This procedure is further referred to as ” preload
reduction manoeuvre”. In two animals (numbered 1 and 3), two preload reduc-
tion manoeuvres were performed.

In total, nine experimental datasets were thus used, relative to seven animals.
Table 2 summarises the following experimental data for the nine datasets:

e mean left (V,) and right (V,.,) ventricular volumes,

o left (SVy,) and right (SV,.,) ventricular stroke volumes,



Table 2: Summary of the experimental data. The asterisk (*) denotes cases for which measured
pulmonary artery pressure was negative at the end of the preload reduction manoeuvres.
Pig 1 Pig 1 Pig 2 Pig 3 Pig 3 Pig 4 Pig 5 Pig 6 Pig 7
Last heart beat before preload reduction

Vi (ml) 67.4 64.0 80.2 66.1 65.3 56.3 67.1 63.2 53.7
SViy (ml) 27.0 25.1 23.4 30.8 33.9 27.5 27.6 28.1 18.3
Pyo (mmHg) 123.6 112.0  74.0 117.4 1100 117.3 748  80.1  58.3
PP,o (mmHg) 30.9 24.7 19.0 30.4 26.8 33.2 34.1 37.1 21.8
Vi (ml) 55.8 56.7 62.7 45.2 45.6 50.5 66.5 37.9 49.9
SV (ml) 17.3 16.7 18.1 10.7 10.9 14.9 20.5 17.5 12.6
Ppo (mmHg) 15.0 14.7 11.2 4.7 4.1 8.6 9.8 14.4 11.9
PP, (mmHg) 9.6 9.0 8.6 7.7 7.3 9.7 12.0 12.6 11.6
Last heart beat before stopping preload reduction

Vip (ml) 47.0 47.1 63.9 43.1 49.7 44.9 50.1 50.5 50.6
SV, (ml) 8.1 7.4 18.3 9.0 20.2 13.5 11.0 20.3 15.9
P,, (mmHg) 68.9 63.8 55.4 68.5 94.5  100.1 41.4 62.8 52.3
PP,, (mmHg) 13.8 10.6 15.7 16.5 21.2 26.4 19.4 31.9 19.4
Viy (ml) 46.3 46.5 53.9 42.6 41.9 41.7 55.8 33.1 46.4
SV, (ml) 8.7 9.2 6.6 7.9 8.1 8.6 7.2 11.7 13.2
P,, (mmHg) 5.9 6.1 4.7 -1.8%  -0.9%  2.2%  0.8* 7.5 5.8
PP, (mmHg) 4.8 4.3 5.5 7.2% 5.6% 5.7* 4.5% 11.5 6.8

e mean systemic (P,,) and pulmonary (P,,) arterial pressures,
e systemic (PP,,) and pulmonary (PP,,) arterial pulse pressures.

These eight indices were computed on the last heart beat before the preload
reduction manoeuvre (first eight rows of Table 2), and on the last heart beat
before stopping the preload reduction manoeuvre (last eight rows).

Note that more experiments were performed to obtain data from preload
reduction manoeuvres. However, the resulting measurements were not regular,
due to premature ventricular contractions, and were thus not included in the
present analysis. These premature contractions were probably caused by the
large amount of sensors inserted in the animals’ CVS.

2.4. Parameter Identification

The parameter identification procedure involved three steps. First, nominal
values had to be assigned to all 16 model parameters. From simulations carried
out using these values, an algorithm selected a sensitive subset of parameters to
be further identified. Finally, this subset of parameters was identified using an
iterative procedure.

2.4.1. Nominal Parameter Values

To assign nominal values to the model parameters, the available data was
used in combination with the model equations presented in Section 2.1.

First, the cardiac period T was computed by dividing the duration of the
preload reduction manoeuvre by the number of cycles during the experiment.
The assumption of constant cardiac period was consistent with the experimental
data.

Second, Ej, (and left ventricular unstressed volume Vi7;, as a byproduct)
have been determined by linear regression of the end-systolic pressure-volume



points, according to the method of Kass et al. [13]. Then, the experimental
driver function has been computed using (5):
70
Elv (‘/lv (t) - VU,lv)

e (t) (12)
and the parameter W;, was estimated by fitting (6) to the previously computed
curve. Parameters F,,, Vi, and W,, were computed by an analogous proce-
dure.

In the previous computations, parameters 1, Wy, W,.,, E;, and E,., were
computed by directly fitting the model to the data. Computation of the other
parameters from the available data required some degree of approximation.
When it was not possible to infer a parameter value only from the data, reference
values published in the literature were used.

Third, the systemic vascular resistance was computed using its definition
14]

Ryys = (13)
where P,, and P,. are, respectively, mean aortic and vena cava pressure. For
simplicity, P,. was neglected with respect to P,, and thus set to zero in (13).

Fourth, the pulmonary vascular resistance was estimated using the pul-
monary counterpart of (13)

Ppo — Ppy
CO

where Py, and P, respectively denote mean pulmonary arterial and venous
pressures. Here also, P, was neglected with respect to P,, and set to zero in
(14).
Fifth, during diastole, volume change in the aorta is described by
Poo(t) — Pye(t)

VS,ao(t) = _R— (15)
sYs

Ryut = (14)

If, once again, P,. is neglected with respect to P,, and (3), is used, one gets

_ an VS,ao (t)

Vs,a0(t) R — =22 —22000 7 (16)
Rsys
Solving this equation yields
Eq (t—1
Vs,a0(t) = exp (—(Rm) Vs.ao(tBD)- (17)
SYs

where tgp denotes the beginning of diastole. Multiplying both sides of (17) by
FE,., yields

an (t - tBD)

Pao(t) ~ exp <_ R
sys

) Pao(tBD)' (18)



Since Rgys has been computed from (13), Eq, can be determined by fitting the
measured P,,(t) curve during diastole to (18). The same procedure has been
applied to compute Ejq.

Sixth, valve resistances Ry, Rqv, Ric and Ry, were initialized at values
provided by Revie et al. [29] in another study performed on the data used in
this article, i.e.

R, =0.05 mmHg s/ml (19)
Ry = 0.04 mmHg s/ml (20)
Ri. =0.04 mmHg s/ml (21)
R,, =0.03 mmHg s/ml. (22)

Seventh, according to Zanzinger et al. [37], inferior vena cava elastance for
pigs is 0.44 mmHg/(ml/kg). This value was divided by two to account for the
two venae cavae in parallel. The nominal value of F,. is thus 0.22 mmHg kg/ml
divided by the pig’s weight.

Fighth, no experimental study assessing the elastance of a pulmonary vein
in pigs was found. An experimental study provided reference values for the
minimum and maximum pulmonary vein pressures in pigs [2]. Using this data,
the amplitude of the pulmonary vein pressure was estimated to be 9 mmHg and
E,, was approximated by:

9 mmHg

B, = SV (23)

where SV is the stroke volume. This formula underestimates E,, because it
assumes that all the stroke volume contributes to a pressure increase in the
pulmonary veins, whereas part of it flows directly into the heart during diastole.
Finally, to evaluate SBV, experimental pressure-volume curves on dogs pub-
lished by Drees and Rothe [7] were used. These pressure-volume curves are
similar to the one presented in Figure 1, except that the infused volume is
expressed in ml/kg. From these curves, a SBV of 31.95 ml/kg was estimated.
As mentioned before, nominal values of the parameters T, W;,, W,.,, E,
and E,, were computed by directly fitting the model equations to the data.
Consequently, it was assumed that the parameter identification process would
not greatly alter these parameter values. They were thus excluded from the
following selection procedure, and the remaining 1 x 11 parameter vector was:

P= (an Epa Rsys Rpul Rmt Rav th va Evc Epu SBV) (24)

2.4.2. Subset Selection Algorithm
In this section, a subset of the parameter vector p is selected for optimization
using a dedicated algorithm [4]. This algorithm performs a sensitivity analysis
on the error vector e and selects the parameters to which e is the most sensitive.
The error vector €™ for dataset number n was built as the relative error
between simulated values and measured values displayed in Table 2. That is, if

10



the vector y represents a column of Table 2, the k™" component of e” is

()

Yk (25)

ey =1-—

where y(p) is a vector containing the corresponding simulated values. As in
Table 2, the first eight components of e" are related to the last heart beat
before the preload reduction manoeuvre, whereas the 9" to 16** components
of €™ are similar to the previous ones, but are computed on the last heart beat
before stopping the preload reduction manoeuvre. As emphasized in Table 2, in
four experimental datasets, measured pulmonary artery pressure was negative
at the end of the preload reduction manoeuvre. The corresponding components
were not included in the error vector. Hence, e!, €2, €3, €% and €” are 1 x 16
vectors, while e?, €%, €% and e” are 1 x 14 vectors. Ventricular pressures were
not included in the error vector since they had already been used to compute
parameters T', Wy, W, E}, and E,,. Finally, a global 1 x 136 error vector e
was built as a concatenation of the nine error vectors e™ relative to each dataset:

e=(ele? e et e el e’ ede?). (26)

The subset selection algorithm used in this work was introduced by Burth et
al. [4] and was used in cardiovascular modeling by Pope et al. [24]. The algo-
rithm will be briefly described here. Further details can be found in the previous
references. In summary, the input to this algorithm is the non-dimensionalized
11 x 136 Jacobian matrix J, that is the derivative of the error vector with respect
to the vector of model parameters p:

8el
J kl — =~ Pk- 27
T = 5o (27)
In this work, the Jacobian matrix was computed by central difference approxi-
mation using a step size of 0.1 % of the parameter value.
Once this Jacobian matrix was computed, the 11 x 11 Hessian matrix was
approximated by

H~JJ (28)

where ' denotes the transpose matrix. The hypothesis underlying this approxi-
mation is that the components of the error vector e are small [4].

The principle of the subset selection algorithm is to compute the 11 eigenval-
ues of H and to separate them in two subsets containing p and 11— p eigenvalues.
The first subset contains the p largest eigenvalues and this p value dictates the
number of parameters that can be iteratively optimized. The value of p was
chosen as

Ai .

p = arg max <
d it+1

11



That is, p was chosen so that the ratio between the two consecutive eigenvalues
Ap and A,y1 was the highest. Using the previous equation, p was found to be
equal to 5.

Let V, be the 11 x 5 matrix containing the 5 eigenvectors of H associated
with the 5 largest eigenvalues. To find the 5 parameters corresponding to the
5 largest eigenvalues, an 11 x 11 permutation matrix P is found through a QR
decomposition of V;:

V,P=QR. (30)

Finally, the parameter vector p is rearranged using P, which gives the 5 param-
eters that can be used for optimization.

In the present case, the 5 selected parameters were Eqo, Epq, Rsys, Rpw and
SBV. The remaining 6 parameters (namely R,,;, Rav, Ric, Rpv, Eve and Epy,)
were kept at their nominal values.

2.4.8. Iterative Adjustment of the Selected Parameters

The five selected parameters were identified by an iterative procedure for
each of the nine datasets. The objective of this procedure was to minimize the
square of the Euclidean norm of the error vectors e™. This task was performed
using the simplex method. The initial values required by this algorithm were

the ones computed in Section 2.4.1. All computations were performed using
MATLAB (2010a, MathWorks, Natick, MA).

2.4.4. Sensitivity and Correlation Analyses
In order to evaluate the sensitivity .Jj of the error vector e to the k' param-
eter pg, the Euclidean norm of each row of the Jacobian matrix was computed

136

Te = 4| DT (31)

=1

The Hessian matrix can also be used to examine correlation between pa-
rameters [23]. To do so, the 11 x 11 covariance matrix C = H™! must first be
computed. Then, the 11 x 11 correlation matrix can be obtained as

Clom
[Clom[Cln

The closer the element [c],,y, is to 1 (respectively —1), the more the parameters
pm and p, are directly (respectively inversely) correlated.

(32)

[C} mn —

3. Results and Discussion

3.1. Sensitivity and Correlation Analyses

The sensitivities J, computed using (31) are displayed in Figure 5. The
three parameters to which the error vector e is the most sensitive are SBV,

12



vena cava elastance F,. and tricuspid valve resistance Ry.. The fact that F,.
and Ry, are the second and third most influent parameters is due to the way
the preload reduction manoeuvre is simulated (doubling of Ry., which is the
resistance downstream of the vena cava). The fourth to seventh most influent
parameters are arterial elastances E,, and F,, and vascular resistances R, and
R,y The three remaining valve resistances Ry, R4, and Ry, and pulmonary
vein elastance Ej, are the least influent parameters. This outcome emphasizes
the fact that valve resistances are difficult to identify (from the data used), as
already noted by Revie et al. [29].

25F SBV

201

Sensitivities Jk
@

-
o
T

Figure 5: Sensitivities Jj of the error vector e to each parameter.

It should also be noted that Ellwein et al. [8] performed a parameter sen-
sitivity analysis in a different CVS model including 11 compartments and 52
parameters. Mitral valve resistance was the 42°d most sensitive parameter and
aortic valve resistance, the 46'", which matches the present results. Note that
their model did not include tricuspid and pulmonary valve resistances.

Figure 6 displays the (symmetric) correlation matrix c. The six largest (i.e.
greater than 0.5 in absolute value) correlations occurred between the following
parameter pairs: E,. and R, Ry, and Ry, Ey. and SBV, E,. and R,,, Ep,
and Ry, and Ry, and R;.

The reason why the subset selection algorithm selected the parameters SBV,
Eooy Epa, Reys and Ry, can be understood by comparing Figures 5 and 6.
According to Figure 5, SBV is the parameter to which the error vector is the
most sensitive. It was thus selected by the algorithm. Since SBV and E,.
exhibit a strong correlation, E,. was left aside of the selected parameter set.
Parameters exhibiting a strong correlation with E,. were also not selected (R
and Ry,).

The group of four parameters Fq,, Epq, Rsys and Ry, exerts a moderate
influence on the error vector and shows no large correlation. Consequently, it
was selected by the algorithm, and parameters correlated with any of these four
parameters were left aside. This was the case for Ep, and R;.

The results presented in this section emphasize the importance of SBV for

closed-loop CVS model simulations. The group of four parameters Fq,, Epq,
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Figure 6: Correlation matrix ¢ between the model parameters.

Rsys and Ry, is also shown to be relevant in a CVS model. This outcome
matches and revalidates the widespread use of two-parameter windkessel models,
including only an arterial elastance and a vascular resistance to represent the
systemic or pulmonary arterial system.

It is worth mentioning that the sensitivity analysis and subset selection pro-
cedures were also applied to each of the nine e™ vectors separately. The individ-
ual sensitivities followed a pattern very similar to the one in Figure 5 and were
also strongly correlated with the global sensitivity vector .J; (average r2 = 0.87).
The parameter subsets selected on the basis of the vectors €™ included the five
same parameters (SBV Eu,, Epq, Rsys and Rpy) in 87 % of the cases and
rejected the same six other ones in 92 % of the cases.

8.2. Parameter Adjustment

Table 3 shows the nominal and optimized parameter values, along with the
pig weights and final values of the root mean squared error (RMSE) /||e™||?/N.
for all nine datasets. N, is the number of components in e, equal to 14 or 16
as explained in Section 2.4.2. The largest value of the RMSE is 29.2 %. For
the corresponding dataset, N, = 14 and not 16 because measured pulmonary
artery pressure was negative at the end of the preload reduction manoeuvre. The
overall poor quality of this dataset could justify this highest RMSE. Figure 7
shows simulated and measured ventricular and arterial pressures for this worst-
case dataset.

For all other datasets, the RMSE lies between 18.8 and 26.2 %. Conse-
quently, the parameter adjustment can be qualified as good. To further empha-
size this statement, Figure 8 shows simulated and measured left ventricular and
aortic pressures for pig number 7. As can be seen on this figure, simulated and
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Table 3: Nominal and optimized values of the model parameters.

Parameter Units Pig 1 Pig 1 Pig 2 Pig 3 Pig 3 Pig 4 Pig 5 Pig 6 Pig 7
‘Weight kg 35.0 35.0 31.0 29.0 29.0 31.0 32.5 30 25
Wi s72 66.9 63.6 68.9 78.7 61.9 53.5 95.8 49.2 12.1
Wiy s72 117 104 239 55.1 53.1 76.0 238 76.4 17.1
T s 0.589 0.590 0.474 0.621 0.615 0.597 0.643 0.621 1.45
Vu,iv ml 20.6 23.1 2.99 21.8 -10.8 -13.6 32.9 -5.32 20.0
Vu,ro ml 41.7 40.6 46.0 35.5 32.8 37.6 52.3 17.5 35.1
E, mmHg/ml 2.99 3.14 1.30 3.85 1.74 1.81 4.12 1.33 2.29
E,., mmHg/ml 2.18 1.60 1.84 3.21 2.33 1.47 2.84 1.53 1.41
Eyc mmHg/ml 0.00629 0.00629 0.00710 0.00759 0.00759 0.00710 0.00677 0.00733 0.0088
Epu mmHg/ml 0.406 0.431 0.433 0.434 0.402 0.425 0.375 0.395 0.581
Rt mmHg s/ml 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500  0.0500
Ry mmHg s/ml 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400  0.0400
Ryic mmHg s/ml 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400 0.0400  0.0400
Ryo mmHg s/ml 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300 0.0300  0.0300
Nominal values of the selected parameters

SBV ml 1120 1120 990 927 927 990 1040 960 799
FEao mmHg/ml 2.19 2.04 1.03 2.32 1.97 2.20 1.61 2.73 2.25
Epa mmHg/ml 0.632 0.726 0.699 0.682 0.760 0.775 0.974 1.44 1.56
Rsys mmHg/ml 3.29 3.17 1.69 3.52 3.02 3.31 2.00 2.18 5.45
Rpu mmHg/ml 0.400 0.417 0.256 0.140 0.113 0.243 0.263 0.392 1.12
Optimized values of the selected parameters

SBV ml 535 536 436 535 498 567 342 669 256
Ea.o mmHg/ml 1.88 1.59 2.06 2.28 2.91 2.88 2.45 2.61 1.81
Epa mmHg/ml 0.860 0.793 2.74 2.94 7.07 9.23 0.960 2.49 1.11
Rgys mmHg/ml 2.81 3.76 2.67 3.87 5.75 4.46 2.49 2.19 5.44
Rpui mmHg/ml 0.122 0.134 0.0354 0.00120 0.0115 0.0427 0.212 0.0846 0.406
RMSE - 0.212 0.213 0.262 0.247 0.292 0.231 0.211 0.202 0.188
N, - 16 16 16 14 14 14 14 16 16
SBV/Weight  ml/kg 15.3 15.3 14.1 18.4 17.2 18.3 10.5 22.3 10.3

measured pressures are in very good agreement all along the preload reduction
manoeuvre.

The errors between measurements and simulations have three main causes,
which can be seen in Figures 7 and 8. First, in four datasets, measured pul-
monary artery pressure is negative at the end of the experiment; these measure-
ments are marked by asterisks in Table 2. It is uncertain whether this outcome
is a measurement error or if pulmonary artery pressure was actually lower than
atmospheric pressure. However, a negative pulmonary artery pressure cannot
be reproduced by the CVS model, given its assumptions and formulation, which
is the reason why the objective function was modified in such cases, as explained
in Section 2.4.2.

Second, for all datasets, measured aortic pressure is higher than left ven-
tricular pressure during a large part of systole. This second outcome probably
comes from an error in the calibration of the pressure catheters. Simulated
aortic pressure thus has to be lower than measured, because it would otherwise
prevent emptying of the ventricle.

Third, measured left and right stroke volumes are different, as can be seen in
Table 2. This is physiologically impossible in steady conditions (before preload
reduction). Consequently, simulated stroke volume for ¢ < 0 must be a trade-off
between measured left and right stroke volumes.

Despite these discrepancies likely due to sensor errors, the model is able
to track the pressure changes when preload is reduced and the trends appear

15



R x2
85 | 52
80" |r L S N | 50
T Ao hponoi
Esp R .
0] vl

[ I
o

Right ventricular volume (ml)
@

w
()

34

90

Aortic pressure (mmHg)
=
o

©
o

Pulmonary artery pressure (mmHg)

~
o

Figure 7: Result of parameter identification for pig number 3 (dataset 2). Dashed lines:
measurements; full lines: simulations.

accurately reproduced, which is clinically valuable and can thus be considered as
an important success. Overall, these results are the first quantitative validation
of the CVS model in a situation of changing load.

8.8. Value of the Total Stressed Blood Volume

From the results displayed in Table 3, it can be observed that the average
SBYV for pigs is equal to 486 + 117 ml. For comparison, Maas et al. reported
values of 1265 & 541 ml in a recent study on humans [18]. There is a large inter-
subject variability in experimentally determined SBV values in the present study
and that of Maas et al. (Coefficients of variation are 24 and 43 %, respectively.)
This experimental study is the only one that was found providing SBV values
expressed in millilitres.

The reason why no value of SBV in millilitres was found is that many in-
vestigators, when performing the experiment illustrated in Figure 1, infused
a quantity of fluid expressed proportionally to the animal’s weight (e.g. 10
ml/kg). As a consequence, these experimental studies provide a ”"specific” value
of SBV, expressed in ml/kg. For instance, in an experimental study on pigs,
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Figure 8: Result of parameter identification for pig number 7. Dashed lines: measurements;
full lines: simulations.

Ogilvie et al. [21] reported mean SBV values of 29, 34 and 41 ml/kg for three
different ways of inducing circulatory arrest. No other experimental study on
pigs was available. In an experiment performed on dogs, Drees and Rothe [7]
found values ranging from 27.8 to 43.1 ml/kg, depending on the time elapsed
between volume infusion or removal and circulatory arrest. The same authors
[30] also reported values between 37.9 to 41.4 ml/kg, depending on the amount
of blood that was infused or removed. Another research group [16, 17] pub-
lished curves of MCFP versus infused volume in control dogs and investigated
the changes due to pharmacologic agents. In both studies, control dogs had an
average SBV of 14.5 ml/kg (standard deviation was 0.2 in the first study [16],
0.5 in the second [17]).

For comparison with these ”specific” values, each SBV value of Table 3
can be divided by the animal’s weight (provided in the first row of Table 3).
Doing so, the average "specific” SBV obtained is equal to 15.7 + 3.6 ml/kg.
The results of this study are thus of the same order of magnitude as all the
previously mentioned ”specific” SBV values. This observation is encouraging,
but comparisons with other porcine studies would be better, if available.
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There is a large range of experimentally determined ”specific” SBV values,
both in this study and others. The previously reported articles have emphasized
the influence of how the experiment is performed. Another possible explanation
for such a large range is that there is no correlation between the weight of the
pigs and the SBV value, as can be seen from Table 3. This outcome is due to
the fact that SBV is not necessarily constant in a given animal. (Compare, for
example, the two SBV values for pigs 1 and 3 in Table 3.) Indeed, SBV can
be modified by sympathetic actions, time-dependent vascular properties, fluid
exchange through the capillaries, and others [7]. Consequently, it is possibly
inappropriate to define a ”specific” SBV. This outcome further highlights the
need to identify this subject and condition-specific parameter directly as its
value in millilitres may also be clinically more relevant in titrating care.

8.4. Other Parameter Values

In this section, values of the parameters other than SBV are discussed. First,
optimized values of the parameters are compared with their nominal values.
Second, the parameter values are compared with other studies performed on
the same datasets. Finally, variability of the parameters are evaluated for all
datasets and for datasets coming from the same animal (pigs 1 and 3).

Maximal errors in the nominal values of parameters F,, and R, compared
with optimized values were, respectively, 52 % and 36 %. This result justifies the
formulae (13) and (18) used to compute the nominal values of these parameters
and the underlying assumptions (vena cava pressure negligible with respect to
aortic pressure). Interestingly, there is a mild correlation (r? = 0.51) between
nominal and optimized values of Ry, as shown in Figure 9 (left). Using this
information, a better approximation for Ry is:

PGO
Ryys = 0.83 o + 1.2 mmHg s/ml.
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Figure 9: Linear correlation between nominal and optimized values of Rsys and Rp,;.

On the pulmonary side, the maximal errors in the nominal values of pa-
rameters E,, and R, were, respectively, 92 and 11,586 %. There are two
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main reasons for this large discrepancy between nominal and optimized values
of Rpy. First, in the datasets, pulmonary artery pressure is particularly low,
sometimes even negative, as previously mentioned. Second, in the case of the
pulmonary circulation, downstream pressure cannot be neglected with respect
to pulmonary artery pressure [20]. Equation (14) cannot be further simplified
to Ry =~ Ppa /CO. However, since downstream pressure was not available, this
assumption was necessary. As in the systemic case, there is a good correlation
(r? = 0.82) between nominal and optimized values of R,,;, shown in Figure 9
(right). This result suggests the following approximation:

Py
Ry = 0.39 CpO —0.027 mmHg s/ml.

In other studies on the same datasets, Revie et al. [26, 27] identified all
the parameters of the six-chamber CVS model except SBV. They published
the values of the parameters Ryys, Rpui, Fi, and FEp,. When compared to
the values presented in Table 3, only the values of R,y and R,, are well
correlated (7"2 = 0.79 and 0.72, respectively). The values of Ej, and E., show no
correlation. The fact that there is no correlation between ventricular elastances
comes from the fact that Revie et al. assumed V¢, and Vi ., to be zero, which
is not the case, as shown in Table 3. As explained by these authors, their values
of Ej, and F,, do not represent left and right ventricular contractilities in a
strict sense [29].

As previously explained, two preload reduction datasets were available for
pigs 1 and 3. The identified parameter values are displayed in Table 3. For the
two parameter sets identified for pig 1, the maximum parameter variabilities
are approximately 30 % for E,, and 29 % for Rs,s. For all other parameters,
maximum variability is 17 %.

For pig 3, the maximum variabilities are 591 % for Vi, and 162 % for Rpu;.
These high variabilities are caused by the fact that the pig did not react the
same way to the two preload reduction manoeuvres, as shown in Figure 10. For
instance, left ventricular contractility Ej, changed by 75 % between the two
manoeuvres. Identified parameter values (including SBV) vary along with the
changing state of the animal. This is due to the various reflex mechanisms,
which are not accounted for here. It is consequently not surprising to find
different parameter values for two successive measurements in a single animal.
The method described in this work only aims to determine the instantaneous
state of the animal.

As can be seen from Table 3, the unstressed volume Vi, of the left ventri-
cle is the most varying parameter (mean 10.2 ml and standard deviation 16.1
ml), being sometimes even negative (see for example Figure 10 (right)). This
observation has been made by many other researchers [12, 36], who questioned
the physiological meaning of a negative volume. The explanation of this phe-
nomenon is that the end-systolic pressure-volume relationship is only linear on
a limited volume range, but tends to become concave for low volumes [12, 36].
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Figure 10: Left ventricular pressure-volume loops (dashed line) and end-systolic pressure-
volume relationships (grey line) for the two datasets of pig 3.

4. Limitations

This work presented a method to compute all the parameters of a six-
chamber CVS model, including total stressed blood volume, SBV, from data
of preload reduction manoeuvres. In these experimental manoeuvres, one of the
two input vessels to the right ventricle (the venae cavae) was occluded. In this
work, it was assumed that this preload reduction manoeuvre could be simply
modelled as a sharp doubling of the right ventricular input resistance R;.. This
hypothesis is discussed here.

First, to stick to the experiments, the change had to be modeled as a change
in resistance (the elastance of the vessel being unaffected by the occlusion).
However, the lumped-parameter nature of the model causes venae cavae to
be represented as a single elastic chamber with no resistance. The remaining
choice was to alter either the resistance upstream of the elastic chamber (the
systemic vascular resistance Rys) or the one downstream (the right ventricular
input resistance Ry;.). Since the systemic vascular resistance represents the
resistance of the systemic capillaries, it seemed more appropriate to alter the
right ventricular input resistance Ry..

Second, it was assumed that the preload reduction manoeuvre could be
modelled by doubling this resistance. Indeed, since one of the two input vessels
is occluded, flow to the right ventricle is divided by two. Using Poiseuille’s
equation @ = AP/R, if @ is divided by two and AP remains constant, R has
to be doubled.

Finally, the preload reduction manoeuvre was reproduced by a sharp change
of the resistance. It is likely that the computed SBV value could change accord-
ing to how fast the inferior vena cava is occluded. However, measuring the time
evolution of inferior vena cava occlusion requires an echographic study, which
was not available here.

To validate the method presented in this work, the computed SBV value
should be compared to those obtained by the experiments described in the
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introduction and in Figure 1. As mentioned previously, such experiments are
invasive and risky, as they involve repetitive circulatory arrests in all or part of
the CVS and multiple fluid administrations [7, 10, 16, 17, 18, 22, 21, 30]. If the
method provided here correlates well with these other approaches, it could be
used as a faster replacement, also avoiding the need for circulatory arrests.

Another option would be to use the presented method to track the evolu-
tion of SBV during vascular filling therapies, which is its intended use. Such
experiments are currently in progress.

To overcome the present lack of experimental SBV data, the method was
applied on simulated data. An example of such a numerical validation is given
in Table 4. First, reference parameters were taken as 1.5 times the parameters
displayed in the second column of Table 1. Second, test data was simulated us-
ing these reference parameters. Then, nominal parameter values were obtained
from the data, as described in Section 2.4.1. Table 4 shows how the formu-
lae developed in that section perform well, especially the ones used to derive
ventricular and arterial parameters. Finally, the subset selection algorithm was
used and selected ten parameters for optimization. The optimized values of
these parameters are also displayed in Table 4.

The SBV method was able to retrieve the parameter values used to gener-
ate the reference simulations. As expected, the most sensitive parameters such
as SBV, arterial elastances and vascular resistances, were all recovered with a
low relative error (below 7 %). On the other hand, the least sensitive param-
eters, such as valve resistances and pulmonary vein elastance are the ones the
algorithm had the more difficulty to retrieve.

5. Conclusions and Implications

In the past, total stressed blood volume, SBV, has been considered to be an
unimportant parameter of closed-loop CVS models. Its value has been omitted
from numerous studies presenting such models, despite its usefulness to clini-
cians to assess the filling state of a patient. In this work, the importance of this
parameter for CVS models was shown. Then, a simple method was presented to
compute this parameter along with all other parameters of a six-chamber CVS
model from usual hemodynamic data. This method consists in fitting the CVS
model to data from a preload reduction manoeuvre. Because data is limited
and not perfect, an algorithm was used to select a subset of parameters to fit.
SBV was selected by the algorithm, which confirms the important role of this
parameter. Its value could then be computed for all available datasets.

The method presented here is invasive since it is based on a preload reduction
manoeuvre through vena cava occlusion. However, it could be made non-invasive
by suppressing the need for ventricular pressures and volumes measurements.
As previously shown, SBV is the most sensitive parameter. Therefore, it is likely
to be identifiable only from aortic pressure measurements. The second step to
make the method non-invasive would be to replace the vena cava occlusion by
another preload reduction manoeuvre, for example a passive leg raising ma-
noeuvre (PLR) [35]. These changes would result in a fully non-invasive method
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Table 4: Numerical validation of the method. First, reference parameters were used to simulate
test data. Second, nominal parameter values were obtained from this data. Third, the ten
parameters selected by the subset selection algorithm were optimized.

Parameter Units Reference Nominal  Optimized
Wiy 572 120 119.9816
Wi 52 120 119.9816
T S 0.9 0.9003
SBV ml 750  461.7778 698.2080
Vu v ml 0 0.0000
VU ro ml 0 0.0000
B, mmHg/ml 3 3.0000
E,, mmHg/ml 1.2 1.2000
E, mmHg/ml 3.75 3.7410 3.7406
E,. mmHg/ml 0.0405 0.0152 0.0273
Epq mmHg/ml 3.15 3.1040 3.1493
Epu mmHg/ml 0.1005 0.1275
Rgys mmHg s/ml 3.75 3.8523 3.8103
Rpui mmHg s/ml 0.6 0.7330 0.6339
Ryt mmHg s/ml 0.075 0.0500 0.0581
Ry, mmHg s/ml 0.06 0.0400 0.0682
Ryc mmHg s/ml 0.06 0.0400 0.0367
Ry, mmHg s/ml 0.045 0.0300 0.0329

to compute a patient’s volume status. Non-invasive measurements are criti-
cal to enable easy identification of a patient’s volume status and whether fluid
therapy should be performed, which is central to monitoring and treating CVS
dysfunction.
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Appendix A. Summary of the Cardiovascular System Model Equa-

tions

Pressure-volume relationships of the aorta, vena cava, pulmonary artery and

pulmonary veins:

Pao(t) (

Pvc(t) = E’uc VS,UC(t

Ppa(t) (
(t)

a

v
g

—_— O N ~—

=
=W N =

Time-varying pressure-volume relationship of the left and right ventricles:

Pu(t)  =ew(t) Ew Vsw(t)
P’I"U<t) = €ry (t) B, VS’,rv (t)

Time-varying elastance functions:
2
ew(t) =exp [_le ((t mod T') — %) ]
7\ 2
er(t) =exp {—er ((t mod T') — 5) ] .

Flows through the systemic and pulmonary resistances:

Quilt) = ettt

Ppa(t)—Ppu
Qput) = Ll

Flows through the mitral, aortic, tricuspid and pulmonary valves:

ot — %;Pz@) if Ppu(t) > Pr(t)
mt otherwise

Q = P’vi if Plv(t) > P’w(t)
a'u otherwise

Qult) = PRi) if Poc(t) > Prot)
te otherwise

. % if Pry(t) > Ppa(t).
po( otherwise

Rate of volume change in the chambers:

VS,ao<t) = Qav (t> - stS (t)
VS,Uc(t) = sts (t) - th(t)
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(A7)

(A.8)

(A.9)
(A.10)

(A.11)

(A.12)

(A.13)

(A.14)



VS,pa (t) = Qpu(t) — Qput) (A.17)
Vopu(t) = Qpui(t) — Qume(t) (A.18)
VS,lv(t) = Qmt (t) - Qav(t) (A.19)
Vsro(t) = Que(t) — Qpu(t) (A.20)

The initial conditions for solving Equations (A.15) to (A.20) are arbitrary,
except that they have to verify the following equation (conservation of total
stressed blood volume):

VS,QO(O) + VS,vc(O) + stpa (0) + VS,pu (O) + VS,lv (0) + VS,rv (O) = SBV. (A.?l)
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