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Abstract. In this paper, we propose a new generic landmark detec-
tion method for 2D images. Our solution is based on the use of ensem-
bles of Extremely Randomized Trees combined with simple pixel-based
multi-resolution features. We apply our method on a novel dataset of mi-
croscopic zebrafish images. This method was also tested on datasets of
cephalometric images during the Automatic Cephalometric X-Ray Land-
mark Detection Challenge 2014, where we were ranked first during the
first phase, and second during the second phase.

1 Introduction

Landmark detection on 2D image consists in finding particular points in an
image. These points are typically defined by specialists of a specific research
area. Most of the time, this detection is the first step of a larger process. For
example:

– In orthodontics, cephalometry is a particular process to analyze the human
cranium. It consists in detecting landmarks and measuring the distances (or
distance ratios) between these landmarks in order to detect possible problems
or to plan intervention treatments [4].

– In toxicology and pharmacology, landmark detection is used to perform mor-
phometric measurements of the skeleton of zebrafish embryos and describe
the effects of chemical treatments or gene knock-downs [8]. Scientists are
especially interested by the length of the cartilage and the angles formed by
the landmarks.

– Landmark detection can also be used to perform image registration [9]. By
keeping specific landmarks registered, specialists are sure of the soundness
of their final registration.

– Landmark detection is also used in face recognition algorithms in order to
ease the recognition procedure [6].
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Typically, the detection of the landmarks is done manually, which makes it
a very complicated and time-consuming task given the number of landmarks to
annotate and the number of images involved in daily research of diagnostic rou-
tine. There is therefore a strong interest to develop automated or semi-automated
landmark detection methods.

The problem of landmark localization in cephalometric X-Rays has been
extensively studied in the literature. Existing methods are typically based on the
combination of template matching algorithms and prior knowledge information
and differ mainly in the feature extraction methods (see [5] for a brief review).
In contrast, our solution is based on the application of generic machine learning
methods, in particular tree-based ensemble methods (e.g., Random Forests [1] or
Extremely Randomized Trees [3]). Randomized decision forests have found many
applications in computer vision, mainly because of their flexibility, robustness
to irrevelant features, low computational complexity and high expressive power
[2].

In this paper, we propose a novel method and try to detect landmarks on
a novel dataset of microscopic zebrafish images. We first describe our algorith-
mic solution and then evaluate its performances on our dataset through cross-
validation.

2 Method

Following the work of [8] that performed detection of a small number of land-
marks on small zebrafish microscopy datasets, we adopted a supervised learning
approach that exploits the manually annotated images to train models able to
predict landmark positions in new, unseen, images. In particular, a separate pixel
classification model is trained for each landmark to predict whether a given im-
age pixel corresponds to the position of this landmark or not. This model is
trained from a learning sample composed of pixels extracted either in the close
neighboorhood of the landmark or at other randomly chosen positions within
the training images. Each pixel in the training sample is described by a vector
of visual features at different resolutions.

The different steps of the algorithm for a single landmark are explained in the
following subsections. This procedure is repeated for every landmark separately.

2.1 Extraction and description of pixels

Each observation in the training sample corresponds to a pixel at position (x, y)
in one of the training images and is labeled into one class among {0, 1} and
described by several input features. We described below successively the output
class associated to each pixel, the input features used to describe them, and the
pixel sampling mechanism.

Output classes. In principle, only one position in each image corresponds to the
landmark, which means that if N training images are available, only N positive
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examples will be available to train our pixel classification model. To extend the
set of positive examples, we consider as positive examples all pixels that are at
a distance at most R from the landmark, where R is a method parameter. More
precisely, if the landmark is at position (xl, yl) in an image, then the output class
of a pixel at position (x, y) in the same image will be:

– 1 if (x− xl)2 + (y − yl)2 ≤ R2,
– 0 otherwise.

Multi-resolution input features. A pixel at location (x, y) will be described by
raw pixel values in a square subwindow of height and width 2W + 1 centered at
the shifted position (x + tx, y + ty), where W , tx, and ty are method parame-
ters. Because of the introduction of the shift parameters tx and ty (that will be
tuned by cross-validation), the model is potentially able to detect the landmark
based on a structure not necessarily centered at the pixel. The interest of these
parameters will be illustrated in section 3.3.

In contrast to [8] where single-resolution features were extracted, in this
work, we capture the context of the landmark at different scales and distances,
training images are downsized to 6 different resolutions prior to the subwindows
extraction and the 6 resulting feature vectors are concatenated. For our images
of size m× n pixels, these resolutions will be:

m

2i
× n

2i
∀i ∈ [0, 5].

Pixels of a subwindow extending beyond the image limit will be set to zero. In
total, each pixel will be described by an input feature vector of size 6×(2W+1)2.

Fig. 1. On the left, the training subsampling scheme. On the right, a demonstration
of the translation.

Pixel sampling scheme. Naively sampling pixels uniformly from the training
images will give a very unbalanced classification problem. For example, for a
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radius R = 20 pixels, only 1256 observations correspond to positive examples,
which is very small compared to the whole size of the images (2576 × 1932
pixels for our zebrafish images). To generate a more balanced training sample,
we randomly select N pixels in each training image, where P% of these N pixels
are selected among positive pixels and 100 − P% are selected among negative
pixels.

In addition, we constrained the image area in which the negative pixels are
selected by taking into account the fact that a landmark is located in close
positions from one image to another. To confirm that, our experiments reported
that each landmark is located in a specific region of the image of radius with
size between 50− 150pixels. At the prediction stage (see below), we will use this
information to constrain the search for a landmark to a given subregion of the
image around the average landmark position in the training images. Therefore,
it is enough to put in the training sample only pixels that belongs to this region.
Negative examples in each image will be selected uniformly at random at a
distance of at most 400pixels around the landmark. This subsampling contrasts
with [8] where pixels were sampled in the whole image during the training and
the prediction phase.

2.2 Classification model training

To train the pixel classifier, we will use the Extremely randomized tree algorithm
[3]. This method builds an ensemble of T fully developed decision trees grown
each from the original training sample (i.e., without bootstrapping). At each
node, the best split is selected among k features chosen at random, where k can
take its value between 1 and m, with m the total number of features. For each
of the k (continuous) features, a discretization threshold is selected at random
within the range of variation of that feature in the subset of observations in the
current tree node. The score of each pair of feature and threshold is computed
and the best pair among the k is chosen to split the node. As a score measure,
we use the Gini index reduction.

2.3 Landmark prediction

Let us denote by µl ∈ R2 and Σl ∈ R2×2 respectively the average and the
covariance matrix of the landmark positions across the training images and let us
denote by σxl

and σyl
the standard deviation of its x and y positions respectively

(i.e., the diagonal elements of Σl), also estimated from the training data. To
make prediction of the landmark position with our tree-based pixel classifier, we
proceed as follows:

– We randomly draw 16σxl
σyl

pixel positions from the following multivariate
normal distribution:

N (µl, Σl)
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– Each of the resulting pixels is classified by the tree ensemble and the final
predicted landmark position is taken as the median position among the pixels
that are predicted as being the landmark with the highest confidence by the
tree-based model (i.e, which receives the highest number of votes for the
positive class from the T trees in the ensemble).

This subsampling scheme allows to improve predictive performance by reducing
the probability of generating spurious landmark predictions at irrelevant posi-
tions in the images. It also considerably speedups the algorithm with respect to
a full scan of all image pixels.

2.4 Method parameters and protocol

The main method parameters are as follows:

– W , the size of the windows
– R, the distance to the interest point to decide on the training pixel output

class.
– tx and ty, the translation of the subwindows to define input features
– N , the number of pixels randomly sampled to train each landmark classifi-

cation model.
– The percentage P of positive examples among the N pixels
– k the number of features selected at each node in the Extremely Randomized

Trees algorithm
– T , the number of trees

During the validation, T was fixed to a default value of 500 and we used
the suggested default value of k, which is the square root of the number of
input features [3]. N was fixed to 500 and W to 8 in all our experiments. All
other parameters were tuned by cross-validation. During this cross-validation,
we separately optimized the different error criteria.

The parameter tuning was done in several stages as follows (for each land-
mark of each dataset separately):

– The optimal values of tx and ty were jointly tested in {8, 16, 32, 64, 128, 256}
(pix) for positive and negative translations using R = 10 and P = 33%.

– R was then optimized in {2, 5, 7, 10, 12, 15, 17, 20, 25, 30} (pix) using P =
33% and the optimal values of tx and ty determined at the previous stage.

– Finally, P was optimized in {10, 20, 30, 33.33, 40, 50, 60, 70, 80,90} (%) with
all other parameters set at their optimal values.

In total, this represents about 2000 cross-validation jobs for each criterion.
We use the implementation of the Extremely Randomized Trees in scikit-learn
[7] and our own python code for pixel and feature computation. Visual interpre-
tation of the results was done using a web-based software for the visualization
and analysis of large bioimages.
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3 Results

In this section, we carry out various experiments with our method on our ze-
brafish dataset. After a description of this datasets and the evalution criteria,
we first report in Section 3.2 the best results obtained on both problems when
parameters are optimized by cross-validation. Then, we analyze in Section 3.3
the influence of the different steps of our method, in particular with respect to
our previous work in [8].

Fig. 2. Typical landmark detection results. In green, ground truth data. In red, de-
tected landmarks

3.1 Datasets

Our dataset (see Figure 2 for one example image for each dataset) has been
collected by local experts and ground-truth (landmark positions) was created
using a web-based annotation software. It is composed of 593 zebrafish images.
All images are of size 1932× 2576 pixels in 8 bits RGB values that we converted
to grey value for our landmark detection method. There are 31 landmarks to
detect on these images. Overall, it is a significantly larger dataset than the one
used in [8] where authors detected only 4 landmarks in smaller datasets (±20
images)

As performance criteria, we considered 5 different criteria that seemed to be
visually relevant to our image dataset: the number of landmarks detected with
an error ≤ 20, 25, 30, 40 pixels and the euclidean distance from the predicted
landmark to its true position.

3.2 Best results

Table 1 report our best performances for all landmarks and criteria respectively
on our zebrafish dataset. We used the first 493 images for training our model
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and the remaining 100 images for testing. Parameters were tuned on the training
data by 10-fold cross-validation as explained in Section 2.4.

Table 1. Results on all landmarks for the zebrafish dataset. Note: tx and ty are the
best translation parameters obtained for the 25pix criterion

Landmark ≤ 20pix ≤ 25pix ≤ 30pix ≤ 40pix Eucl. Dist. tx (pix) ty (pix)

(1) 82 91 92 95 14.7 ± 14.6 32 −32
(2) 97 99 99 100 6.9 ± 5.1 0 16
(3) 83 90 94 96 12.0 ± 14.1 −16 −16
(4) 50 57 63 77 39.9 ± 56.9 0 −8
(5) 50 62 73 80 39.1 ± 57.6 −32 16
(6) 79 85 92 95 15.6 ± 21.6 −16 −16
(7) 75 86 91 94 16.3 ± 20.1 −16 32
(8) 86 89 92 95 13.9 ± 18.2 0 16
(9) 99 100 100 100 6.2 ± 4.2 0 −8
(10) 65 70 73 80 19.7 ± 21.6 32 0
(11) 50 61 68 79 27.3 ± 26.1 0 −16
(12) 51 62 73 90 21.8 ± 14.9 0 32
(13) 40 49 57 69 31.7 ± 23.2 −16 16
(14) 76 79 83 87 17.2 ± 19.7 8 0
(15) 49 54 60 70 30.6 ± 30.4 −16 8
(16) 67 78 86 94 18.8 ± 13.6 32 0
(17) 81 86 91 95 15.3 ± 14.4 8 8
(18) 26 34 40 58 45.2 ± 36.2 8 16
(19) 51 64 71 80 31.8 ± 49.8 −8 8
(20) 57 62 64 69 39.3 ± 70.6 −16 16
(21) 54 62 66 74 28.1 ± 27.6 0 0
(22) 44 51 55 65 35.6 ± 31.3 8 32
(23) 64 68 73 77 34.0 ± 60.6 16 −16
(24) 59 62 66 69 47.3 ± 79.4 16 −8
(25) 67 73 75 82 21.6 ± 20.4 −16 8
(26) 54 59 62 72 32.4 ± 36.1 8 −8
(27) 67 74 80 89 18.8 ± 20.9 −16 −16
(28) 56 62 68 79 31.4 ± 41.1 16 8
(29) 68 78 89 93 17.7 ± 13.0 32 −32
(30) 23 29 40 54 48.4 ± 41.0 8 16
(31) 16 18 24 31 64.5 ± 44.4 8 8

Mean 60.8 67.5 72.9 80.2 27.2 ± 13.3

Results on both datasets differ from one landmark to another but they are
rather good from a visual perpective, as we show in 2.

3.3 Experiments

In this section, we carry out several experiments to show the influence of the
different steps of our method and hereby motivate our design choices. More
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precisely, we compare four different methods, obtained by disabling one or several
steps of our full proposal. The compared methods are as follows (see Table 3 for
a summary):

– METH: our complete method as described in Section 2.
– NOTR: The method METH with translations disabled (tx = ty = 0)
– 1RES: The method NOTR with features extracted at a single resolution

instead of 6. The keep the number of features approximately fixed, we in-
creased the size of the single resolution window to W = 20 and used the raw
pixel values in this window as input features.

– GRID: The method NOTR but with the sampling of the observations inde-
pendent of the distribution of the landmark positions in the training images.
During training, negative observations are unformily drawn from the whole
image. During prediction, 10,000 observations are extracted on a regular grid
covering the whole image. This sampling scheme is similar to the one used
in [8]1.

Average results over all landmarks2 are reported for these four methods in
Table2. They were obtained by 10-fold cross-validation over 100 randomly se-
lected images. For each of these experiments, all parameters are set to a default
value, namely 50 trees, 300 observations per images, R = 10, and P = 33%.
To obtain a fair comparison, the number of predicted observations was fixed to
10.000 for all methods. For METH, the translation parameters were determined
by internal 10-fold cross-validation.

The comparison between NOTR and GRID shows that our adaptive sampling
scheme is much better that uniform sampling, according to all criteria and on
both datasets. There is also a clear performance gain when going from 1RES to
NOTR on both datasets and all criteria. For a fixed number of features, it is thus
more important to capture information at multiple resolutions than to extend
the window size. The performance further increases when going from NOTR
to METH, highlighting the interest of the translation. Overall, the best results
are obtained on both datasets when using multi-resolution features, adaptive
subsampling, and translation.

Table 2. Evolution of the performances with the sampling scheme for the zebrafish
dataset

Experiment ≤ 20pix ≤ 25pix ≤ 30pix ≤ 40pix Eucl. Dist.

GRID 48.8 56.3 62.2 71.2 48.7
NOTR 54.1 61.0 66.1 73.9 35.0
1RES 38.7 42.9 46.9 53.3 71.2
METH 60.2 67.4 71.9 79.7 29.3

1 In [8], we did a full scan of the image at the prediction stage but the computation
cost of a full scan would be too high on our two datasets here, given the higher
resolution of the images.

2 Individual results for each landmark are provided as supplementary material.
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Table 3. Summary of the experiments

Experiment Subsampling Multi-Resolution Translation

GRID No Yes No
NOTR Yes Yes No
1RES Yes No No
METH Yes Yes Yes

4 Conclusion

We showed that it was possible to accurately detect some of the landmarks
using a combination of Extremely Randomized Forests and simple features. In
particular, we have shown the advantadge of using our multi-resolution approach
and our subsampling scheme. High level features such as Zernike moments can
accurately describe an image or a window, but they are slow to compute, which
could be detrimental in some applications. The main advantage of our approach
with respect to existing works is its simplicity and efficiency. We also want to
point out the versatility of our approach, able to suit very various kinds of
landmark detection problems: the exact same method allowed us to reach a
first and second place during the Automatic Cephalometric X-Ray Landmark
Detection Challenge 2014.

In future work, we believe that further improvement could probably be ob-
tained by taking into account the relative positions of the landmarks either
directly during the training or during the prediction stage. We have made some
experiments in this direction but we were not able to improve with respect to the
results reported here. Further improvement could also be brought by considering
different values of W at each of the different resolutions or different feature sets.
For the zebrafish dataset, additional information could also be brought by using
the RGB pixel values instead of just considering luminance.

We are also interested in using a similar methodology to detect landmarks
on 3D volumes. Cephalometric landmark detection on 3D volumes could be one
of the interesting topics.
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Queirolo. Automatic face segmentation and facial landmark detection in range
images. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, 40(5):1319–1330, 2010.

7. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
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