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Abstract. This paper gives a historical account of the early years (1953~
1983) of extended irreversible thermodynamics (EIT). The salient fea-
tures of this formalism are to upgrade the thermodynamic fluxes of
mass, momentum, energy, and others, to the status of independent
variables, and to explore the consistency between generalized transport
equations and a generalized version of the second law of thermodynam-
ics. This requires going beyond classical irreversible thermodynamics by
redefining entropy and entropy flux. EIT provides deeper foundations,
closer relations with microscopic formalisms, a wider spectrum of appli-
cations, and a more exciting conceptual appeal to non-equilibrium ther-
modynamics. We first recall the historical contributions by Maxwell,
Cattaneo, and Grad on generalized transport equations. A thermody-
namic theory wide enough to cope with such transport equations was
independently proposed between 1953 and 1983 by several authors, each
emphasizing different kinds of problems. In 1983, the first international
meeting on this theory took place in Bellaterra (Barcelona). It provided
the opportunity for the various authors to meet together for the first
time and to discuss the common points and the specific differences of
their previous formulations. From then on, a large amount of applica-
tions and theoretical confirmations have emerged. From the historical
point of view, the emergence of EIT has been an opportunity to revisit
the foundations and to open new avenues in thermodynamics, one of
the most classical and well consolidated physical theories.
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1 Introduction

The aim of this article is to present and to illustrate the early history and developments
of a unified non-equilibrium thermodynamic approach that goes beyond local equilib-
rium and the classical transport laws. This formalism is presently known as “FExtended
Irreversible Thermodynamics”; the term “extended thermodynamics” is also used in
the literature to denote thermodynamic theories incorporating the thermodynamic
fluxes as independent variables. These theories include extended irreversible ther-
modynamics, rational extended thermodynamics, internal variables theory, and some
approaches to kinetic theory. All of them will be discussed in this paper, albeit not
in full extent, which would be impracticable, but focusing on their respective con-
tributions to the development of the formalism. Extended thermodynamics has been
the subject of several books and hundreds of articles and embraces a wide variety
of phenomena, from heat, matter and electric transport to rheology, relativity, and
cosmology. Modern technology strives towards miniaturized devices, high frequency,
and strongly non-linear processes, which emphasizes the need to open the way to new
conceptual frameworks generalizing the classical approaches of equilibrium and non-
equilibrium thermodynamics with the perspective not only to cope with these new
technological challenges, but also to suggest new practical inputs.

Extended irreversible thermodynamics (EIT) establishes a deep coupling between
generalized transport equations including relaxation and non-local terms, and a gen-
eralized entropy and entropy flux, leading to a consistency of the transport equations
with the second law of thermodynamics. This is not possible in the framework of
classical irreversible thermodynamics, and therefore one has to generalize the notions
of entropy and of entropy flux, together with a reformulation of the second law. The
basic idea behind EIT is to take the fluxes as independent variables, in addition to
the classical thermodynamic variables, to consider the transport equations as evolu-
tion equations for the fluxes, and to explore the corresponding contributions of the
fluxes to the entropy and entropy flux. This approach asks for a deep reexamination of
the foundations, namely, the definition of entropy (which in classical thermodynamics
is only defined for equilibrium states), the meaning of temperature, the formulation
of the second law at the mesoscopic level, and their relation with microscopic and
macroscopic descriptions. This view also opens new ways towards the description of
multi-scale phenomena, involving different time and length scales.

The idea of taking the fluxes as independent variables which began in EIT with
the purpose to deal with some specific and highly specialized topics has turned into
a much wider philosophy, which can nowadays be transferred to many other different
disciplines.

EIT illustrates the relevance of new ideas in thermodynamics. This is in contrast
with most current approaches, which are mainly interested in the dynamical aspects of
the phenomena, where generalized transport equations are either proposed or derived
from microscopic bases, or molecular dynamical simulations, without paying attention
to fundamental problems as those related to entropy and the second law.

From a practical point of view, a mesoscopic approach as EIT, intermediate be-
tween the microscopic and the macroscopic ones, is useful because it leads to more
detailed approximate equations than the classical ones are. It allows for much faster
analyses than those carried out on a microscopic basis. Once having identified the
most promising physical configurations and conditions, one can still go back to their
microscopic foundations.

In the next sections, we present a survey of the evolution of EIT since its beginnings
with Machlup and Onsager [Machlup 1953] and its first formulations up to 1983
[Casas-Vazquez 1984] when the formalism was seen as a consistent entity rather than
a mere collection of unrelated parts. The generalization of the classical transport
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equations may be traced back to Maxwell who introduced constitutive equations with
a relaxation term [Maxwell 1867]. He pointed out that the stress tensor in a viscous
gas is decreasing at a rate depending on the nature of the system and the amount of
the stress. However, Maxwell regarded this result as unimportant. The seminal work
of Grad who sought to find non-normal solutions to the Boltzmann equation should
also be underlined [Grad 1949]. Grad was the first to suggest that the fluxes of heat
and diffusion are good candidates to be selected as independent state variables in
the kinetic descriptions of dilute gases. His idea served to establish the microscopic
foundations of EIT.

The present paper is organized as follows. In Section 2, we give a brief overview
of the classical transport equations and place them in the framework of classical ir-
reversible thermodynamics (CIT). We point out some of the deficiencies of CIT, in
particular its failure to account for heat waves, relaxation effects, and viscoelasticity.
Attempts to include relaxation effects in transport equations can be found in arti-
cles by Maxwell [Maxwell 1867], Cattanco [Cattaneo 1948], Grad [Grad 1949], and
Vernotte [Vernotte 1958] whose contributions are summarized in Section 3. In Sec-
tion 4 we present the essential ideas underlying EIT for the readers unacquainted with
them. The first attempt to place the relaxation effects into the framework of a macro-
scopic thermodynamic description was done by Machlup and Onsager [1953]. During
the period 1953-1983, the foundations of EIT were more explicitly established and
illustrated by a panoply of applications thanks to generally independent contributions
by Nettleton, Miiller, Gyarmati, Lambermont and Lebon, Lebon, Jou et al. [Nettleton
1959, 1960; Miiller 1966, 1967; Gyarmati 1970; Lambermont 1973; Lebon 1978; Jou
1979, 1983], which are described in Section 5. Relativistic versions by Miiller, Kranys,
Israel and Pavon [Miiller 1969; Kranys 1972; Israel, 1976; Pavon 1980] are discussed
in Section 6. Kinetic theory and statistical mechanics foundations of EIT [Eu 1980;
Garcia-Colin 1982; Luzzi 2001] are summarized in Section 7 and a short account of
other non-equilibrium thermodynamic theories can be found in Section 8. A first in-
ternational meeting bringing together the most prominent contributors to EIT and
whose content is summarized in Section 9, took place at the Autonomous University
of Barcelona in 1983. At this occasion, the several and various aspects were put on
a common ground, and more ambitious and overarching versions of EIT began to be
formulated. This was followed by the extension of the formalism to cover new appli-
cations and the involvement of a wider number of researchers. In that respect the
period 1983-2014 represents a fruitful and exalting period with the publications of
several books and dozens of articles. But we prefer to report on these advancements
in future work, as the topics covered in the present paper are already rather complex.

While submitting the present work for publication, our attention was drawn to a re-
view paper on the history of irreversible thermodynamics by Miiller and Weiss [Miiller
2012]. These authors present the history of irreversible thermodynamics from the van-
tage point of view of Rational Thermodynamics as promoted mainly by Coleman and
Noll [Coleman 1963, 1964] and Truesdell [Truesdell 1969]. Less attention is given to
the collective efforts of the several contributors to the development of the EIT for-
malism. In that respect, we suggest that the present review may be seen as a useful
complement to that of Miiller and Weiss.

2 Classical irreversible thermodynamics and classical
transport equations

One of the exciting discoveries of physics in the 19th century was the formulation
of mathematical laws describing the transport of heat, mass, electric charge, and
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momentum in continuous media. These laws went beyond reversible Newtonian me-
chanics and led to the description of irreversible phenomena, providing a different
perspective in physics, closer to the observations in realistic set-ups. Though Newton
himself had opened this way with his law on the cooling of bodies [Newton 1701] and
his theory on viscous forces published in Principia (3rd edition 1726), the mathemat-
ical breakthrough came with Fourier’s law for heat flow [Fourier 1822] according to
which the heat flux is proportional to the temperature gradient. Note that Fourier’s
theory precedes Carnot’s essay Sur la puissance motrice du feu [Carnot 1824], which
is considered to be the stepping stone of thermodynamics. Both Fourier and Carnot
worked in the problematic framework of the caloric theory, which was the accepted
framework until 1850.

In the mid-19th century, Fourier’s ideas were extended to other contexts. Fick
generalized them for diffusion flow [Fick 1855] while the growing interest in electric-
ity led Ohm to propose that the electric current is proportional to the gradient of
the electrical potential [Ohm 1827]. In fluid mechanics, Stokes formulated the law
presently known as Navier-Stokes relating the stress tensor and the velocity gradi-
ent tensor equation [Stokes 1851]. Furthermore, the interest in possible connections
between heat and electric flows, which became manifest, for instance, in Joule’s ex-
periments [Joule 1841] on the heating effects of electrical currents, opened the way to
a thorough exploration of couplings between these two flows, which culminated in the
discovery of the thermoelectric effects [Seebeck 1821; Peltier 1839; Thomson 1854],
which were shown to be closely related to each other. Other examples of couplings are
provided by the thermo-osmotic effect, observed between heat and mass flow across
membranes, or in liquid and gas mixtures with the Soret effect where a temperature
gradient induces a matter motion [Soret 1879], or the Dufour effect where a mass
concentration gradient generates a heat flux [Dufour 1873].

One of the aims of classical thermodynamics was to combine the concept of
equilibrium states with transport theory, without paying much attention to time-
evolution processes. Classical thermodynamics may be considered a consolidated the-
ory from 1850 on, with the definition of absolute temperature by Thomson, later
Lord Kelvin [Thomson 1848], and the formulations of the second law by Thomson
and Clausius [Thomson 1851; Clausius 1854] who later on introduced the concept of
entropy [Clausius 1865]. At the same period, significant contributions were made by
Boltzmann who derived the celebrated transport equation [Boltzmann 1872] bear-
ing his name. Boltzmann’s main contribution is the statistical definition of entropy
[Boltzmann 1895] (later) written as S = kglnW wherein W is the number of possible
microscopic arrangements among the distribution of N atoms and kp Boltzmann’s
constant. Boltzmann’s interpretation of entropy growth and irreversibility was the
source of acrid conflicts. These fundamental contributions, together with Gibbs’ mas-
terwork [Gibbs 1875] “On the Equilibrium of Heterogeneous Substances”, gave to
thermodynamics a fully-fledged theoretical and practical body which since then has
been one of the cornerstones of classical physics.

The foremost aim of the early authors of non-equilibrium thermodynamics was to
construct a thermodynamic foundation to the phenomenological laws established in
the 19th century by Fourier, Fick and Stokes. Pioneering works in this field are due to
the two pioneers, Onsager and Prigogine, honored for their work with Nobel Prizes, in
1968 and 1977, respectively, further two papers by Eckart [Eckart 1940] and books by
Denbigh, de Groot, Meixner and Reik, Haase and de Groot and Mazur [Denbigh 1950;
de Groot 1951; Meixner 1959; Haase 1969; de Groot 1962]. These works constitute the
gist of what is nowadays dubbed as “Classical Irreversible Thermodynamics” (CIT).

The basic idea of CIT is the local equilibrium hypothesis. According to it, the lo-
cal and instantaneous relations between thermodynamic quantities in a system away
from equilibrium are the same as for a uniform system in equilibrium. A quantitative
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evaluation of this approximation can be achieved through the Deborah number
De = 7,,/7ar with 7, denoting the microscopic equilibration time, e.g. the time
interval between two successive collisions among the particles of the system, which is
of the order of 107!2 s in gases at atmospheric pressure or in solids, and the macro-
scopic characteristic time 7, whose order of magnitude is related to the duration of
an experiment, say about one second. For De <« 1, the local-equilibrium hypothesis
is fully justified because the relevant variables evolve on a large time scale 1), and
do practically not change over the time 7,,, but the hypothesis is not appropriate to
describe situations characterized by De > 1. Large values of De are found in systems
with long relaxation times, like polymers, rarefied gases, superfluids and supercon-
ductors or in high-frequency or very fast phenomena, such as ultrasound propagation,
shock waves, laser pulse heating of materials, nuclear collisions, etc. A consequence of
the local equilibrium assumption is that all the variables defined in equilibrium, like
entropy and temperature, remain unequivocally defined away from equilibrium, but
they are allowed to vary with time and space. Another consequence is that the local
state variables are related by the same state equations as in equilibrium. This means,
in particular, that the Gibbs relation between entropy and the state variables remains
valid locally for each value of the time ¢ and the position vector r. For example, in
the case of an n-component fluid of total mass m, the local Gibbs equation reads

ds =T *du+ pT~'dv —Tﬁlz,ukdck, (2.1)
k=1

where s is the specific entropy (per unit mass), u the specific internal energy, T the
absolute temperature, p the hydrostatic pressure, v the specific volume which is re-
lated to the mass density p by v = 1/p, ¢ = my/m the mass fraction of substance k,
with py its chemical potential. From the kinetic theory point of view, the local equi-
librium hypothesis is justified only for conditions where the Maxwellian distribution
is approximately valid.

The second cornerstone of CIT is to assume that the time evolution of entropy is
governed by a local balance equation of the form

pds/dt = =V - J° 4+ o° (2.2)

the quantities J*® and ¢° stand for the entropy flux vector and the rate of entropy pro-
duction per unit volume respectively. In virtue of the second law of thermodynamics
one has

o’ >0, (2.3)

where the inequality sign refers to irreversible processes and the equality sign to
reversible ones or to equilibrium states. Note that this statement is more restrictive
than the formulation of the second law in equilibrium thermodynamics, which only
requires that in isolated systems, the global entropy of the final equilibrium state is
higher or equal to its value in the initial equilibrium state, which does not exclude
situations with entropy decreasing for short times, on the condition that in the final
state, the entropy is larger than in the initial one. In contrast, expression (2.3) states
that entropy production must increase at any time and any point in space.

Generalizing the second law to non-equilibrium states is not a trivial matter as
entropy is not defined in non-equilibrium states, moreover, classical thermodynamics
compares only entropy in the final and initial equilibrium states but does not provide
unequivocal information about the behavior of the entropy in intermediate states
during the process.

Combining the Gibbs equation and the entropy balance, it is found, after use is
made of the conservation laws of energy, total mass and mass fraction, that o° consists
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Table 1. Thermodynamic fluxes and forces in a one-component viscous fluid.

Fluxes Forces

q vT
p’ Vv
PO’U VO

of a sum of products of so-called thermodynamic fluxes J, and thermodynamic forces
Xa

o' = JaXa. (2.4)

The thermodynamic forces X, are generally related to the gradients of the intensive
variables (the name forces does not refer to truly mechanical forces, but to general
factors driving changes in the system, in an analogous way as one could refer to social
forces or intellectual forces driving a change in society), whereas the fluxes J, can be
identified with the fluxes of energy, mass, mass fractions, or momentum. In the case of
a one-component fluid, expressions for J, and X, are given in Table 1, where q is the
heat flux vector, P the traceless symmetric, second-order pressure tensor defined as
PY% = PV — (1trP)I, (upper index © denotes the deviatoric part of the tensor and
I the identity tensor), p¥ the scalar viscous pressure (=(1/3) trP?), v the velocity
vector (not to be confused with the scalar specific volume v) and V' the symmetric
part of the velocity gradient tensor.

Experience indicates that the thermodynamic fluxes and forces are not indepen-
dent but that there are relations between them, see, e.g. the Seebeck, Peltier, Dufour
and Soret effects, the coupling of several chemical reactions in chemical kinetics, or
the relations between chemical reactions and transport in biological systems. More-
over, the simplest way to ensure that the rate of entropy production ¢ is positive
definite is to assume that the fluxes are linear functions of the forces so that

Jo = LasXp, (2.5)
]

here the L,g are so-called phenomenological coefficients. The flux-force relations (2.5)
are named phenomenological relations, constitutive equations, or transport equations.
Substitution of the linear flux-force relations (2.5) into expression (2.4) of the rate of
entropy production yields the quadratic form

0" =Y LapXaXp > 0. (2.6)
B

According to standard results in algebra, e.g. Courant and Hilbert [Courant 1962],
the necessary and sufficient conditions for c® > 0 are that the determinant L,g+ Lgq
and all its principal minors are nonnegative, from which it follows in particular that
L,o > 0. Other restrictions concern the symmetry properties of the phenomenological
coefficients. It was proved by Onsager that, as a consequence of microscopic time
reversibility (i.e. invariance of equations of motion of particles at the microscopic
level with respect to time reversal), and the hypothesis of regression of fluctuations
in the mean, that the coefficients L, are either symmetric [Onsager 1931] or skew
symmetric [Casimir 1945] depending on the relative time-reversal property of fluxes
and forces:

Laﬁ = :l:Lﬁoz' (27)
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Applying the general results (2.4)—(2.6) to a one-component fluid leads to the following
bilinear expression of the rate of entropy production per unit volume

08 =q- VT ' ~T 'p'V-v-T'P":V >0, (2.8)

which suggests the formulation of the following linear transport equations:

q=LyVT ' =-\VT, (Fourier’s law) (2.9)
p’ = —lp,T7'V-v=—(V.v, (Stokes’ law) (2.10)
PY%=_L,T7'V?=-29v" (Newton’s law) . (2.11)

One recognizes in equation (2.9) Fourier’s law by identifying the phenomenological
coefficient Ly,/T? with the heat conductivity \; expression (2.10) is Stokes relation
after l,, /T is identified with the bulk viscosity (, and finally (2.11) is Newton’s law
of hydrodynamics when L,, /T is set equal to 2n, with 7 the dynamic shear viscosity.
After substitution of (2.9)—(2.11) in (2.8), it is concluded from o® > 0 that A > 0,
¢ > 0, n > 0. The above results are important as they provide a thermodynamic
background to the thermo-hydrodynamic transport relations. Other examples of flux-
force relations are Fick’s law of diffusion and Ohm’s law in electricity.

Besides providing a well-defined framework for the classical transport equations,
CIT proves also to be useful as a basis for variational formulations. These have always
played a central role in physics, recall the least action principle in rational mechanics
or Fermat’s principle in optics, but also in CIT Prigogine’s minimum entropy pro-
duction’s principle. Prigogine’s principle states that the total entropy production P
decreases over time and is minimal at a stationary state, but it only holds under rather
restrictive conditions such as time-independent boundary conditions, linear flux-force
relations, and constant and symmetric phenomenological coefficients. A generalization
of Prigogine’s principle in the framework of EIT was proposed by Lebon and Dauby to
account for the non-local heat conduction equation [Lebon 1990] derived by Guyer and
Krumhans] [Guyer 1966]. Lebon and Dauby’s formulation served to establish the rele-
vant heat slip boundary conditions frequently used in microfluidics and nanomaterials
science [Jou 2010]. Going back to CIT, Prigogine’s principle was extrapolated under
the form of the so-called local potential [Glansdorff 1964, 1971] which opened the way
to the study of the so-called dissipative structures, a term introduced by Prigogine.
Dissipative structures take the form of well-ordered spatio-temporal patterns appear-
ing far from equilibrium after the thermodynamic forces have reached a critical point.
Typical examples are provided by Bénard’s cells [Bénard 1900)], temporal instabilities
in chemistry as observed in the Belousov-Zhabotinsky reaction [Belousov 1958] and
mimicked by the Brusselator [Nicolis 1977], and the spatio-temporal Turing instability
[Turing 1952]. Moving even further from equilibrium leads to the theory of chaos and
complex systems which has been intensively treated at the end of the last century
in particular by the Brussels’ school [e.g. Prigogine 1980; Vidal 1991; Walgraef 1997;
Gaspard 1998].

Shortcomings

Despite the considerable success and interest met by CIT, several shortcomings
have been pointed out which have justified its extension and the formulation of other
non-equilibrium theories. Let us list the most important criticisms of the classical
approach to non-equilibrium thermodynamics.

1. By substituting the transport equations in the balance laws of mass, energy, and
momentum, one obtains fields equations which are parabolic partial differential
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equations of the diffusion type; an example is the heat conduction equation in a
rigid body
T /ot = xV*T, (2.12)

where x = A/pe, is the heat diffusivity, ¢, being the specific capacity. Solution
of (2.12) implies that after application of temperature disturbance, the latter will
be felt instantaneous and everywhere in the body, otherwise stated, temperature
disturbance will move at infinite velocity across the body. This shortcoming was
explicitly identified by Cattaneo [Cattaneo 1948] and was one of the first motiva-
tions to go beyond CIT. Propagation of signals with an infinite velocity is untenable
from a purely conceptual physical point of view. However, from a practical point of
view, the infinite speed of propagation is not an issue because in most situations,
especially in low-frequency processes, the characteristic time is much longer than
the transit time of the signals.

. The local equilibrium hypothesis, which is the basic assumption underlying CIT,
has been the subject of a great deal of controversy. According to it the space of
state variables is the same as in equilibrium. However, it is conceivable that other
variables, not relevant at equilibrium, may also influence the process. This is, for
instance, the case with polymers of long molecular chains in which their config-
uration influences considerably their behavior. It is also so for super-fluids and
super-conductors whose peculiar properties call for the introduction of additional
variables.

. The local equilibrium assumption implies large time and space scales as compared
respectively to the collision times and mean free paths of particles. As a conse-
quence, CIT is not appropriate for describing high-frequency phenomena such as
ultrasound propagation and short-wavelength systems and processes, like nano-
structures, shock waves, light and neutron scattering, fast phenomena as explo-
sions, laser pulse heating and nuclear reactions.

. According to generalized hydrodynamics, the phenomenological coefficients, like
the heat diffusivity or the viscosity coefficient are frequency and wavelength de-
pendent [Garcia-Colin 1984]. This is in contradiction with the local equilibrium
hypothesis, which implies that these coefficients are frequency and wavelength
independent.

. As the flux-force relations are assumed to be linear, CIT cannot describe irre-
versible processes governed by non-linear phenomenological equations. Many phe-
nomena, like chemical reactions or non-Newtonian flows, are among these classes
of processes.

. Another subject of controversy concerns the validity of the Onsager-Casimir recip-
rocal relations. Although they were originally derived by Onsager to be applicable
only at the microscopic level for situations close to equilibrium, they are currently
used by the followers of CIT at the macroscopic level and even far from equi-
librium. There exists no theoretical argument supporting such an extrapolation.
Moreover, in Onsager’s point of view, the thermodynamic fluxes are defined as time
derivatives of extensive thermodynamic variables, and the forces are the derivatives
of the entropy with respect to the same state variables. These requirements are
not fulfilled by thermodynamic fluxes like the heat flux or the pressure tensor and
thermodynamic forces as the temperature gradient or the velocity gradient tensor.
. Along the same lines, the important question has been raised of the unequivocal
selection of fluxes and forces. One usually identifies the thermodynamic fluxes with
the fluxes that appear in the balance laws of mass, momentum, and energy, while
the forces are taken to be the conjugated terms in the bilinear expression of the
entropy production. An alternative [de Groot 1962] is to consider as forces the
gradient of intensive variables, such as temperature and velocity, and as fluxes



G. Lebon and D. Jou: Early history of extended irreversible thermodynamics... 9

the conjugate terms in the expression of entropy production. Unfortunately, such
definitions are not applicable to chemical reactions. Another school of thought
states that it makes no difference how the fluxes and forces are selected, as long as
changing the frames of reference leave invariant the entropy production expression.
But even if the reciprocal property of the phenomenological coefficients holds for
a given choice of fluxes and forces, it may not hold for another selection [Coleman
1960; Wei 1974].

8. Minor criticisms concern the applications of the so-called Curie law according to
which fluxes couple only with forces of the same tensorial order in isotropic ma-
terials. It is well known [Truesdell 1966, 1969] that such a conclusion is directly
derivable from representation theorems of isotropic functions and there is no need
to refer to the name of Curie to display this property. It is also important to keep
in mind that “Curie’s law” is not valid outside the linear regime even for isotropic
bodies, a limitation sometimes forgotten by some authors.

To remedy the deficiencies of CIT, several formulations taking care of the above short-
comings, such as rational thermodynamics, internal variables theory, Hamiltonian
structures, EIT have been developed: it is our purpose to focus on EIT whose early
history (1953-1983) will be explored in the next sections. Comments on the other
formalisms can be found in Section 8.

3 Early motivations and roots of EIT: generalized
transport equations

In Section 2, we have reviewed the classical transport laws of Fourier, Stokes and
Newton. In these equations, the fluxes are proportional to the gradients of some
quantities (temperature, velocity), evaluated at the same time. Thus, there exists an
instantaneous relation between the gradient and the flux. This led to conceptual and
practical problems, which have stimulated, since the times of Maxwell, the research
on more general transport laws. One of the most obvious options was Maxwell’s
law for viscoelastic materials, in which a relaxation term given by a relaxation time
multiplied by the time derivative of the pressure tensor PV was added to Stokes law
of viscous fluids. It follows that when the time-variation of PV is small compared to
the reciprocal of the relaxation time, the system behaves like a viscous fluid, but when
its rate of change is important, the body behaves as an elastic solid. In this section
we will comment on the need for such generalized equations.

3.1 Cattaneo’s work

Cattaneo [Cattaneo 1948] was the first to try to solve the paradox of heat signals
propagating at infinite speed. He suggested, for the problem of heat conduction in
rigid bodies at rest, to replace Fourier’s law by a non-stationary relation reflecting
the property that the heat flux at a given time ¢ depends on the temperature gradient
at an earlier time 7 so that, after performing a Taylor expansion of VT'(t — 7), one
obtains

0

Unfortunately, this modification does not solve the problem. For g = 0, the tempera-
ture gradient tends exponentially toward infinity. Moreover, by replacing (3.1) in the
energy balance law,

q(t) = —A\VT(t—7) = -\ (VT —r atVT> . (3.1)

p(’“)u(T)

o = -V -q, (3.2)
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it is checked that the differential equation governing the behavior of the temperature
is still parabolic. However, the paradox is easily solved by assuming

q(t+71)=-AVT(t), (3.3)
and, after a Taylor expansion of the heat flux, we get
dq
= -\VT 3.4
T T4 VT, (3.4)

which is nowadays known as the Cattaneo relation. Eliminating g between (3.4) and
the energy conservation law (3.2), and using the equation of state u(T) = ¢,T with
¢y = Ou/OT denoting the specific heat at constant volume, one is led to

o*r . oT
-
ot? ot
with the assumption of constant values of ¢, and A. This is a hyperbolic equation

allowing for a finite velocity of propagation of thermal pulses, or high-frequency waves
with a phase speed v, given by:

—xV?T =0, (3.5)

vph = V/ X/ (3.6)

Note that by setting 7 = 0 in (3.6), which corresponds to Fourier’s law, the velocity
of propagation becomes infinite, as mentioned earlier. In a great number of problems,
the relaxation time is very small, of the order of 107'° s under normal conditions
of temperature and pressure. This is the reason why generally in engineering science
this effect is quantitatively too small to be taken into account. The velocity vy is
also called the second sound to be distinguished from the first sound which refers to
a pressure wave moving with the velocity \/ (0p/0p),. The theory of solids predicts
that x/7 = ¢Z/3 in the Debye approximation, with ¢ the sound velocity. After intro-
ducing this value in expression (3.6), it is found that the second sound is given by the
constant value vy, = co/ V/3. As a corollary, one obtains a quantitative estimate for
the relaxation time in terms of measurable quantities, namely 7 = 3)\/c,c3. However,
the result predicting that the second sound is constant is in conflict with experiments
showing that it depends on temperature.

Interesting analyses of Cattaneo’s relation are found in the works by Chester
[Chester 1963, 1966]. Apparently unaware of Cattaneo’s paper, which was written
in Italian, Vernotte published a French version [Vernotte 1958] of Cattaneo’s main
results. During the same period, several attempts were made [Gurtin 1968; Luikov
1969; Bubnov 1976] to modify the heat conduction equation so as to predict thermal
waves. Non-stationary expressions similar to Cattaneo’s law (3.3) where the heat
flux vector is replaced by the mechanical stress tensor were used to study magneto-
hydrodynamic flows [Wilhelm 1975].

3.2 Grad’s work

The kinetic theory of gases, and more particularly the works of Grad have been a
useful tool [Grad 1949, 1958] for the formulation of a non-equilibrium thermodynamics
extending the scope of CIT. Grad was the first to elevate the fluxes to the rank of
independent variables in his search to solve the Boltzmann equation in the case of an
ideal or dilute monoatomic gas

of of

+c- +F-af

ot or or TF)- (3.7)
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Here f(7,c,t) denotes the one-particle distribution function giving, at time ¢, the
number density of particles located in the interval » and r + dr with velocity between
c and ¢+ de, F is the external force and J(ff) the collision integral. The connection
between kinetic and continuum theories is made through the construction of mo-
ments of the distribution function. Such moments are, for instance, the five conserved
quantities

p= m/fdc(mass), pv = m/cf dc (momentum),

pu = ;m/CQfdc(internal energy), (3.8)

and the energy and momentum fluxes defined, respectively, by
qg= ;m/CQCfdc, (3.9)
P= m/C’C’fdc, (3.10)

with C standing for the relative velocity C' = ¢ — v with respect to the mean veloc-
ity v and m for the mass of the particles. Grad’s method consists in expanding the
non-equilibrium distribution function f(r, ¢,t) in terms of a complete set of Hermite
polynomials, around the local Maxwellian equilibrium distribution feq(p, u). The coef-
ficients in this expansion are identified as the five conserved densities plus higher-order
moments, their time evolution is governed by an infinite set of coupled differential
equations which, when truncated at an appropriate level of moments, can be solved.
In the thirteen-moment approximation, taken here as an illustration, the distribution
function is not only a function of the conserved variables through the Maxwellian dis-
tribution function f., but also of the heat flux and the traceless deviatoric pressure
tensor, namely

m 0 0 m
= foo |1 CC: P’ C? —5kgT)C -q|, 3.11
a colon stands for the double scalar product. Expression (3.11) implies that the non-
equilibrium entropy density defined classically by

ps = —kp /flnfdc, (3.12)

is not only a function of the conserved variables p and u but depends in addition on
the fluxes g and P% so that one is allowed to write:

s=s (p,u,q, PO“) . (3.13)

The enlargement of the space of state variables appears therefore as a direct con-
sequence of Grad’s method, and relation (3.13) expressing the entropy function in
terms of the 13 moments can be viewed as the fundamental postulate of the macro-

0
scopic formulation of EIT as it confirms the status of ¢ and P" as state variables.
This procedure has been generalized to include 26 and more moments [Velasco 1993;
Miiller 1993], but the problem with higher order moments is their identification at the
macroscopic level. However, Grad’s objective was not to construct a thermodynamic
theory generalizing CIT so that, in that perspective, his contribution passed rather
unnoticed.
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4 A short conceptual presentation of extended
irreversible thermodynamics

Before presenting the historical evolution, we provide here a short introduction to the
essential concepts of extended thermodynamics. For pedagogical reasons, the analysis
of the foundations underlying the early versions of EIT will be given here by using as
a case-study the rigid heat conductor at rest (p = const., v = 0 so that the material
time derivative may be identified with the partial time derivative: d/dt = 9/0t). The
generalization to more complicated systems such as fluids, mixtures, suspensions,
porous media, and others has been dealt with in detail in numerous publications.
Recall that one of the motivations behind EIT is to remove the possibility of waves
propagating at infinite velocity. This can be accomplished by assuming that the fluxes,
here the flux of energy, are taken as state variables so that the space V' of state
variables will be formed by the union of the (slow and conserved) classical variables
C and the (fast and non-conserved) flux variables F'. In the problem of heat transport,
the single conserved variable is the internal energy u and the heat flux g is the non-
conserved flux variable so that the space of state variables V' consists of the pair wu,
q. The corner stone of EIT is to assume the existence of an entropy function s that
depends on the whole set V' of variables, here u and g, and whose rate of production
is positive definite; in addition, it is assumed to be a concave function of the variables
to guarantee stability of the equilibrium state. In differential form, one has

s s
ds(u,q) = 8u)qdu + aq)u -dq (4.1)
wherein a sub-index means that the corresponding quantity remains constant. Set
9s/0u)q = 07 (u, q) with 6 (u, q) being defined as the absolute non-equilibrium
temperature and 9s/9q), = «(u,q)/p, with the factor 1/p being introduced for
convenience, e (u, q) is a quantity depending in general on u and g, to be given by a
constitutive relation. In terms of the material time derivative, expression (4.1) is then
given the form

d ldu « dq

i’ D= g T, (42)

The non-equilibrium temperature 6 (u,q) should not be confused with the (local)
equilibrium temperature. A Taylor expansion of 6 (u, q) around q = 0 results in

0 (u,q) =T(u)+v(u)g® +... (4.3)

where T'(u) stands for 6(u,0) and represents the equilibrium temperature which is
g-independent, v(u) is a phenomenological coefficient; it is worth to stress that 6
reduces to T when second order contributions in ¢ are omitted. For a detailed review
and discussion on the definitions of non-equilibrium temperature, see the works of
Luzzi et al. and Casas-Vazquez and Jou [Luzzi 1997; Casas-Vazquez 2003].

From the isotropy property of constitutive equations, one may write a = a(u, ¢*)q
where a is a scalar function of u and ¢2. Substituting this expression in (4.1) and
making use of the energy conservation law (3.2), it is seen that ds/dt can be cast in
the form

dS_ q 1 dq
Par = v g ta <V6‘ +adt)' (4.4)
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Comparing with the general balance equation for entropy expressed by (2.2), we read
off the identifications

J?® =gq/0 (entropy flux), (4.5)

dq

aszq-<V6‘_1—|—adt

) >0 (rate of entropy production per unit volume). (4.6)
Assuming in (4.6) a linear relation ¢ = LX between the flux g and the force X,
represented by the two terms in the parentheses, one finds
1 dq
=L(-— ,V0 . 4.7
a ( LVt a dt) (47)

With the identifications La = 7 (relaxation time) and L/6? = X (heat conductivity),

one recovers Cattaneo’s law

dq
Ty = AV6. (4.8)

Some considerations about the signs of the various phenomenological coefficients are
in order: substitution of the linear flux-force law ¢ = LX in (4.5) leads to

o =q-q/L>0, (4.9)

and therefore L > 0 whence A > 0; furthermore, integration of the Gibbs relation (4.2)
up to second order terms in ¢ yields

5(u, q) = seq(u) + (1/2)(a/p)d?, (4.10)

from which follows a < 0 to satisfy the property that s is maximal at (local) equilib-
rium. By combining a < 0 and L > 0, it is concluded that 7 > 0, indicating that the
relaxation time is indeed a positive quantity, as it should. The above results exhibit
the main achievements of EIT in the case of relaxational heat transport.

To explore further the physical contents of Cattaneo’s relation (4.8), let us write

its solution as
DY t—t'
q(t) = / exp (— ) Vot dt', (4.11)
T

— 0 T

which illustrates the property that the heat flux g(¢) possesses memory with an ex-
ponential memory decay. It was shown in Section 3 that elimination of g between the
energy and Cattaneo’s law yields the telegrapher equation (3.5). For short time scales
t/T < 1, the first term of equation (3.5) is dominant, so that it reduces to
9*T

Top = xV2T, (4.12)
which is the classical wave equation describing a reversible process as it is invariant
with respect to time reversal t — —t. In contrast, for long time scales /7 > 1, the first
term of (3.5) is negligible and one recovers the heat diffusion equation (2.12), which
is not invariant when t is changed into — t as it is related to an irreversible process.
To summarize, at short times the telegrapher transport equation (3.5) is reversible
and heat propagates with a finite speed (which may be interpreted microscopically as
a ballistic motion of the particles before experiencing a collision), whereas at longer
times the process becomes irreversible and heat is diffused throughout the system.
In that respect, the telegrapher equation is more general than Fourier’s law, as it
describes the transition from the reversible to the irreversible behavior, with 7 inter-
preted as the characteristic time for the crossover between ballistic motion and the
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onset of diffusion. In the context of the theory of deterministic chaos, 7 corresponds
to the Lyapunov time beyond which predictivity is lost [Nicolis 1989].

The above results are easily generalized to the study of a thermo-viscous fluid.
Taking for the entropy

0
5= (p,u, q P”,p”) : (4.13)
the corresponding Gibbs equation takes the form
ds Ldu Ld(p™h) dq 0 >0 dp"
=0 0~ . PY . Y 4.14
dt g T g T gy TaePti ety (414)

where 6 and 7 stand for the (non-equilibrium flux-dependent) temperature and (non-
equilibrium flux-dependent) pressure, whereas the derivatives of s with respect to the
fluxes have been identified as

0 0
0s/0q = a1q,0s/0P" = ayP",0s/0p"” = asp”,

respectively. Neglecting non-linear contributions in the fluxes so that it is justified to
replace 6 by T', making use of the balance equations of mass and energy and following
the same procedure as in the case of heat conduction, one is led to the next linear
evolution equations,

d
n d;’ = —(q+\VT), (4.15)
d U
70 CZ — —(p" +(V.v), (4.16)
dPOv
™ = (P% +29V?), (4.17)

where 71, 79, T2 are relaxation times. When these times are negligible, the set (4.15)—
(4.17) reduces to the Navier-Fourier-Stokes relations (2.9)—(2.11). One recognizes
Cattaneo’s and Maxwell’s equations in expressions (4.15) and (4.17), respectively.
Although the linear equations (4.13)—(4.15) predict that disturbances move at finite
speed, there is no guarantee that the same property holds for non-linear systems.
The above results are easily generalized by changing the identification of J*, to

J*=q/T+ (' p’q+("P’-q, (4.18)

which is derived straightforwardly from the representation theorems of isotropic func-
tions and where 3/ and 3" are phenomenological coefficients. Relation (4.18) is im-
portant because it represents an example wherein the colinearity between J*® and gq
as expressed by (4.5) is given up.

Writing the entropy production in the form

o’ =pds/dt +V - J?°, (4.19)

and making use of (4.14) and (4.18), one obtains for ¢° a bilinear relation in the fluxes
and generalized forces containing time derivatives and spatial gradients. Assuming
linear flux-force relations leads to the following set of evolution equations (Lebon
2008a; Jou 1983, 1993):

0
m d‘t] = —(q+ AVT) + B'A\T2V - P’ + 3 \T?Vp", (4.20)
d
7 dtzj’ =—(p"+¢V-v)+(TV q, (4.21)
AP 0\°
n == (P +2V) + 28" (Vq> , (4.22)
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which are more general then Cattaneo’s and Maxwell’s relations by the presence of

0
non-local terms in the gradients of p¥, g and PY. These are related to contributions
coming from the entropy flux, whereas those involving the relaxation effects are as-
sociated to the non-classical terms in the Gibbs equation (4.14). These results show
that generalized transport equations and extended forms of the entropy and entropy
flux are closely related to each other.

Although the first formulations of EIT are satisfactory from several physical as-
pects by avoiding the paradox of signals propagating at infinite velocity and embracing
rather general evolution equations like (4.20)—(4.22), they present some shortcomings.
First, hyperbolicity is not universally guaranteed and requires, in particular, that some
bounds be put on the field variables [Jou 1993; Miiller 1998]. Moreover, it was shown
that for shock waves with a Mach number beyond some critical value, the shock struc-
ture is lost in contradiction to the Navier-Fourier-Stokes equations where the shock is
preserved whatever the value of the Mach number. In the 13-moment approximation,

0

which is equivalent to taking g and the traceless PV as variables, the critical Mach
number [Ruggeri 1993; Miiller 1998] is Ma = 1.65 and this value increases only slowly
when the number of moments is increased [Weiss 1990]. Another criticism concerns
expression (4.18) of the entropy flux. The additional terms (second and third) do
not receive a solid justification unless they may be supported by kinetic or statis-
tical mechanical arguments. Moreover, by comparing the theoretical results of wave
speed and absorption coefficients with experimental data, one observes a satisfactory
agreement only for values of wr < 2 [Anile 1984; Lebon 1989]. In addition, the above
relations contain non-objective time derivatives and therefore do not comply with the
criterion of material frame indifference [Noll 1965]. From a more fundamental point
of view, the approach was criticized by van Kampen for whom the use of fast vari-
ables, like the fluxes, is not justified [van Kampen 1987] because only slow variables
should enter into a macroscopic description. Van Kampen’s arguments are based on
Chapman-Enskog’s treatment where higher-order fluxes are not selected as variables,
in contrast with Grad’s method. However, Chapman-Enskog’s iterations, as it is actu-
ally well-known, lead to instabilities, e.g. [Struchtrup 2005], which is not the case with
Grad’s approach. More generally, for van Kampen and others, one has the microscopic
world with the kinetic theory and one has the macroscopic level with hydrodynamics,
but no mesoscopic level between them.

It was also argued that if the relaxation times of all the higher-order variables are
of the same order, it is not sufficient to add the single first-order fluxes, but the fluxes
of all higher orders should be incorporated into the description [Garcia-Colin 1995]. To
deal with this objection, a hierarchy of equations for higher-order fluxes up to infinity
has been introduced, and, instead of truncating them at given order of approximation,
which is the common practice, some asymptotic expressions are derived, leading to
the definition of renormalized flux relaxation times. The goal of this procedure is to
take into account all the higher-order fluxes via these renormalized relaxation times
in such a way that only the first order flux, say the usual heat flux or/and the viscous
pressure tensor are needed in the analysis [Jou 1993].

5 The several independent formulations of EIT

Under the label of EIT, one finds a great variety of approaches to cope with the
difficulties discussed above. This is a particular illustration of a theory proposed by
different researchers, who start from different motivations and on different grounds,
often ignorant of each other’s contributions, probably because of the long interval
of time elapsed between several consecutive proposals and the specific aims and ego



16 The European Physical Journal H

of each researcher. The fact that the theory has been put forward independently on
several occasions is not strange, as its ideas seem quite reasonable and conceptually
worth to be explored.

5.1 Machlup and Onsager (1953): A formal kinetic extension
of constitutive equations

To our knowledge, the first reference to a generalized entropy depending on the fluxes
and related to relaxational constitutive equations was formulated by Machlup and
Omnsager, in 1953, then at Yale University, as the second part of their well-known
analysis of fluctuations and irreversible processes. These authors refer in the subtitle
of their paper to “systems with kinetic energy” to stress this dependence. They work
in the abstract general framework set out by Onsager in 1931, wherein the fluxes are
expressed as the time derivatives (denoted here by a upper dot) ¢&; of the variables
«;. In their paper of 1953, Machlup and Onsager wrote for the global entropy S.

S(ozl,ozl) = S() - (1/2) Z Si 0G0 — (1/2) Zm”ozlaj, (51)

with Sy a reference value of the entropy; s;;, m;; are coefficients related to the second
derivatives of the entropy with respect to o;c; and c;c;, respectively. According to
Machlup and Onsager, the evolution equations will be given the form

Zmijdj + Z Rijdj - 65’/60@ =0. (52)
J J

For m;; = 0, the second-order time derivative disappears from (5.2), as well as the
contribution of the fluxes to the entropy, and both (5.1) and (5.2) reduce to

S = S() — (1/2), Z Sij Qi (53)
4,
. oS
Rijéy = g, = X0 (5.4)

with X; standing for the “thermodynamic force”. Machlup and Onsager dubbed the
contribution of the fluxes to (5.1) as “kinetic contribution” due to the “inertia” of
the system. Starting from the above results, Machlup and Onsager discussed a set of
linear, second-order, stochastic processes, analyzed the fluctuations and the reciprocal
relations amongst the coeflicients, as well as the “fluctuation paths” of the fluctua-
tions. They pointed out that in the generalized case, the “thermodynamic forces”
should be written as:

oS d 0S

8051' + dt 8051 ’

emphasizing the analogy between the second term of this sum with d’Alembert’s force
in mechanics and Lagrange equations for non-conservative systems.

However, Machlup and Onsager’s ideas did not percolate through macroscopic
thermodynamics, because the authors turned their attention to other problems (bio-
physical ones for Machlup, quantum aspects of vorticity in superfluids for Onsager).
Although the essential ideas of extended thermodynamics were already rooted in
Machlup and Onsager’s paper, it did not lead to fruitful developments and was for-
gotten and remained unmentioned in the great majority of works on EIT.

X;= (5.5)



G. Lebon and D. Jou: Early history of extended irreversible thermodynamics... 17

5.2 Nettleton (1959-1960): Heat flux and viscoelasticity in liquids

The next researcher to explore topics related to extended thermodynamics was
Nettleton, apparently unaware of the previous proposal by Machlup and Onsager.
Nettleton studied relaxation equations for viscoelastic liquids [Nettleton 1959] and for
thermal conductors [Nettleton 1960]. For the first time, it was proved that Cattaneo’s
and Maxwell’s viscoelastic relations follow directly from thermodynamics, provided
the classical Gibbs equation is supplemented by extra contributions in the fluxes. It
was the merit of Nettleton to select fluxes as independent variables at very short
times, high frequencies, and non-equilibrium states within a thermodynamic context.
Identifying the heat flux g with an internal ordering parameter &, Nettleton wrote the
Gibbs’ equation in a form reminiscent of that used to describe chemical reactions,

Tds = du — pdv + @ - d¢, (5.6)

with @ the variable conjugated to &, identified as & = —& /7w, where w is a phenomeno-
logical parameter to be shown to be related to the reciprocal of the heat conductivity
A. Although Nettleton did not derive explicitly Cattaneo’s equation (referred to by
him as Vernotte’s equation), he assumed that & obeys a relaxation equation of the
Cattaneo type

d¢/dt = =&/ — (\/7)VT. (5.7)

Nettleton was especially interested in heat transport in liquids, where the heat flux
may be split into two independent contributions, one of them related to sound waves
and the other one to diffusing particles. He derived on a microscopic basis the various
non-equilibrium terms in the entropy and he used the equality of the second-order
crossed derivatives (analogous to the Maxwell relation of usual equilibrium thermody-
namics) to relate information on crossed effects between the mentioned contributions
to the heat flux.

These relevant contributions of Nettleton, supplemented by deep microscopic in-
sights based on kinetic theory of liquids, did not receive the interest they deserved and
were practically ignored in the thermodynamic literature for twenty years. A possible
reason was that these papers were not very accessible because of the complexity of
the system being studied. Moreover, instead of writing the Gibbs equation directly in
terms of the fluxes, Nettleton viewed the fluxes as internal variables. Instead of pre-
senting his work as the possible foundation of a new theory, he focused his attention
on particular problems, as if the formalism was specifically tailored for them, instead
of representing a contribution towards a more general formalism. Nettleton’s ideas
were brought back to life after he presented his work at the Bellaterra conference held
in 1983 [Nettleton 1984]. In collaboration with Sobolev [Nettleton 1995], he wrote two
review papers on the applications of extended thermodynamics.

5.3 Miiller (1966-1983): Kinetic theory of gases and generalized theory

Probably unaware of the ideas set forth by Nettleton, Ingo Miiller in his Ph.D. The-
sis [Miiller 1966] at the Technical High School at Aachen, under the supervision of
Meixner, put EIT in a more structured and systematic form. At this time, Meixner
played an important role in the development of non-equilibrium thermodynamics not
only by his criticisms of contemporary theories but principally by the formulation of
an original approach [Meixner 1968] referred to as “entropy free thermodynamics”.
Meixner’s motivation was the observation that entropy can only receive an accurate
and univocal definition in equilibrium situations. However, because of the competi-
tion with the Brussels school headed by Prigogine and Rational Thermodynamics (see
Sect. 8.1), Meixner’s theory did not meet the credit that it deserved.
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Let us go back to Miiller’s work. In his basic paper of 1967 [Miiller 1967], he
follows the lines of thought of classical irreversible thermodynamics but with two
important differences; first, the entropy s is allowed to depend on the fluxes, and
second, non-collinearity between entropy flux and heat flux is postulated. In the case
of a thermo-viscous fluid, the entropy s is assumed to be a function of the same
variables as in (4.13) with the entropy flux given by (4.18). Taking the time derivative
of expression (4.13) and making use of the balance equations for density and internal
energy, one identifies the entropy production ¢* as a bilinear structure of fluxes and
forces. Assuming linear relations between fluxes and forces, one obtains back the
set (4.20)—(4.22).

Later on, Miiller introduced the notion of coldness as a generalization of the ab-
solute equilibrium temperature [Miiller 1970, 1971]. He proposed to substitute the
classical expression (4.5) of the entropy flux by a more general expression

s dIem
J=A (Tem, gt >q, (5.8)

where T,,, designates the empirical temperature that can be measured by a ther-
mometer, A was dubbed “coldness”, to be given by a constitutive equation depending
on Te,, and dT,, /dt; its existence rests on the postulate that there exist “ideal walls”
across which the temperature is continuous at all times, and that at such walls, the
normal components of the heat flux and the entropy flux are continuous. It was proved
that A is the same function for all materials, or, in Miiller’s terminology, that A is a
universal function, which, in equilibrium is the inverse of the absolute temperature:
A(Tem,0) = 1/T. In Miillers’s view, the absolute temperature is not a primitive quan-
tity but rather a derived one which depends on the empirical temperature. The notion
of coldness was criticized by Meixner who proved that A is a universal function, for
a restricted class of materials only, quoting him [Meixner 1974], “In the super class
A is no longer a universal function and in non-equilibrium, it does not seem appro-
priate to consider T,, as a temperature”. Nevertheless, considering the entropy and
the heat fluxes through an interface between two systems (say, a thermometer and a
system) is convenient, as it is reminiscent of the contact between the system and the
thermometer in measuring temperature. Although the existence of ideal interfaces is
an interesting theoretical concept, in general the interfaces between different mate-
rials are not ideal, but exhibit so-called thermal boundary resistance, which implies
not only a discontinuity of temperature through the surface, but concomitantly a
discontinuity of the entropy flux, due to entropy production across the wall. Similar
situations are not found in equilibrium thermodynamics, where the thermal contact
is universal, i.e. independent of the degrees of freedom involved. This dependence on
thermal contact implies that the extension of the zeroth principle of thermodynamics
to non-equilibrium situations remains a delicate matter [Muschik 1977; Casas-Vazquez
2003]. Finally, one must be sure that only heat flux is exchanged between the two sys-
tems separated by the interface, at the exclusion of other quantities like matter, or
dislocations. In view of the above and other criticisms, the idea of coldness was later
abandoned by Miiller and his collaborators. A good summary of Miiller’s work during
this period can be found in the review article by Hutter [1977].

After his Ph.D. thesis, Miiller moved to the USA and became familiar with ratio-
nal thermodynamics [Coleman 1963, 1964]. For some years he abandoned extended
thermodynamics, but in 1983 he revisited it by using his knowledge of the techniques
of rational thermodynamics, but without adhering to the Clausius-Duhem inequal-
ity with the entropy flux identified as g/7T. In a paper co-authored with Liu, Miiller
presented a new approach of extended thermodynamics [Liu 1983] using the methods
of rational thermodynamics instead of those of classical irreversible thermodynam-
ics. The ideas developed in this article were made more explicit and amplified to a
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monograph with Ruggeri, from Bologna University, entitled “Extended Thermody-
namics” (1993); a second enlarged and completely revised version entitled “Rational
Extended Thermodynamics” was published in 1998. Miiller and Ruggeri have devel-
oped a mathematically elegant theory, however, applications to complex systems, as
for instance real gases or macromolecular solutions, remain not straightforward. One
reason is that for such systems, the heat flux and the viscous pressure tensor are no
longer single physical entities with one single relaxation time, but a sum of several
contributions with crossed effects, related to particle interactions and macromolecular
internal structures.

Inspired by the developments of rational thermodynamics, where the entropy in-
equality is regarded as a constraint to the constitutive equations, EIT is considered
by Miiller as the combination of the classical balance equations of mass, momentum,
energy, and entropy with the time evolution equations of higher-order flux quantities:
the Gibbs equation is now a derived relation rather than a postulated statement. In
addition, the evolution equations of mass, momentum, energy and higher order mo-
ments are viewed as providing constraints to the field variables u, (say p, v, u and
higher order moments). Following Liu and Miiller, the entropy inequality written in
the form [Liu 1972, 1983]

Js

P o +V - J°+ A, (mass balance)+ A, - (momentum balance)+ Ay (energy balance)

+ Ajj.. (higher-order balance equations) > 0, (5.9)

must hold for all the set of variables, the A;’s are denoting here the Lagrange multi-
pliers, which are introduced to eliminate the constraints set by the balance equations.
At the end of the procedure, the A;’s will be identified in terms of the field vari-
ables. In addition, it is required that s is a concave function, 9?s/0u,dus < 0, to
guarantee stability of the equilibrium solutions and that the set of field equations
are symmetric hyperbolic. This ensures not only finite speeds but also that, mathe-
matically, the Cauchy problem is well-posed: uniqueness, existence, and continuous
dependence of solutions are guaranteed. Moreover, in order to study shock waves, it
is important to reformulate the field equations such that they exhibit a conservative
form. The characteristic speeds, and, in particular, the maximum one, which repre-
sents the pulse speed, are easily calculated from the characteristic equation. In the
case of a monatomic gas, the result depends on the number of moments selected for
the description; the problem is that by increasing the number n of moments [Weiss
1990], the speed pulse increases with n without upper bound. This is a rather disap-
pointing result as one of the main motivations for the theory was to find a finite speed
of signals. However, this is not completely surprising as Boltzmann’s equation allows
for a non-vanishing probability of particles moving at any chosen speed. In Miiller’s
approach, the problem of a non-equilibrium temperature is scarcely discussed; indeed,
because the scheme is deeply rooted in the kinetic theory, the temperature is identified
with the energy density, namely v = (3/2)kgT/m for a monatomic gas.

5.4 G. Lebon (1973-1978), D. Jou et al. (1979-1980): From fast processes
to thermodynamics of steady states

In parallel to Miiller, Lebon and Lambermont at Liege University, studied the problem
of propagation of heat signals in rigid thermo-elastic bodies and viscous heat conduct-
ing fluids in the framework of EIT [Lambermont 1973; Lebon 1973, 1978]. Works by
Lebon and Lambermont were put into a more general and structured form in two
papers written in collaboration with Jou and Casas-Vazquez, from the Universitat
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Autonoma de Barcelona [Jou 1979; Lebon 1980a]. The main objective of these two
contributions was to go beyond the local equilibrium hypothesis by raising the fluxes
to the status of truly independent variables; their relaxation constitutive equations,
containing the time derivative of the fluxes, were not seen as a correction to the classi-
cal constitutive equations, but as evolution equations for the fluxes. Non-equilibrium
entropy sneq, is not only a function of the classical conserved variables, as energy, but
depends in addition on the dissipative fluxes, like the energy flux. For instance in the
case of heat conduction, at the lowest order in ¢2, one has

Sneq(U, @) = Seq(u) — (7/20T°) ¢* (5.10)

with seq(u) standing for the local equilibrium entropy, it is worth to stress that the
coefficient in front of ¢? is expressed in terms of well-identified physical quantities
as the heat conductivity A and the relaxation time 7. This formulation gave a more
definite and transparent status to the extended entropy, which previously could appear
as only a formal proposal without a clear physical interpretation. Expression (5.10) of
the entropy was seen to coincide with that obtained from the kinetic theory, both in
Grad’s and (for steady or slowly changing states) in Chapman-Enskog’s treatments.
Extended entropy plays also a significant role in the description of fluctuations.
For simplicity, we will restrict ourselves to fluctuations of the heat flux. Denoting by
dq the fluctuation of g around its equilibrium value and substituting expression (5.10)
of entropy in Einstein’s relation [Landau 1980] for the probability of fluctuations W,

one obtains
-
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From this result follows that the second moment of fluctuations is given by [Landau
1980]

(6g0q) = (kppT?\/7)I, (5.12)

where the brackets stand for average values. Relation (5.12) emphasizes the link be-
tween the dissipative coefficient A and the fluctuation of the heat flux and is an
illustration of the well-known fluctuation-dissipation theorem, e.g. [Reichl 1980]: it
provides a supplementary argument in favor of the physical consistency of the gener-
alized entropy.

Once the expression of entropy is known, there is no difficulty in deriving the cor-
responding equations of state that are directly obtained by simple derivation with
respect to the state variables. This is particularly relevant in the study of non-
equilibrium steady states. This may seem surprising, as EIT found its early moti-
vations in the need to cope with rapidly changing states. However, there is no contra-
diction: indeed, when the energy fluxes are important, energy is entering and leaving
the system at a fast rate, and the system becomes unable to thermalize during the
short transit period that the energy spends in the system. Therefore, temporal argu-
ments are important even in non-equilibrium steady states. Like in Miiller’s theory,
the expression of the entropy flux J* will contain supplementary contributions in the
fluxes besides the classical term g/T and the rate of entropy production ¢* is as-
sumed the be positive definite, at each point in space and at each instant of time, this
property is exploited to put restrictions on the sign of the various phenomenological
coefficients appearing in the evolution equations, as the heat conductivity, the bulk
and shear viscosities.

Furthermore, some particular classes of problems like matter diffusion [Lebon
1980a], micropolar media [Rubi 1980], and charged particles systems [Jou 1982] re-
ceived a specific treatment.
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5.5 Gyarmati (1977): Wave approach to non-equilibrium thermodynamics

Akin to the above treatments, Gyarmati, at the Polytechnical University of Budapest,
proposed a so-called wave approach of irreversible processes [Gyarmati 1977]. The
latter was presented by the author as a generalization, to continuous media of the
Onsager-Machlup theory with the entropy given by

1
s = S(Oél> — 9 ZmijJiJj? (513)
.3

where the J; are velocity-type variables, while m;; are tensors supposed to be sym-
metric and non-negative. The J/s are not the time derivatives of the state variables
a; but defined through balance equations of the general form

do

= V. J, +oy 5.14
g =V Jiton (5:.14)

with o; the source density of the a;. Gyarmati introduces also generalized thermody-
namic forces X, dependent not only on the gradients of state variables as in CIT,
but also on the time derivatives of fluxes, more explicitly,

0s 0J;
X; = e 1
Vo s T g (5.15)
with
Ji =Y Li;X;. (5.16)
J

By comparison, the term 9s/d¢; in the Onsager-Machlup approach (see expres-
sion (5.5)) is now replaced in (5.15) by 9.J;/0t but J; is not given by &;. Moreover,
in both formalisms, the phenomenological equations are of a different nature which
allows Garcia-Colin and Rodriguez to conclude that Gyarmati’s formulation is not a
consequence of the Onsager-Machlup theory [Garcia-Colin 1988a]. With regard to the
EIT formulation by Lebon, Jou, and Casas-Vazquez, expressions (5.15) are viewed
by Gyarmati as constitutive equations. Time evolution relations for the .J;’s are not
explicitly obtained nor sought. Moreover, Gyarmati keeps for the entropy flux the
classical expression q/T and his constitutive equations do not contain terms in the
gradients of the flux variables (as in expressions (4.16) to (4.19)) and are therefore
less general. Finally, the symmetry of the phenomenological coefficients cannot be
proved as the demonstration requires that the fluxes J; are the time derivatives of the
«; variables. Gyarmati’s formalism was developed by his collaborators as Verhas who
proposed a generalization of the entropy flux [Verhas 1983].

6 Relativistic versions

The question of a finite speed of propagation of thermal and viscous signals is espe-
cially compelling from the point of view of relativity theory. Therefore, it is logical
that this topic received special attention. Early relativistic approaches to hydrody-
namics and non-equilibrium thermodynamics have been proposed by Eckart and by
Landau and Lifshitz [Eckart 1940; Landau 1958]. However, these theories suffer from
two main drawbacks; first, they predict an infinite speed for the propagation of ther-
mal and viscous signals, which is not compatible with the principle of causality and
also with some experimental data, but it is certainly intolerable in any relativistic
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theory which imposes that no material body can move faster than the speed of light.
Secondly, the transport equations of the first-order theory contain some undesirable
generic instabilities: for example, small-amplitude disturbances from equilibrium di-
verge exponentially with time on very short time scales [Hiscock 1985]. These short-
comings are overcome by using relativistic versions of EIT, e.g. [Israel 1976; Jou 1993;
Miiller 1998].

In the relativistic context, the energy and mass balance equations can be formu-
lated as

Ap
Ty =o.

N* =0, (6.1)

with T2 the energy-momentum tensor and N# the particle-flux vector. The indices
run from 1 to 4 (u = 1,2, 3 for space, 1 = 4 for time) and a comma denotes a time-
space derivative, in this section, summation convention on repeated indices will be
used. The entropy density per unit volume s and the entropy flux J*® form an entropy
four-vector s#(s,J?*), and the second law is expressed as the four divergence of s*;

sh, > 0. (6.2)
In the framework of relativistic EIT, the entropy four-vector is given by
st = syuly + T gl — QY (6.3)

where uf; is the unit time-like vector parallel to N*, sy the local-equilibrium entropy
in the particle frame, ¢ the heat flux vector, while @, contains the contribution
of the flux variables to the entropy and the entropy flux, namely (e.g. [Israel 1976,
1979])

TQh = (1/2)uly (Bop™® + B14”qa + 2P Pyg) — aop’q" — a1 PY,q" . (6.4)

The first term of the right-hand side of (6.4) represents the second-order contributions
of the fluxes to the entropy, whereas the second and third terms are the additional
contributions to the entropy flux.

6.1 Miiller (1969, 1986): Relativistic extended thermodynamics

Soon after the publication of his first papers on EIT, Miiller formulated a preliminary
relativistic version of them in a paper entitled “Towards relativistic thermodynamics”
(1969). In this work, the consequences of a hyperbolic heat conduction equation were
framed into their relativistic consistency. An application to simple conducting fluids
was published in 1972 [Alts 1972]. Some years later, together with Liu and Ruggeri,
Miiller proposed a relativistic version of rational extended thermodynamics [Liu 1986].
The classical balance equations of mass, momentum, and energy are written in their
relativistic form as well as the balance laws of the higher-order fluxes. The differences
with the classical non-relativistic theory are that one is faced with 14 field equations
instead of 13 in the non-relativistic case and that the formalism requires first and
second order moments against distribution functions up to the fourth order in the
non-relativistic scheme. Explicit field equations are derived with only four parameters
left unknown: the thermal equation of state, the heat conductivity, the bulk and
shear viscosities, which can be obtained either from statistical mechanics or from
experimental data. Specific applications are to the non-degenerate relativistic gas,
the ultra-relativistic gas and mixture of relativistic fluids [Hutter 1975; Miiller 1998].
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6.2 Kranys (1972, 1977), Sieniutycz (1984, 1992): Partial differential equations
and variational formulations

Kranys left Czechoslovakia in 1968 when Prague was occupied by the Warsaw Pact
armies and moved to Montreal in Canada. He focused his attention on different sub-
jects widely related to EIT, like hyperbolicity and its agreement with the causality
principle and the relativity principle, requiring that one cannot exceed the speed of
light in vacuo [Kranys 1972, 1977]. A general form of the hyperbolic operators for the
most frequently used equations in mathematical physics was proposed. Hyperboliza-
tion of several equations as the Fourier, Stokes, Korteweg-deVries, Klein-Gordon,
Schrodinger and Maxwell electromagnetic relations [Kranys 1989] were worked out.
Kranys suggested also a Lagrangian formulation of the equations that he had stud-
ied. Describing dissipative processes by means of a Lagrangian formalism has been
a subject of great interest during the seventies and eighties because there are many
advantages in using them. For instance, they are the basis to the construction of vari-
ational principles. In that respect, let us also mention the contributions by Sieniutycz,
from Warsaw Technological University and Berry from Chicago University [Sieniutycz
1984, 1992]. However these variational formulations have been the subject of severe
criticisms [Finlayson 1972; Lebon 1980b] as they are not “true” variational princi-
ples in the sense that some quantities have to be kept fixed during the variational
procedure.

6.3 Israel (1976): Relativistic kinetic theory

Relativistic thermodynamics was revisited in 1976 by Israel, then at the California
Institute of Technology during a leave of absence from the University of Alberta in
Canada. At this time, Israel was not aware of Miiller’s work. Israel was able to derive
macroscopic transport equations akin to the evolution equations (4.17)—(4.19) of non-
relativistic EIT [Israel 1976]. He also discussed fluid mixtures. Restrictions imposed
by the second law, expressed by (6.2), allowed him to derive explicit relations for
the entropy flux and the entropy production. The results of Israel’s phenomenological
approach are shown to be parallel to the relativistic theory based on Boltzmann’s
equation. Since Israel’s first article of 1976, a great number of papers was generated
in relation with the relativistic kinetic theory and some astrophysical applications,
as for instance supernova explosions, (e.g. [Stewart 1977; Israel 1979]. In particular,
Israel’s results were used in the analysis of the cosmological evolution of viscoelastic
matter by Belinskii and collaborators [Belinskii 1979], opening the way to a fruitful
field of applications of extended thermodynamics.

6.4 Pavon, Jou, and Casas-Vazquez (1980): A relativistic version
of Cattaneo’s equation

Pavén, Jou, and Casas-Vazquez at the Autonomous University of Barcelona, still
unaware of Israel’s work, proposed an extension of Cattaneo’s equation within the
relativistic context, by starting from the assumption that entropy and entropy flux
are heat-flux dependent quantities [Pavon 1980]. The generalized Gibbs equation takes
the form

TDs = Du+ pDv + a¢"Dgq,, (6.5)

where D = u”D,, is the relativistic invariant derivative and a is a phenomenological
coefficient. Combining the above result with the energy conservation law

pDu + pDv + ¢t (dug" + u* Duy,) =0, (6.6)
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where d,, is the fourth-order space-time derivative operator, one obtains expressions
for the entropy flux and the entropy production,
J¥ = (1/cT)q", st =(1/cT)¢"(d,T + TDu, —caTDg,), (6.7)

"

suggesting the following relativistic form of the Cattaneo equation
" = = A\A"(d, T + TDu, — caTDg,). (6.8)

The phenomenological coefficient « is identified as & = —7/AT. Note the presence
of the term in the acceleration Du,, which is not present in the classical versions
of Cattaneo’s law. A particular attention has been devoted to viscous cosmological
models and their effects on the dynamics of the universe. Formulations of an extended
Gibbs relation for nuclear matter and relaxation transport equations have proven to
be of interest in the hydrodynamic analysis of collisions between heavy ions: the
analysis of these collisions is helpful to determine the nuclear equations of state and
to study the phase transition from the hadronic matter to the quark-gluon plasma
[Griffin 1976; Stocker 1986; Koide 2007]. It was observed that generally the duration
of the collisions between heavy nuclei is only one order of magnitude higher than the
mean free time of nucleon collisions inside the nuclei which indicates that relaxation
effects, as described by EIT, are important. Furthermore, during collisions the nuclei
are far from equilibrium, so that non-equilibrium corrections of the equations of state
may considerably affect the energy required for the phase transition in nuclear matter.

7 Kinetic and statistical mechanics approaches

We have already emphasized the role of kinetic theory as a source of motivation and
inspiration for generalized transport equations. Furthermore, kinetic theory provides
a version of the second law through the well-known H-theorem. The relation between
the quantity H and the thermodynamic entropy is clear in equilibrium states, but
this is no longer true far from equilibrium. The microscopic “entropy”, or H function,
is defined by (3.12). Out of equilibrium, let the distribution function be given by

f=req(1+®), (7.1)

with @ a “first-order” non-equilibrium contribution, depending for instance on the
heat and momentum fluxes. Introducing (7.1) in expression (3.12) of the entropy
leads, up to and including second-order terms in @, to

08 = pSeq — (kB /2) [ feq®?de. (7.2)

The merit of the above result is to shed some light on the range of validity of the local
equilibrium hypothesis. Indeed, it is well known that the classical transport equations
depend only on the first-order correction in @ but, as seen in (7.2), such a first-order
correction is absent from expression (7.2) whose first correction is of second order in
@2, Thus, unless one is interested in a generalization of the transport equations or
in second or higher order terms in the entropy, the local-equilibrium entropy remains
satisfactory. It is also worth to stress that the rate of production of the truncated
entropy (7.2) is positive for linearized transport laws, but not in general for non-
linear evolution equations, in contrast to the general entropy production resulting
from the use of the general definition (3.12).

Classical kinetic theory is useful in obtaining expressions for the transport coef-
ficients for a diversity of physical systems, or, in more sophisticated approaches, to
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formulate generalized transport equations with higher-order terms; however, in such
developments, no special attention is paid neither to the definition of temperature,
which is simply defined in terms of the kinetic theory of the particles, nor to the
entropy. At the beginning of the 1980’s, these questions received special attention as
illustrated by the contributions to the kinetic foundations of extended thermodynam-
ics by Garcia-Colin and Eu as discussed in Sections 7.1 and 7.2.

7.1 The Mexican school (Garcia-Colin)

Garcia-Colin was one of the most prominent scientists in Mexico during the last
50 years. After doctoral studies at the University of Maryland, he was a member of
the Colegio Nacional, the equivalent of the National Academy of Sciences and occupied
several positions at the Universidad Nacional Autonoma de Mexico (UNAM) and the
Universisdad Autonoma Metropolitana (UAM). He passed away in October 2012. A
critical discussion of the main ideas behind EIT based on kinetic theory and statistical
mechanics can be found in some papers by Garcia-Colin and his collaborators (e.g.
[Garcia-Colin 1984, 1988b, 1995]).

The first criticism of Garcia-Colin against EIT is about the fact that the fluxes
express the response of the system to the action of a force (like the gradient of temper-
ature) rather than the measure of intrinsic properties. Based on Grad’s development,
it was suggested to use the higher moments a; of the distribution function which are
in general a combination of the physical fluxes rather than the fluxes themselves. A
different choice, meeting Garcia-Colin’s objection, was recently proposed; instead of
the heat flux variable q in the problem of heat transport, a renormalized flux variable
g, was preferred taking into account the constitutive properties of the material like
relaxation time and heat conductivity [Lebon 2008a]. A second controversial feature
was about the identification of the s-function with an entropy function. There ex-
ist, however, strong arguments from the kinetic and information theories (e.g. [Jou
1993]) indicating that s may indeed be identified with a non-equilibrium entropy;
further justifications were brought forward by Eu, using the notion of uncompen-
sated heat proposed by Clausius [Eu 1992]. But more fundamentally, Garcia-Colin
asked whether the property that o® is positive definite is generally valid. He argued
that the inequality ¢® > 0 has no meaning beyond the local equilibrium hypothesis.
This is, of course, a crucial point as it concerns not only EIT, but also other non-
equilibrium approaches as Rational Thermodynamics or internal variable theories. It
is our opinion that the positiveness of the entropy production must be considered as
a principle to be accepted, unless contradicted by experiments. Despite these con-
troversial features, Garcia-Colin spent much effort to lay foundations of EIT on the
general principles of the kinetic theory and statistical mechanics. It was determined
by Garcia-Colin and Lopez de Haro to which extent the constitutive relations of EIT
cope with the Green-Kubo relations of statistical Mechanics and the Chapman-Enskog
scheme [Garcia-Colin 1982], more particularly with the Burnett and super Burnett
regimes [Garcia-Colin 1984].

7.2 Eu’s modified moment method (1980)

This method rests on Grad’s original approach and was introduced by Eu in 1980.
This author spent the essential period of his scientific activity at McGill University in
Montreal before becoming a consultant of the Scientific Policy Department of South-
Korea, his native country. Eu’s approach has undergone several versions with the
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latest version published in an extensive monograph on the subject [Eu 1992]. The
variables are the fluxes and the tensorial higher moments M * defined by

M = (mc' f(r,t,c)), (7.3)

with () = (1/n) [ fde and ¢ standing for the dyadic product ce, the third-order
vectot (e.c)e, etc. Now, instead of Grad’s expansion in terms of Hermite polynomials,
Eu proposes for f the so-called canonical form

f= Cexp[—ﬁ(Ho + Hl)], (7.4)

where Hy = (1/2)mc? + V(r), V(r) being a conservative potential energy and
Hy =Y X@an), (7.5)
a=1

the h(®)’s are essentially the Hermite polynomials of Grad’s method and the X () some
thermodynamic forces which, at the lowest order are given by X (1) = — (71 /2kpA\T?)q,

X® = —72/4]<:]_r;17T)12”7 symbol ® denotes contraction or inner products. Grad’s
approach may be recovered after linearization of the exponential expression (7.4)
around the local equilibrium distribution given by exp(—8H,). After rather lengthy
but straightforward calculations, one obtains for the entropy production a bilinear
form

1
o= > x@ @A), (7.6)

with A = (h(®) J(f)) and J(ff) standing for the collision term. The entropy flux is
not given by the classical expression q/T but by the more intricate relation

s_ 4 (@) g H(a)
J_T%:X ® ¢, (7.7)

with ¢(®) = (e h(o‘)f>. It is interesting to note that Gibbs equation has the same
structure as in EIT, namely

Tds = du+ pdv+ Y _ X @ do), (7.8)

where ¢(®) = (h("‘)f>. The gist of the ideas underlying Eu’s approach is the same as
in the more classical approaches by Jou, Lebon, and Miiller’s groups, i.e. enlargement
of the space of state variables, restrictions placed by the second law, deep connection
with kinetic theory. The merit of Eu’s theory is its ability to cover the non-linear
domain and, in particular, to yield constitutive relations predicting finite saturation
of the fluxes within the limit of high values of the forces. This saturation is consistent
with finite propagation of signals, and could be imposed as an additional require-
ment in the phenomenological approach of EIT. Eu was able to apply his theory not
only to monatomic ideal gases but also to dense fluids, polymer solutions and other
complex systems. The main difficulties with Eu’s formalism is to assign an unequiv-
ocal physical interpretation of the several undetermined parameters and to propose
a way of measuring them. Moreover, the evolution equations of the X (%) are rather
complicated and have been solved only in rather simple cases. Nevertheless, at the
simplest linear approximation, all the methods examined previously are converging
in the sense that all of them lead to Cattaneo-Vernotte-Maxwell’s type equations.
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7.3 The MAXENT-NSOM approach (Luzzi and Vasconcellos)

Interesting justifications of the statistical foundations of EIT are also provided by a
statistical-mechanics approach, the so-called MAXENT-NSOM (Maximum Entropy-
Nonequilibrium Statistical Operator Method) proposed by Luzzi and his collaborators
at the university of Campinas (Brazil) [Luzzi 2001, 2002]. This model rests on a vari-
ational principle, namely the Jaynes (1963) maximization of the information statisti-
cal entropy. The requirement that entropy should be maximized in non-equilibrium
steady states is not contradictory with maximization in equilibrium states, because
it imposes restrictions not only on the internal energy and the number of particles
(as in the macrocanonical distribution function) but also on fluxes present in the
system (for instance, energy flux, matter flux, and momentum flux). The maximum
value of the entropy under these additional requirements on the fluxes is less than the
value of the entropy in equilibrium states. Thus, equilibrium states truly maximize
the total entropy, under vanishing values of the fluxes. The higher the number of the
non-vanishing fluxes, the lower is the corresponding maximum entropy. Maximum
entropy theories introduce Lagrange multipliers conjugated to the several constraints
acting on the system. The corresponding Lagrange multipliers are equivalent to those
found in Miiller and Liu’s work, although motivated by different arguments. The
Lagrange multipliers conjugate to the classical variables have a physical meaning, un-
like the Lagrange multipliers conjugate to the fluxes which cannot generally be given
a straightforward interpretation. They may, however, be interpreted by comparison
with the generalized Gibbs equation of EIT. The expressions obtained from the gener-
alized flux-dependent entropy are not limited to second-order terms, as in the simplest
version of phenomenological EIT, but are strongly non-linear and non-local.

8 Other faces of non-equilibrium thermodynamics
8.1 Rational thermodynamics

As EIT was knowing its first steps in the early seventies, non-equilibrium thermody-
namics was essentially dominated by CIT for one part and by rational thermodynam-
ics for the other part. The roots of this theory are found in the developments of ratio-
nal mechanics. Axiomatic aspects with theorems, axioms, and lemmas are dominating
the account. The foundational papers are these of Coleman and Noll and Coleman
published in 1963 and 1964 respectively [Coleman 1963, 1964], the name “Rational
Thermodynamics” was dubbed by Truesdell a few years later [Truesdell 1966, 1969).
Although the formalism is mostly concerned with deformable solids with memory,
other classes of systems, including fluids, chemical reactions, and shock waves, have
also been investigated. The main objective is to put restrictions on the form of the
constitutive equations by application of formal statements of thermodynamics. The
founders of rational thermodynamics consider it as an autonomous branch arguing
that a justification of the foundations and results must ultimately come from the
theory itself. Rational thermodynamics was appreciated by the community of pure
and applied mathematicians who were attracted by its axiomatic vision of continuum
mechanics. The popularity of the theory failed at the end of the eighties because it
was disregarded by physicists for its lack of physical background and by engineers
because the constitutive equations take the form of functionals, which are not very
tractable in practical situations (see the critical discussions by Lavenda and Woods
[Lavenda 1979; Woods 1981]). It appears also that the signs of some rheological co-
efficients as in the Rivlin-Ericksen model are contradicted by experience. Moreover,
rational thermodynamics predicts instabilities for non-Newtonian fluids as it leads to
an exponential growth of shear strain rate for a vanishing stress tensor [Miiller 2012].
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8.2 Internal variables theory

An alternative formalism was given by the internal variable theory (IVT), some-
times named “hidden variable theory” (e.g. [Coleman 1967; Mandel 1978; Kestin
1980; Bampi 1984; Maugin 1994]). The basic idea is to complement the state of vari-
ables of classical non-equilibrium thermodynamics by extra variables describing the
internal motions or (and) the internal microstructure. The foundations of IVT can
be traced back to the kinetic theory with internal degrees of freedom (e.g. [Kirkwood
1967]) which emerged on the kinetic theory of polymeric fluids by Hand and Bird
among others [Hand 1962; Bird 1987]. To relate the theory of Kirkwood to thermo-
dynamics was not a trivial task as it implies that one cannot express the entropy
in terms of a polynomial in the fluxes. First attempts [Lhuillier 1979, Grmela 1987]
were made by Lhuillier and later by Grmela and Lye who suggested to formulate the
corresponding entropy in the form s = (1/2)Indet ¢ where ¢ = [ RR fdR is the con-
formation or Hand’s tensor, and R the end-to-end macromolecular distance between
the molecules of the polymer chains. IVT has proven to be well adapted to the de-
scription of chemical reactions, plastic bodies, polymer solutions and electromagnetic
bodies.

In contrast to EIT where the variables are well identified from the start, the main
characteristic of internal variables is that usually there is a priori no reference to
their physical nature, it is only at the end of the procedure that, in general, their
physical meaning emerges. In contrast to external variables, the internal variables are
not coupled to external forces, they do not contribute to the mechanical work and
are consequently not controllable. Although not controllable, internal variables are
nevertheless measurable by the effects produced inside the system: as an example,
in plasticity, the internal variable is linked to the motion of dislocations and can be
measured but not controllable.

A particular case is to consider the fluxes themselves as internal variables, lead-
ing to evolution equations for the fluxes, as in EIT. Let us illustrate this situation
with two examples. The first one refers to polymer solutions, where it is logical to
take the molecular configuration as an internal variable. This is usually achieved by
means of the conformation tensor. In several macroscopic problems, where the tan-
gential pressure on the boundaries of the system is controlled, the viscous pressure
tensor of EIT appears as a more natural variable and has been preferred by some
researchers [Jou 2000]. The second example is heat transport in superfluid helium II,
where the heat flow may be considered either as an internal variable by itself, or may
be related to the relative velocity between the normal and the superfluid components
selected as internal variable [Mongiovi 1991, 1992; Jou 2000]. In practical problems,
one observes a strong similarity between the final results whatever the choice of the
variables (the viscous pressure or the heat flux in the case of EIT, the conformation
tensor, or the relative velocity of the normal and superfluid components in the inter-
nal variables theory). This shows that EIT may be compared in a natural way with
other non-equilibrium theories, especially at the microscopic level, beyond the classi-
cal description provided by the Boltzmann equation for ideal gases with predominant
binary collisions.

8.3 Hamiltonian structures

Hamiltonian structures have been identified at various levels of description: the mi-
croscopic one (classical mechanics), the kinetic theory, and some macroscopic ap-
proaches (as, for instance, hydrostatics or equilibrium thermodynamics). It is natural
to ask whether such a structure is preserved in more sophisticated descriptions and,
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more particularly, in non-equilibrium thermodynamics. An early Hamiltonian ver-
sion of non-equilibrium thermodynamics was proposed by Grmela in a “Joint Sum-
mer Conference on the Mathematical Sciences on Fluids and Plasmas: Geometry
and Dynamics” held in Boulder in 1983 [Grmela 1984]. The subject can be traced
back to works by Clebsch and continued by Arnold [Clebsch 1859; Arnold 1966].
The first papers were based on one single generator, and the time evolution of the
basic variables was expressed in terms of a non-dissipative Poisson bracket plus a
dissipative bracket (e.g. [Beris 1994]). These formulations were more recently super-
seded in some aspects by what is now known as GENERIC (General Equation for the
Non-Equilibrium Reversible-Irreversible Coupling), whose latest developments can be
found in Ottinger’s book [Ottinger 2005] and in papers by Grmela [Grmela 2010,
2014]. One of the main merits of a Hamiltonian structure is that it provides restric-
tions on the reversible dynamics while the other thermodynamic theories, among
which CIT, RT and EIT, place only restrictions on the irreversible parts of the con-
stitutive equations. It is also worth stressing that the evolution equations of the fluxes
of EIT (at least in the case of an incompressible fluid) share the property of possessing
a Hamiltonian structure, as shown by Grmela and Lebon [Grmela 1990].

9 The Bellaterra meeting (1983): The first meeting devoted to EIT

Several “Schools” were organized in the city of Bellaterra, the seat of the Universi-
tat Autonoma Barcelona, starting in 1983 with the Fscuela de Thermodinamica de
Bellaterra, whose proceedings were published in [Casas-Vazquez 1984].

The objective of these organizations was twofold: first, to couple the pedagogical
trends of a school with the incentive of fresh information on topics of actual interest in
non-equilibrium thermodynamics; second, to offer an overview of the several hundred
papers that had been published by the diverse groups.

At this first international congress organized in 1983, particular emphasis was put
on the early developments of EIT. The multi-faced aspects of the foundations were
presented by Nettleton, Miiller, the Liege-Barcelona school (Lebon, Casas-Vazquez,
Jou), Lengyel (Gyarmati’s school), Garcia-Colin and Eu. An important part of the
Conference was concerned with selected applications and with a comparison with other
non-equilibrium approaches such as rational thermodynamics and the internal variable
theory. Relations with the fluctuation theory and the kinetic theory of gases were also
the subject of various contributions. The possibility of having a direct contact and
live discussion amongst the several promoters of extended thermodynamics fostered
its future presentations as a full-fledged theory, motivated by microscopic foundations
and rich in applications. These presentations came out a few years later, in the form
of reviews [Jou 1988; Nettleton 1995] and books [Eu 1992; Jou 1993, 1996, 2001, 2010;
Lebon 2008b; Miiller 1993, 1998; Sieniutycz 1994]. The 1983 school was paralleled and
followed by other international conferences with the objective to open the concepts
and applications of EIT to a wider audience.

After the 1983 Conference, two main trends of thought have emerged; the so-
called Extended Rational Thermodynamics (ERT) headed by Miller and Ruggeri
and the Extended Irreversible Thermodynamics formalism (EIT) as developed by
the Liege-Barcelona school. EIT generalizes the Gibbs equation of CIT and does not
require balance equations a priori, while ERT assumes a set of evolution equations
based on the kinetic theory. EIT is more general but ERT is appropriate for study-
ing monatomic, polyatomic and dense gases and shock waves. The last versions are
summarized in the monographs co-authored by Miiller and Ruggeri [Miiller 1998] and
Jou [Jou 1993, 2010] respectively with the aim to consolidate the theory as a broad
and well-founded framework, with many related facets.
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10 Concluding remarks

Through its several faces outlined in Section 5, Extended Thermodynamics has the
advantage of proposing a formalism that is accessible to a wide community of re-
searchers and applicants of physics, chemistry, biology, mathematics and engineering
science. It is a well-structured mesoscopic formalism, whose foundations have been
confirmed by kinetic theory, non-equilibrium statistical mechanics, and fluctuation
physics. The parallelism between Extended Thermodynamics and information the-
ory should be emphasized as both approaches use a generalized entropy, which is not
necessarily limited to second order corrections. Extended Thermodynamics also eluci-
dates the physical meaning of the Lagrange multipliers introduced to take into account
the non-equilibrium constraints. As it goes beyond the local-equilibrium hypothesis,
Extended Thermodynamics allows us to describe a wide variety of phenomena and
processes, not (or only partially) covered by other thermodynamic formalisms.

Extended Thermodynamics is not confined to a limited number of places and
schools, such as Barcelona, Berlin, Bologna, Liége, but it has spread over a much
enlarged area, including Budapest (Gyarmati, Van, and Verhas), Catania, Messina,
and Palermo, (contributions by Anile, Valenti, Palumbo, Barbera, Restuccia and
Mongiovi), Kéln (Galenko), Montreal (Eu and Grmela), Campinas (Luzzi and
Vasconcellos), Warsaw (Sieniutycz), attesting for the universality of the problems
dealt with in this theory.

The applications discussed in the present review represent only a part of a vast
and varied domain of applicability with emphasis on

— memory effects (fast processes, polymers, superfluids);
— non-local effects (micro- and nano-materials);
— non-linear effects (high powers, shock waves).

Actually, much efforts are paid to a discussion of the mathematical foundations
[Cimmelli 2014], to rarefied gases [Struchtrup 2005] and the formulation of bound-
ary conditions for high order moments [Miiller 2003; Barbera 2004], heat transport
at micro- and nano-scales is also the subject of intense activity (e.g. [Alvarez 2012;
Lebon 2014]).

We have seen that Extended Thermodynamics is by no way the unique theory of
non-equilibrium thermodynamics and that the diversity of schools in non-equilibrium
thermodynamics is considerably rich (e.g. [Muschik 2007]). In addition to the classical
formulation of irreversible processes as formulated by Onsager, de Groot, Mazur, and
the Brussels school, we have briefly discussed the basic ideas of Rational Thermody-
namics, mainly advocated by Coleman, Noll, and Truesdell, the GENERIC formalism,
originally developed by Grmela and Ottinger as well as the hidden variable theory,
worked out by Kestin, Maugin, Lhuillier, Bampi and Morro, among others. Answer-
ing the question “what is the best approach?” is highly subjective; it depends not
only on the nature of the system to be analyzed but also on the tools available to
the researcher, in addition to his goals, scientific education, and environment. The
discussion is far from being closed. Up to now, most emphasis has been put on fluids
while thermodynamics of solids has been the subject of less attention and asks for
more developments. Several outstanding fundamental questions such as that of the
uniqueness of non-equilibrium entropy and temperature, the status of the second law
of thermodynamics, or the selection of the relevant state variables, to mention only
the most important problems so far were only partly addressed and call for more
definitive solutions.
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