

Optimal design of a CO₂ absorption unit and assessment of solvent degradation

Progress Review Presentation

Grégoire Léonard

20th december 2012

- 1. Study of MEA degradation
- 2. Degradation modeling
- 3. Perspectives

MEA degradation

20th december 2012

Influence of :

- Agitation rate
- Temperature
- Gas composition
- Metals and inhibitors
- Thermal degradation

1. MEA semi-batch degradation

Experi	Start	End	Time	Test	Agitation	Т	P _{tot}	P _{O2}	P _{CO} 2	P_{N2}	Gas flow	Mass balance	Solvent	Additives	Problems
ment	olar	2.1.0	Days		rpm	[°C]	[bar]	[bar]	[bar]	[bar] [[]	mln/m in]	[%]	[wt% MEA]	, ladin vee	
26	1/11/12	8/11/12	7	Influence of HEDP + SS	600	120	4	5	15	80	160	-1.53%	29.99	SS metals + HEDP	Crystal formation in the condenser
27	9/11/12	16/11/12	7	Influence of CO ₂	600	120	4	0	15	85	160	-3.83%	30.00	-	Power shortage (4h)
28	19/11/12:	26/11/12	7	Influence of O2	600	120	4	10	15	75	160	-1.50%	30.00	-	Crystal formation in the condenser
29	27/12/12	4/12/12	7	Influence of CO ₂	600	120	4	5	30	65	160	-18.00%	30.02	-	Mass losses, crystal formation
30	5/12/12	12/12/12	7	Influence of Temp	600	100	4	5	15	80	160	-6.87%	30.00	-	Light Mass losses
31	13/12/12	20/12/12	7	Influence of CO ₂	600	120	4	5	30	65	160	0.00%		-	

• Linear dependence of the MEA loss on the agitation rate

1.1 Agitation rate

Further observations:

1.1 Agitation rate

- More HEI when rpm rises
- Less HEPO when rpm rises (also less when under O₂ only)

=> HEI is formed when O_2 diffusion is not limited => HEPO is formed when O_2 is less available

Base case	P10	P15	P17	P11
Agitation rate	400	400	600	1380
MEA	22.17%	22.67%	20.09%	2.03%
OZD	0.0451%	0.0500%	0.0480%	0.1240%
HEI (Secondary axis)	0.1261%	0.0202%	0.1489%	3.9100%
HEPO	0.2555%	0.2757%	0.2555%	0.0697%

02	P16	P18	P13
Agitation rate	400	600	1000
MEA	19.48%	12.64%	1.82%
OZD	0.0058%	0.0145%	0.1724%
HEI	0.0834%	0.4491%	3.2003%
HEPO	0.0558%	0.0868%	0.0918%

GC Comparison with pilot results => Experiment 17 has been chosen as base case

• Higher temperature leads to higher MEA losses

1.2 Temperature

 Experiment at 100°C gives unexpected results, maybe due to mass losses

HEPO is formed at higher temperature, confirms a mechanism of cyclization

1.2 Temperature

HEI is less formed at higher temperature, maybe due to less Oxygen present in the liquid

	P20	P30	P17	P19
Temperature	55	100	120	140
MEA	23.66%	27.60%	20.09%	19.08%
OZD	0.0097%	0.0230%	0.0480%	0.0314%
HEI	0.0099%	0.3838%	0.1489%	0.0359%
HEPO	0.0315%	0.0507%	0.2555%	1.0057%

• NH₃ emissions

1.2 Temperature

- The more oxygen, the more degradation
- More oxygen => more HEI and less HEPO
- In the absence of O₂, no degradation at 120°C

• NH₃ emissions

1.3 Gas composition: O₂

- The more CO₂, the less degradation
- Under-estimated effect

1.3 Gas composition: CO₂

• 3rd point to be confirmed

• NH₃ emissions

1.3 Gas composition: CO₂

1.4 Metals

- Metals catalyze • degradation:
- $Mn^{7+} > Fe^{2+}/Cu^{2+} \ge Cu^{2+} >$ • $Cr^{3+}/Ni^{2+} > Fe^{2+} > Fe^{3+} > Cr^{3+}$ > V⁵⁺ >> Ti, Co, Mo, Ni, Sn, Se, Ce, Zn
- 49% MEA loss instead of • 32.5%!

1.4 Metals and inhibitors

• Inh. A, DMTD, HEDP, Inh.A/HEDP

• Inh. A, DMTD, HEDP, Inh.A/HEDP

1.4 Metals and inhibitors

- Good inhibition of HEI formation with Inh. A, DMTD, Inh.A/HEDP, but not with HEDP alone
- HEPO formation is only inhibited by DMTD, but inthis case, more OZD

	P22	P23	P24	P25	P26
Additives	SS	SS + Inh. A	SS + DMTD	SS+ Inh.A/HEDP	SS + HEDP
MEA	14.44%	27.43%	26.72%	23.98%	14.96%
OZD	0.0546%	0.0393%	0.1253%	0.0439%	0.0442%
HEI	0.4095%	0.0000%	0.0000%	0.0000%	0.5027%
HEPO	0.2544%	0.1987%	0.0648%	0.1815%	0.2309%

• NH₃ emissions: influence of metals?

1.4 Additives

• NH₃ emissions

1.4 Additives

- Objective is to test the stability of degradation inhibitors at high temperatures
- Stainless steel cylinders filled with amine solvents and set in an oven at 120 - 140°C
- Long-lasting tests: 3 weeks

- Objective is to test the stability of degradation inhibitors at high temperatures
- Tests at 120 and 140°C in stainless steel cylinders

P1 - 120°C	Start: 29/08/2012	P2 - 140°C	Start: 28/09/2012
Θ1	MEA 30% + CO2	Θ1	MEA 30% + CO2
Θ2	MEA 30% + CO2 + inh.A	Θ2	MEA 30% + CO2 + inh.A
Θ3	MEA from pilot + CO2	Θ3	MEA from pilot + CO2
Θ4	MEA from pilot + CO2 + inh. A	Θ4	MEA from pilot + CO2 + inh. A
P3 - 140°C	Start: 09/11/2012	P4 - 140°C	Start: 14/12/2012
Θ1	MEA + CO2 + metal mix	Θ1	MEA
Θ2	MEA + CO2 + HEDP	Θ2	MEA + metal mix
Θ3	MEA + CO2 + DMTD	Θ3	MEA + CO2 + TDE
Θ4	MEA + CO2 + metal mix + HEDP	Θ4	MEA + CO2 + DTPA
		Θ5	MEA + CO2 + DTDP
		Θ6	MEA + CO2 + inh. A + HEDP
		Θ7	MEA + CO2 + metal mix + inh. A

- Inh. A has few effect on thermal degradation
- DMTD is not stable at 140°C
- Thermal degradation is not catalyzed by metals

MEA loss (wt-%)	120°C	140°C
MEA/CO2	11.58	40.70
MEA/CO2 + inh.A	7.88	38.54
Degraded MEA/CO2	8.49	30.58
Degraded MEA/CO2 + inh.A	6.44	28.27
MEA/CO2 + SS		40.56
MEA/CO2 + HEDP		41.63
MEA/CO2 + DMTD		54.00
MEA/CO2 + HEDP + SS		42.90

No HEPO nor HEI in thermal degraded sample (120 – 140°C)

1.5 Thermal degradation

• But other products: HEIA and HEEDA ? Not quantified...

• Nitrogen balance: P17

1. MEA degradation

• Nitrogen balance: P22

1. MEA degradation

Degradation Modeling

20th december 2012

2. Degradation modeling

- 2 types de dégradation :
 - Dégradation oxydative
 - Dégradation thermique
- Expérimentation : 1/3 MEA disparaît en 4 mois

4) Dégradation : réaction et cinétique

Travail de Ségolène

• Equation : $MEA + \frac{3}{2}O_2 \rightarrow NH_3 + 2HCOOH$

• Vitesse : $r = k' e^{-\frac{Ea}{RT}} [MEA]^{0.015} [O_2]^{2.91}$

Avec
$$k' = \frac{k}{1 + k_0 [CO_2]^{0.18}}$$

=> k, E_a et ordre de O₂
=> Ordre de CO₂ et de MEA

Acide formique (% mass)

Influence de la pression au stripper (1)

MEA dégradée en fonction de l'appareil et de la pression au stripper

Perspectives

20th december 2012

- January 2013 : last experiments
 - Repetition of failed experiment
 - O2 and CO2

3. Perspectives

- Limit: FTIR availability
- February 2013 : Model building and exploitation
- March 2013 : Beginning of the redaction
- Mai 2013 : End of the redaction
- June-July 2013 : Public defense

Thank you for your attention!

20th december 2012