
Submitted to
manuscript (Please, provide the mansucript number!)

A branch-and-price algorithm for 2-period vehicle
routing problems

Yves Crama
HEC-Management School, University of Liège, 4000 Liège, Belgium, y.crama@ulg.ac.be

Mahmood Rezaei
HEC-Management School, University of Liège, 4000 Liège, Belgium, m.rezaei@ulg.ac.be

Tom Van Woensel
School of Industrial Engineering, Eindhoven University of Technology, 5600MB Eindhoven, Netherlands, t.v.woensel@tue.nl

We consider a Vehicle Routing Problem (VRP) with deterministic orders in two periods from a set of stores.

Orders in period 1(2) can be postponed(advanced) to the other period but any diversion from the initial

orders incurs a penalty. From the perspective of a Logistics Service Provider (LSP), such diversions could

be beneficial if savings in the routing costs outweigh the penalties. So could they be from a store’s view, as

the store can set a high enough penalty to compensate the diversion from its own optimal orders. In this

paper, we introduce a new model where we seek a better solution for the LSP, compared to solving two

independent VRPs with fixed orders, by allowing orders to be fully postponed or advanced. We apply a

branch-and-price algorithm to solve this model to optimality. Many cutting-edge techniques are implemented

to have an efficient branch-and-price algorithm, and two ideas to possibly improve the upper bound are

tested. We draw algorithmic and managerial insights based on our test instances.

Key words : Branch-and-price; column generation; inventory routing; multi-period vehicle routing.

History :

1. Introduction

Consider a Logistics Service Provider (LSP) supplying units of a single product from a central

warehouse to a multitude of geographically dispersed stores. The LSP has access to an unlimited

supply of the product. Independently of other stores, each store places its orders for two periods,

say for example, day t+ 1 and day t+ 2. An order placed for period t+ 1 can be completely post-

poned to period t+ 2 while a penalty is paid by the LSP to the store for such a postponement. In

a similar way, complete advancement of an order from period t+ 2 to period t+ 1 could be accept-

able for a store but the LSP has to pay a penalty for it. Whether postponement/advancement

is allowed and (if so) its associated penalty are specified by the store. In fact, we may assume

that advancement and postponement is always allowed for all stores but their associated penalties

might be too costly, which deters the LSP to do it. The LSP’s objective is to minimize the routing

1

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
2 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

costs in two periods and the penalties for the orders which are fully postponed/advanced. Com-

pared to solving two independent Vehicle Routing Problems (VRPs), solving this 2-period VRP is

beneficial for both sides, i.e., the LSP and the stores. Obviously, the solution of the 2-period VRP

is advantageous for the LSP, as it provides more flexibility to coordinate the routing costs of two

periods and consequently to decrease their sum. So is it for the stores due to the fact that they

can choose a high enough penalty to compensate the costs imposed to their inventory systems by

postponing/advancing.

1.1. Motivation

Our 2-period VRP may be regarded as a chunk of a Dynamic Multi-Period Vehicle Routing Problem

(DMPVRP) with a finite/infinite horizon. Consider the big picture presented in Figure 1 where

each store receives stochastic demands from its own customers during period t.

Logistics

Service

Provider

Stores to be served
in period t+1

Stores to be served
in period t+2

Store 1 Customer
set 1

Stochastic demand
during period t

Demand distribution functions of
customer set 1 for periods t+1, t+2, …

Deterministic orders for
periods t+1 and t+2

Store i Customer
set i

Demand distribution functions of
customer set i for periods t+1, t+2, …

Deterministic orders for
periods t+1 and t+2

Store n Customer
set n

.

.

.

Demand distribution functions of
customer set n for periods t+1, t+2, …

Deterministic orders for
periods t+1 and t+2

.

.

.

Stochastic demand
during period t

Stochastic demand
during period t

Figure 1 The big picture.

Every store i has its own inventory control system whereby at the end of period t it individually

calculates the optimal orders to be placed for periods t+ 1 and t+ 2. Calculation of such deter-

ministic orders could be based on the current inventory level in store i, the demand distribution

functions of the final customers in periods t+1 onward, and other relevant parameters. But it does

not explicitly take into account the global routing costs. The stores have long-term contracts with

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 3

the LSP. The contracts bind the LSP to serve them for some pre-agreed annual payment. Although

not relevant to our model, the LSP may once have calculated a fixed cost-to-serve for each store

(Ozener et al. 2013) based on the average magnitude of the orders from that store, its distance

from the warehouse, and how isolated it is. Then, it is able to apply it to the terms of the contract.

In its day-to-day operations, the LSP focuses on only two periods. At the end of period t, the LSP

receives the order sizes of the stores for periods t+1 and t+2, decides about each order whether it

should be satisfied/postponed/advanced, executes its decision for period t+ 1, and waits until the

end of period t+ 1 when orders for periods t+ 2 and t+ 3 are placed by the stores. In other words,

a rolling horizon of two periods is considered where the decision for period t+1 is executed but the

decision for period t+ 2 may undergo changes. One reason to consider such a short rolling horizon

is that demands from the final customers to each store are stochastic. As a result, the orders for

period t+ 2 placed at the end of period t are estimations. Therefore, each store prefers to observe

its real inventory level at the end of period t + 1 and update its initial order for period t + 2.

Moreover, the estimated orders are less reliable for farther periods, especially when stochasticity

of the demands from the final customers is very high. From a store’s point of view, advancement is

tantamount to holding unnecessary inventory, and postponement potentially yields lost sales and

low service levels. Therefore, advancement or postponement by only one period is justifiable when

the holding costs are significant and the stores are committed to provide very high service levels for

their customers. A typical application with the aforementioned characteristics is inventory control

of fresh products in supermarkets, where the products rapidly lose their quality and the stores aim

to provide a very high service level. As a result, advancement and postponement by more than

one period is undesirable from the stores’ point of view. Van Donselaar et al. (2006) conduct an

analysis of two Dutch supermarket chains and report that the average delivery frequency of fresh

products to each store is 1.2 days. This is consistent with the results of our interview with the

supply chain manager of a Belgian supermarket chain, who confirmed that most of the stores are

served every day or every other day.

By confining ourselves to two periods, the big picture presented in Figure 1 can be decomposed

into n independent inventory control problems on the left side and a 2-period VRP on the right

side. This paper is only dedicated to model and solve the latter problem. Hence, we consider the

deterministic orders placed by each store for periods t+ 1 and t+ 2, and build our model from the

LSP’s perspective. For the sake of simplicity in our notations, we denote periods t+ 1 and t+ 2

by 1 and 2. Without loss of generality, we assume that all the stores place an order every period

or every other period. Therefore, by considering two periods, each store has a positive order for

period 1, or period 2, or both. Although our 2-period model focuses on one aspect of the broader

DMPVRP, it can be exploited to solve the DMPVRP over a rolling horizon.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
4 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

1.2. Additional discussion

In order to put our problem in a more formal framework, consider a 2-period VRP where deter-

ministic orders of stores are known for two periods. Unlimited supply of the product exists in a

warehouse (depot) where the LSP loads a number of vehicles in each period in order to deliver it

to the stores. We also assume that the LSP has access to an unlimited number of homogeneous

capacitated vehicles. If the LSP has to satisfy each order in its associated period, then our 2-period

VRP simplifies into two independent VRPs. But, as we stated before, orders for period 1 (period

2) could be postponed (advanced), and the LSP may benefit from a decrease in the routing costs

in two periods by postponing and/or advancing a set of orders. A crucial feature of our model

is that the magnitude of a postponed/advanced demand can change. To explain this feature, let

assume that the order sizes in periods 1 and 2 for some store i are 4 and 0, respectively. Based

on its inventory control system, in case its initial order size for period 1 is postponed, store i may

have an order size different from 4, e.g., 2 or 5, for period 2. This is justifiable, in particular, if the

demand of period 1 cannot be backlogged.

We assume that each order in period 1 (period 2) must be completely satisfied in that period

or completely be postponed (advanced) to the other period. There is an apriori defined penalty

associated with each postponing and advancing, which could depend on the magnitude of the order.

Figure 2 shows a solution of the 2-period VRP where orders of the stores are satisfied in their

associated periods, i.e., neither postponement nor advancement take place. In this figure, each store

is represented by a circle, and the depot is depicted by a triangle. The quantity above each vertex

(store) represents its initial order, and the capacity of each vehicle is taken to be 10.

Period 1 Period 2

3

6

8

5

4

7

2

1

9

0
3

3

6

2

4

0

4

4
3

6

8

5

4

7

2

1

9

3
0

0

0

0

2

6

0

0

Figure 2 Optimal routes when postponing and advancing are not allowed.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 5

Visually, it is easy to see that, in Figure 2, we can decrease the routing costs in period 1 by

postponing the order of store 5, while just slightly adding to the routing costs in period 2 by

inserting store 5 into route 0−8−9−0. Note that in this case, the quantity requested by store 5 in

period 2 is 2 units only according to Figure 3, as opposed to 4 units in case the same store is served

in period 1. Simultaneously, we can further decrease the routing costs in period 2 by advancing

the order of store 7 and serve it in period 1 through route 0− 1− 7− 2− 0. In this case, store 7

may request a different quantity than 3 units, e.g., 4 units according to Figure 3. The new solution

where demands of stores 5 and 7 are postponed and advanced, respectively, is shown in Figure 3.

In this figure, we have to take into consideration two penalties; the penalty of postponing the order

of store 5 and the penalty of advancing the order of store 7. Whether the new solution in Figure

3 is better than the solution in Figure 2 depends on how much the LSP saves in the routing costs

and how much it has to pay for the penalties.

Period 1 Period 2

3

6

8

5

4

7

2

1

9

0
0

0

0

0

2

6

2

0
3

6

8

5

4

7

2

1

9

4
3

3

6

2

4

0

0

4

Figure 3 Optimal routes when postponing and advancing are allowed.

We assume that each order is significantly smaller than the vehicle capacity. Otherwise, direct

shipping could be the most efficient delivery policy for this store, which could be separated from

the others. Indeed, Gallego and Simchi-Levi (1990) conclude that, with a very high probability,

direct shipping is preferable over all routing strategies provided that the economic lot size is a large

fraction of the vehicle capacity; see also Bertazzi (2008).

1.3. Scientific contributions

We formulate the 2-period VRP as an Integer Linear Programming (ILP) problem and solve it by a

branch-and-price algorithm to optimality. The main contributions of this paper can be summarized

as follows.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
6 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

• Unlike the existing deterministic models in the MPVRP literature, our model can deal with

the case where the sum of the orders for two periods is not a fixed number. We do not discuss

partial postponing/advancing, although it may be regarded as a natural variant of our problem.

• The existing models to solve the MPVRP to optimality use arc formulations and can deal with

more than two periods. However, they become nonlinear in the presence of time windows, even

for the 1-period VRP. In contrast, we use route formulations and bring the nonlinear constraints

induced by the time windows to the pricing problem, so that our master problem remains linear

and can be solved to optimality.

• We draw algorithmic insights by solving an ILP model with a restricted number of generated

columns in each node, and we analyze the trade-off between the computational time and the

optimality gap.

• We draw managerial insights on cost improvements based on the results obtained from the

test instances.

The paper is organized as follows. Section 2 contains a brief literature review. The problem formu-

lation, including the master problem and two pricing sub-problems, is presented in Section 3. We

deal with details of implementation issues in Section 4. Computational results including algorith-

mic and managerial insights are presented in Secion 5, and finally conclusions are drawn in Section

6. We succinctly discuss a generalized model in the appendix.

2. Literature review

A first related topic is the Inventory Routing Problem (IRP), where there exists a central system

making decisions about the delivery quantities as well as the routes in each period so that the total

cost/profit of the network is optimized while the stores are not allowed to run out of stock. So, in

the IRP, demand from the final customers is centrally managed, say, by the LSP. Obviously, the

no-stockout constraint only makes sense in case the final demand is deterministic. Otherwise, when

demand is stochastic, the no-stockout constraint should be replaced by a constraint on the service

level. Interested readers are referred to Andersson et al. (2010) for a comprehensive literature survey

on IRPs, where existing works are classified based on deterministic/stochastic demands from final

customers, the planning horizon, and other relevant features. Dealing with an IRP, deterministic or

stochastic, is daunting enough that, in order to model and solve it, many researchers have resorted

to simplifying assumptions such as constant demand by each store (Raa and Aghezaaf 2008, 2009),

consideration of a single vehicle (Archetti et al. 2007), and delivery policies (Bertazzi et al. 2002).

Not surprisingly, even under these assumptions, solving an IRP is not a trivial task. This is why

researchers have resorted to heuristic methods, predominantly local search algorithms (Bertazzi et

al. 2002) and decomposition approaches (Campbell and Savelsbergh 2004), to find a good solution

for the problem.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 7

The Multi-Period Vehicle Routing Problem (MPVRP) is the second area related to our work.

Here, unlike the IRP, the demand of the final customers is managed by the stores. Each store places

its orders for some periods, and an LSP is responsible to decide about the routings. Depending

on the problem statement, the orders placed by the stores could be deterministic or stochastic.

In most of the papers on MPVRP, the LSP is committed to schedule the delivery quantities to

each store during the planning horizon in such a way that no backlogging of the orders occurs.

In other words, the LSP is usually allowed to advance the orders but postponing is not allowed

Bertazzi and Speranza. The LSP may be charged some penalty for advancing deliveries, but has

no further responsibility about the demand of the final customers. MPVRP formulations which do

not fully respect this classic definition exist in the literature, and our problem could be regarded

as one of them. Similar MPVRPs are defined by Wen et al. (2010) and Albareda-Sambola et al.

(2014), where at the end of each period exact information about the orders placed in that period

and earlier ones is available, but little information about the orders of the following periods is at

hand. In their setting, each order is indexed by a due date and must be served before it. Therefore,

we can say that the existing orders can be advanced or postponed without penalty. Wen et al.

(2010) formulate the problem as an integer linear programming problem and develop a heuristic

method to solve it. Albareda-Sambola et al. (2014) develop a formula to measure the approximate

profit of serving each store in the current period. Then, they formulate a VRP with the objective

function consisting of the profit collection as well as the routing costs, in order to decide which

stores should be served in the current period. Angelelli et al. (2007a) and Angelelli et al. (2007b)

tackle a MPVRP where in each period a set of orders appear which must be served either in that

period or in the next period. In both works, a single uncapacitated vehicle is used, postponement is

treated without being penalized, and there is no information about the upcoming orders in the next

period; hence, advancing does not make sense. Angelelli et al. (2009) analyze a similar problem

where each order could be postponable or not. Hence, unpostponable orders must be served in

period 1, whereas postponable orders can be served either in period 1 or period 2. The authors

consider a limited number of uncapacitated vehicles and develop a heuristic method to solve the

problem. They do not penalize postponement and do not consider advancement.

The big picture represented in Figure 1 could be regarded as an infinite planning horizon IRP

with stochastic demands if demands of the final customers were managed by the LSP. However,

as mentioned in Section 1, we assume that each store has its own inventory control system and

determines its orders based on the demands from the final customers. Thus, we have a DMPVRP

from the LSP’s perspective. We model and solve only a chunk of this problem, i.e., a 2-period

VRP. In this sense, our problem is a MPVRP with deterministic orders, as the LSP plays no role

in determining the order sizes. In other words, in a classic IRP, authors usually assume that the

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
8 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

customer demand is forecasted by the stores, whereas the supplier takes care of managing their

inventories. In our model, we assume that the stores determine their optimal orders, but leave some

flexibility to the LSP to choose its optimal delivery period. So, the LSP does not really manage

the inventory in our model, and its focus is only on transportation costs.

Although at first glance our problem might also be regarded as a specific deterministic MPVRP,

the lion’s share of the existing work in this domain either do not allow postponing at all (Coelho

and Laporte 2013, Bertazzi and Speranza 2012) or, if they do, it is not penalized (Wen et al.

2010, Albareda-Sambola et al. 2014, Angelelli et al. 2007a,b, 2009). An exception is the work by

Abdelmaguid and Dessouky (2006) in which they model and solve a deterministic MRVRP, where

orders can be advanced or postponed (both penalized), but the total delivery quantity to each

store during the planning horizon is fixed (unlike our model). They do not consider time windows

and solve their model by a genetic algorithm.

3. Problem formulation

In the development of our model, we use the following notations. For the sake of reader’s conve-

nience, we will redefine some of them in the course of our discussion.

Table 1 Indices and sets

i, j indices for vertices (stores)
r index for routes
VI set of stores with a positive order for period 1 and no order for period 2
VII set of stores with no order for period 1 and a positive order for period 2
VIII set of stores with positive orders for both periods

V
′
III set of virtual stores associated with the real stores in VIII

V VI ∪VII ∪VIII ∪V
′
III

V + V ∪{0} where vertex 0 denotes the depot
A set of arcs
R1 set of feasible routes in period 1
R2 set of feasible routes in period 2

Consider a graph G= (V +,A) where vertices represent the depot (denoted by 0) and the stores,

and arcs represent transportation links. Products are picked up from the depot and delivered to the

stores. Each route starts and ends at the depot. The total transportation costs over two periods,

including the penalties, should be minimized. The LSP has access to an unlimited homogeneous

fleet with a given capacity for each vehicle. When it is used, each vehicle incurs a fixed cost per

period f . It also incurs a variable cost equal to cij when it traverses the arc (i, j). Each vehicle

can perform at most one single route per period within a limited time (time window of the depot).

Split deliveries within a period are not allowed, i.e., in each period each store is served by at most

one vehicle.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 9

Table 2 Parameters

di1 order of store i for period 1
di2 order of store i for period 2

d
′
i1 order of store i for period 1 if it is not served in period 2, i.e., if its order is advanced

d
′
i2 order of store i for period 2 if it is not served in period 1, i.e., if its order is postponed

∆i postponement penalty imposed by store i

∆
′
i advancement penalty imposed by store i

n1 number of stores in set VI

n2 number of stores in set VII

n3 number of stores in set VIII

n total number of stores including virtual stores (n= n1 +n2 + 2n3)
cij cost of using arc (i, j)
f fixed cost of using a vehicle per period
αir 1 if store i belongs to route r; 0 otherwise.
gi 1 if order of store i can be postponed; 0 otherwise.

g
′
i 1 if order of store i can be advanced; 0 otherwise.

Table 3 Decision variables

ur1 1 if route r ∈R1 is used in period 1; 0 otherwise.
ur2 1 if route r ∈R2 is used in period 2; 0 otherwise.

Define di1 and di2 as the orders of store i in periods 1 and 2, respectively. Without loss of

generality, we assume that each store has a positive order at least in one period. If we look at

Figure 2, we can distinguish three classes of stores. Any store i in class VI has a positive order di1

for period 1 but a zero order for period 2. If the LSP decides not to deliver to store i in period

1 (postponing), then it must deliver d
′
i2 > 0 in period 2, where d

′
i2 could be smaller than, equal

to, or greater than di1. Indeed, the decision to deliver zero in period 1 and d
′
i2 in period 2 is an

alternative decision. However, the LSP is charged a penalty ∆i for making this alternative decision

(postponing). Similarly, a store i in class VII has no order for period 1 but a positive order di2

for period 2. The alternative decision (advancing) for the LSP is to deliver quantities d
′
i1 > 0 and

zero in periods 1 and 2, respectively. Here again, d
′
i1 could be different from di2, and the LSP

is charged a penalty ∆
′
i for advancing the order. Finally, class VIII includes stores with positive

orders di1 and di2 for both periods. In this class, two alternative decisions can be made for each

store. The first alternative decision (postponing) is to deliver quantity zero and d
′
i2 > 0 in periods

1 and 2, respectively. The second alternative decision (advancing) is to deliver d
′
i1 > 0 and zero in

periods 1 and 2, respectively. Neither d
′
i1 nor d

′
i2 needs to be equal to di1 + di2. Penalties ∆i and

∆
′
i are considered for postponing and advancing, respectively. Table 4 shows all three classes and

the possible decisions regarding delivery quantities for each class.

If some store i ∈ VI is served in period 1, it implies that the initial decision is made for this

store and the delivery quantities to this store in periods 1 and 2 are di1 and zero, respectively.

On the other hand, if the LSP decides to serve store i ∈ VI in period 2, then it has made the

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
10 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

Table 4 Three different classees of stores

Initial decision Alternative dec. 1 Alternative dec. 2
Class del.1 del.2 pen. del.1 del.2 pen. del.1 del.2 pen.

VI di1 0 0 0 d
′
i2 ∆i — — —

VII 0 di2 0 d
′
i1 0 ∆

′
i — — —

VIII di1 di2 0 0 d
′
i2 ∆i d

′
i1 0 ∆

′
i

alternative decision with delivery quantities zero and d
′
i2. A similar reasoning applied for stores

i∈ VII . However, this reasoning fails for a store i∈ VIII . Indeed, if store i∈ VIII is served in period

1, the size of the delivery quantity to this store in period 1 is not immediately known. Nor is

the size of the delivery quantity to it in period 2. It only appears, from Table 4, that the LSP

has made either the initial decision with delivery quantities di1 and di2 in periods 1 and 2, or the

second alternative decision with delivery quantities d
′
i1 and zero in periods 1 and 2. Similarly, if

some store i ∈ VIII is served in period 2, then it implies that the LSP has made either the initial

decision with delivery quantities di1 and di2 in periods 1 and 2, or the first alternative decision

with delivery quantities zero and d
′
i2 in periods 1 and 2. As we consider capacitated vehicles in

our model, in either period we have to know one specific delivery quantity to each store, and

consequently determine the vehicle load for each route. But, such specific values are not known for

stores i∈ VIII .

To resolve this ambiguity, we assume from now on that if store i ∈ VIII is visited in period

1 (respectively, period 2), then its delivery quantity in period 1 (respectively, period 2) is di1

(respectively, di2). Furthermore,, we define a virtual store i+ n3 corresponding to store i ∈ VIII

with orders (d
′
i1 − di1) and (d

′
i2 − di2) for periods 1 and 2, respectively; these quantities could be

negative. The cost of going from store i ∈ VIII to its corresponding virtual store j is zero, i.e.

cj−n3,j = 0 for every j ∈ V ′III . More generally, the costs of the links from real stores to virtual stores

are represented by Equation (1). The costs from virtual stores to real stores are represented by

Equation (2).

cij =

{
0 j ∈ V ′III , i= j−n3,

∞ j ∈ V ′III , i 6= j−n3.
(1)

cij = ci−n3,j i∈ V
′

III , j ∈ VI ∪VII ∪VIII (2)

According to our settings, a store i ∈ VI ∪ VII must be served in either period 1 or period 2, a

store i∈ VIII can be served in period 1 or period 2 or both periods, and a virtual store i∈ V ′III can

be served in period 1 or period 2 or neither period. Moreover, a virtual store i∈ V ′III can be served

in period 1 (respectively, period 2) only if its associated real store i ∈ VIII is served in period 1

(respectively, period 2), by definition of the cost coefficients in Equations (1) and (2). Serving a

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 11

virtual store in period 1 implies that advancing has happened, i.e., the second alternative decision

is made. In this case, since in any solution a virtual store i+ n3 can only succeed its associated

real store i ∈ VIII , it also implies that the actual delivery quantity to the real store in period 1 is

di1 +(d
′
i1−di1) = d

′
i1. On the other hand, if a virtual store is served in period 2, then postponing has

happened, i.e., the first alternative decision is made. In this case, the only observation that matters

is that when a vehicle visits stores i ∈ VIII and i+ n3, it must carry the total delivery quantity

di2 +(d
′
i2−di2) = d

′
i2 to the real store in period 2. If a virtual store is served in neither period, then

the initial decision is made by the LSP. We can also say that if a real store is served in period 1(2),

then its associated virtual store in period 2(1) must not be served because postponing(advancing)

has not happened. The exploitation of virtual stores and the aforementioned setting leads to a

model where the delivery quantity to any store i∈ V in a given period is known when a route visits

i in this period.

The role of parameters gi and g
′
i is to enforce the model to serve any store i in its requested

period, should postponing or advancing its order not be possible due, for instance, to its desired

service level or to its limited capacity. Based on such restrictions, the LSP may be obliged to satisfy

the orders of some stores exactly in the requested period.

3.1. Master problem

Our problem is obviously NP-hard since it generalizes the VRP. We can formulate it as an ILP

problem where the decision variables correspond to feasible routes. By defining R1 and R2 as the

set of feasible routes in periods 1 and 2, the ILP problem is formulated as follows.

min
∑
r∈R1

(f +
∑

(i,j)∈r

cij)ur1 +
∑
r∈R2

(f +
∑

(i,j)∈r

cij)ur2

+
∑
i∈VI

∆i(
∑
r∈R2

αirur2) +
∑
i∈VII

∆
′

i(
∑
r∈R1

αirur1)

+
∑

i∈VIII

∆i(
∑
r∈R2

αi+n3,rur2) +
∑

i∈VIII

∆
′

i(
∑
r∈R1

αi+n3,rur1)

subject to

(3)

∑
r∈R1

αirur1 +
∑
r∈R2

αirur2 = 1; ∀i∈ VI , (dual variable: β) (4)

∑
r∈R1

αirur1 +
∑
r∈R2

αirur2 = 1; ∀i∈ VII , (dual variable: γ) (5)

∑
r∈R1

αirur1 +
∑
r∈R2

αi+n3,rur2 = 1; ∀i∈ VIII , (dual variable: λ) (6)

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
12 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

∑
r∈R1

αi+n3,rur1 +
∑
r∈R2

αirur2 = 1; ∀i∈ VIII , (dual variable: µ) (7)

∑
r∈R1

αirur1 ≥ 1− gi; ∀i∈ VI ∪VIII , (dual variable: θ) (8)

∑
r∈R2

αirur2 ≥ 1− g
′

i; ∀i∈ VII ∪VIII , (dual variable: π) (9)

ur1 ∈ {0,1}; ∀r ∈R1 (10)

ur2 ∈ {0,1}; ∀r ∈R2 (11)

The objective function (3) consists of fixed and variable costs of each route in both periods, post-

ponement penalty for any store in class VI if a selected route in period 2 includes it, advancement

penalty for any store in class VII if it is included in a selected route in period 1, postponement

penalty for any store in class VIII if a selected route includes its associated virtual store in period

2, and advancement penalty for any store in class VIII if its associated virtual store is included

in a selected route in period 1. Constraints (4) guarantee that every store in VI is served either

in period 1 or in period 2. Constraints (5) do the same for stores in VII . Constraints (6) impose

that if any store in class VIII is served in period 1, then its associated virtual store is not served

in period 2 (postponement has not happened), and conversely. Constraints (7) are interpreted in

the same way by considering advancement, i.e., if a store in VIII is served in period 2, then its

associated virtual store is not served in period 1 (advancement has not happened), and conversely.

Constraints (8) express that if gi = 0, then store i must be served in period 1. Similarly, constraints

(9) express that the order of store i cannot be advanced when g
′
i = 0. Finally, constraints (10)-(11)

define the binary variables.

To shed further light on the concept of the virtual stores, suppose that we select a solution

of model (3)-(11) such that αi+n3,sus1 = 1 for some route s ∈R1, i.e.,
∑

r∈R1
αi+n3,rur1 = 1. Since

route s necessarily includes store i, it must be the case that αisus1 = 1. In view of constraint (6),

this implies in turn that αi+n3,rur2 = 0 for all routes r ∈R2, i.e.,
∑

r∈R2
αi+n3,rur2 = 0. Moreover,

in view of constraint (7), we also find that αirur2 = 0 for all routes r ∈R2, i.e.,
∑

r∈R2
αirur2 = 0.

The interpretation is that, if some route includes i+n3 in period 1 (meaning that the quantity d
′
i1

is delivered to store i in period 1), then necessarily vertices i and i+ n3 are not included in any

route in period 2 (meaning that no delivery is made to store i in period 2). Symmetrically, it can

be checked that if the quantity d
′
i2 is delivered to store i in period 2, then no delivery to this store

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 13

can take place in period 1. This shows that any feasible solution of model (3)-(11) is consistent

with the definition of sets VIII and V
′
III .

The LP relaxation of problem (3)-(11) is viewed as a master problem that can be solved by

column generation (Lubbecke and Desrosiers 2005, Dabia et al. 2013). In the next sub-section,

we formulate two pricing subproblems to generate feasible routes in periods 1 and 2. The pricing

problems are Elementary Shortest Path Problems with Resource Constraints (ESPPRC). We do

not need to consider constraints (8)-(9) in the master problem provided that we respect them

during column generation: If gi = 0 for some store i∈ VI (respectively, i∈ VIII), we never generate

any route in period 2 that includes store i (respectively, store i+n3). Similarly, if g
′
i = 0 for some

store i ∈ VII (respectively, i ∈ VIII), then we never generate any route in period 1 that includes

store i (respectively, i+ n3). By following this strategy, we neither need to consider constraints

(8)-(9) in the master problem nor do we need them in the pricing problems.

3.2. Pricing problems

In order to solve the master problem, we set a pricing problem for each period as an ESPPRC

(Irnich and Desaulniers 2005). Each solution in the ESPPRC is a route which starts and ends

at the depot while including a subset of the vertices, and respecting the side constraints related

to the vehicle load and time windows. The settings are done in such a way that the cost of a

route (solution) in the ESPPRC is equivalent to the reduced cost of the same route in the master

problem. Feasibility of a route in the ESPPRC implies that it is feasible in the master problem, too.

Each solution of the ESPPRC in period 1 or 2 with a negative cost (not necessarily the optimal

solution) can be introduced in the master problem in the next iteration. We stop when neither the

ESPPRC in period 1 nor the ESPPRC in period 2 is able to identify any route with a negative

cost.

Based on the dual prices obtained in the optimal solution of the restricted master problem,

the reduced cost of a route r in period 1 or 2 is calculated as (f +
∑

(i,j)∈r c
′
ij), where the cost

coefficients c
′
ij’s for periods 1 and 2 are calculated based on Equations (12) and (13), respectively,

with ∆0 = 0, and β0 = 0.

c
′

ij =


cij −βj; ∀i∈ V +, j ∈ V +

I \{i}
cij + ∆

′
j − γj; ∀i∈ V +, j ∈ VII\{i}

cij −λj; ∀i∈ V +, j ∈ VIII\{i}
cij + ∆

′
j−n3
−µj−n3

; ∀i∈ V +, j ∈ V ′III\{i}

(12)

c
′

ij =


cij + ∆j −βj; ∀i∈ V +, j ∈ V +

I \{i}
cij − γj; ∀i∈ V +, j ∈ VII\{i}
cij −µj; ∀i∈ V +, j ∈ VIII\{i}
cij + ∆

′
j−n3
−λj−n3

; ∀i∈ V +, j ∈ V ′III\{i}

(13)

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
14 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

By using the c
′
ij’s in periods 1 and 2, we set an independent network for each period. In each

network, we seek the feasible routes with negative costs, i.e., the feasible routes which have negative

reduced costs in the master problem. A route is feasible if (1) the total delivery quantity in the

route does not exceed the vehicle capacity, (2) it respects the time windows, and (3) it starts and

ends at the depot and visits each vertex at most once (elementarity).

3.3. The label-setting algorithm

The label-setting algorithm is used to identify new routes with negative reduced costs in each

iteration of the column generation. As long as min(f+
∑

(i,j)∈r c
′
ij) in either period is negative there

exists a route which is able to potentially improve the objective function of the master problem.

Note that if no route with a negative reduced cost in period 1 is found in iteration k, but the

ESPPRC for period 2 introduces a new route with a negative reduced cost, in the next iteration we

have to solve again the ESPPRC for both periods. In other words, we have to solve two ESPPRCs

in each iteration regardless of whether we succeed to find any route in period 1 or 2 in the previous

iteration. The stopping condition is that we do not find any route with a negative reduced cost

neither for period 1 nor for period 2.

In the label-setting algorithm, each route is represented by a multi-dimensional label which is

further expanded to create bigger routes. In order to exploit a label-setting algorithm, we define

some parameters and decision variables represented in Tables 5 and 6, respectively.

Table 5 Parameters of the label-setting algorithm

Q capacity of each vehicle
tij travel time to traverse arc (i, j)
si service time in store i
(ei, li) time window to visit store i

Table 6 Decision variables of the label-setting algorithm

zi 1 if store i is included in the generated route; 0 otherwise.
vij 1 if arc (i, j) in used in the generated route; 0 otherwise.
Ti start time of service at store i
Pij load on the vehicle when it traverses arc (i, j)

The first resource constraint which must be taken into account is the vehicle capacity Q. When

generating a route, the load on the vehicle which is used in that route must not exceed the vehicle

capacity. To this end, we must know the delivery quantity to each store that the vehicle visits.

Table 7 summarizes the positive deliveries to each store in each period. As an example, if a route

in period 2 includes a store i∈ VI then the delivery quantity to this store must be d
′
i2. If a solution

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 15

Table 7 Positive delivery quantities in periods 1 and 2

Class del.1 del.2
VI di1 d

′
i2

VII d
′
i1 di2

VIII di1 di2
V
′
III (d

′
i−n3,1

− di−n3,1) (d
′
i−n3,2

− di−n3,2)

of the master problem includes no route containing i∈ VI in period 2, this means that the delivery

quantity in period 2 to this store is zero in this solution.

When a route includes arc (i, j), i.e., when vij = 1, the vehicle load while traversing arc (i, j)

must respect the vehicle capacity. This is expressed by inequality (14).

Pij ≤ vijQ; ∀i, j ∈ V + (14)

By taking Table 7 into consideration, the Pij’s are calculated based on Equation (15), where

d01 = 0, if a route is generated in period 1. Similarly, the Pij’s are calculated based on Equation

(16), where d
′
02 = 0, if a route is generated in period 2.

Pij =


∑

j∈V + Pji + di1zi; ∀i∈ V +, j ∈ V +
I \{i}∑

j∈V + Pji + d
′
i1zi; ∀i∈ V +, j ∈ VII\{i}∑

j∈V + Pji + di1zi; ∀i∈ V +, j ∈ VIII\{i}∑
j∈V + Pji + (d

′
i−n3,1

− di−n3,1)zi; ∀i∈ V +, j ∈ V ′III\{i}

(15)

Pij =


∑

j∈V + Pji + d
′
i2zi; ∀i∈ V +, j ∈ V +

I \{i}∑
j∈V + Pji + di2zi; ∀i∈ V +, j ∈ VII\{i}∑
j∈V + Pji + di2zi; ∀i∈ V +, j ∈ VIII\{i}∑
j∈V + Pji + (d

′
i−n3,2

− di−n3,2)zi; ∀i∈ V +, j ∈ V +
III\{i}

(16)

The second constraint is the service start time at each store, which must respect the associated

time window, i.e.,

ei ≤ Ti ≤ li; ∀i∈ V + (17)

We calculate Ti’s based on Equation (18), where s0 = 0:

Ti = max
j∈V +
{ei, vji(Tj + sj + tji)}; ∀i∈ V +. (18)

Finally, as the third constraint, the elementarity of each route must be respected. We do it by

introducing a vector of resources I = (1,1, . . . ,1). All elements of I are initially zero. The ith element

of I is set to 1 when the route visits store i. This resource guarantees that in every generated route

each store is visited at most once (Gutierrez-Jarpa et al. 2010, Irnich and Desaulniers 2005).

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
16 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

Since the label-setting algorithm is well-known in the literature (Irnich and Desaulniers 2005)

we avoid further details. The classic version of the label-setting algorithm is not very efficient. In

order to accelerate computations in this algorithm, some advanced concepts such as domination

rules (Gutierrez-Jarpa et al. 2010), elementarity relaxation (Boland et al. 2006, Desaulniers et al.

2008, Righini and Salani 2008), and inaccessible vertices (Feillet et al. 2004) have been introduced.

We use these techniques to improve the efficiency of our label-setting algorithm.

4. Implementation

In order to have an efficient branch-and-price algorithm in terms of computation time, we imple-

ment a number of different techniques. Such techniques are partly associated with the column

generation and partly related to the branch-and-bound algorithm. In this section, we briefly discuss

the techniques, but deal with route generation in more detail since it is not explicitly explained in

the literature.

4.1. Lower bounding and upper bounding

During the course of branch-and-price we need to solve an LP relaxation via column generation

in each node. In the root node we solve the LP relaxation of problem (3)-(11) to obtain an initial

Global Lower Bound (GLB), which is progressively updated by setting it equal to the lowest LP

relaxation value among all nodes which are not pruned. As in every minimization problem, the role

of a GLB is to terminate branching when the value of a best feasible solution, i.e., the Global Upper

Bound (GUB), is close enough to it. In addition to the GLB, we consider a Tentative Local Lower

Bound (TLLB) in each node. By a node’s TLLB we mean a lower bound on the LP relaxation

value (and hence, on the IP value) in that node. The TLLB in each node is set to the optimal

value of the objective function in its father node’s LP relaxation. We exploit these TLLBs in the

following way. When the LP relaxation is solved in a specific node through column generation, it

may happen that, due to degeneracy, new routes with negative reduced costs can still be found

even though the optimal value has been reached. The TLLBs help us to avoid such degenerate

iterations in the nodes where the optimal value of the LP relaxation is equal to the TLLB. It turns

out that such nodes are abundant.

We need a GUB during the branching procedure so that we can close any node in which the

associated LP relaxation value exceeds the GUB. In order to obtain an initial GUB, we compute

as follows a feasible integral solution of problem (3)-(11). We use the savings algorithm (Clarke

and Wright 1964, Paessens 1988) to determine a feasible VRP solution for period 1 that includes

all stores i ∈ VI ∪ VIII . Similarly, we use the algorithm to determine a feasible VRP solution for

period 2 over all stores i ∈ VII ∪ VIII . These two independent VRP solutions yield a GUB which

is updated whenever a better feasible solution is obtained. Besides the classic way to improve the

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 17

GUB when a better integer solution is found at the end of column generation in each node, we have

tested two additional ideas to possibly improve the GUB. First, we record the objective function

value for any integer solution we may find during the course of column generation, and we use it

to improve the current GUB when possible. Note that in a node, we may encounter some integer

solutions during the course of column generation which are better than the GUB at hand, while

the optimal solution of the LP relaxation in this node is not integer. Investigating every solution

to check whether it is integer takes some time, but it may improve the GUB and decrease the

total computation time. Second, in each node we consider the formulation of the master problem

obtained at the end of column generation, and we solve this formulation as an ILP problem, using

CPlex. Since this ILP problem only contains a restricted subset of routes, its optimal solution

provides a heuristic solution (and hence, an upper bound) for the complete formulation (3)-(11).

Again, this is computationally time consuming, but may improve the upper bound and decrease

the total computation time. We will describe the results of these tests in Section 5.

4.2. Branching

As suggested in the literature (Gutierrez-Jarpa et al. 2010), we branch on arcs even though decision

variables in the master problem are routes. Indeed, fixing a route variable to zero complicates

the solution process. As proposed by many authors, based on the values of routes in the master

problem the value of arc (i, j) is calculated as follows:

x
(1)
ij =

∑
r∈R1:(i,j)∈r

ur1 (19)

x
(2)
ij =

∑
r∈R2:(i,j)∈r

ur2 (20)

When the optimal solution of the LP relaxation in some node is not integral we calculate x
(1)
ij

and x
(2)
ij using Equations (19) and (20). Then, among all non-integral values x

(1)
ij , i, j ∈ V , and

x
(2)
ij , i, j ∈ V , we branch on the variable with value closest to 1. During the course of branching

we do not branch on any arc (0, j), nor on any arc (i,0), as we will automatically obtain integral

values for these arcs at the end. Here, we discuss the relation between the arcs we have already

branched on and the routes we should keep in the master problem. By setting an arc (i, j) to 0 in

period 1 we must eliminate any route in this period that includes arc (i, j). However, setting an

arc to 1 needs more work. Indeed, when we set arc (i, j) to 1, many other arcs can be set to 0 as a

direct consequence. Depending on the class to which stores i and j belong we can specify the arcs

to be set to 0.

Example

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
18 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

Consider Figure 2 where VI = {1,2,3,4,5,6}, VII = {7,8}, and VIII = {9} and neglect the current

routes. If somewhere in the branching tree we branch on arc (3,9) in period 1 and set x
(1)
39 = 1.

Then, we can conclude that:

• x(1)
93 = 0 as we cannot simultaneously use arcs (3,9) and (9,3) in the same period in a solution,

• x(1)

3j
′ = 0, ∀j′ ∈ V +\{9} as the outgoing flow in period 1 from store 3 must be towards store 9,

• x(1)

i
′
9

= 0, ∀i′ ∈ V +\{3} as the ingoing flow in period 1 to store 9 must be from store 3,

• x(2)

3j
′ = 0, ∀j′ ∈ V + and x

(2)

i
′
3

= 0, ∀i′ ∈ V + as store 3 ∈ VI and when it is served in period 1, it

cannot be served in period 2,

• x(2)

99
′ = 0 and x

(2)

9
′
j
′ = 0, ∀j′ ∈ V + as store 9∈ VIII and when it is served in period 1, its virtual

store cannot be served in period 2 (postponing has not happened).

The necessary instructions in the general case are summarized in Tables 8 and 9. For example,

suppose that we branch on arc (i, j) in period 1 and set x
(1)
ij equal to 1, where i, j ∈ VIII . According

to Table 8, actions 1-3,6,7,10,13,14 must be taken. These actions are represented in Table 9. Hence,

in the corresponding child node we must have at least one route in period 1 that includes arc (i, j),

i.e., action 1. Moreover, we must eliminate any route in period 1 which includes any of the arcs

impacted by actions 2,3,10, and eliminate any route in period 2 which includes any of the arcs

impacted by actions 6,7,13,14. Note that the instructions in Tables 8 and 9 pertain to branching

on arc (i, j) in period 1. A similar procedure applies when the branching period is 2.

Table 8 Branching on arc (i, j) in period 1: x(1)
ij = 1

j ∈ VI ∪VII j ∈ VIII j ∈ V ′III
i∈ VI ∪VII 1-5,10-12 1-5,10,13,14 —
i∈ VIII 1-3,6,7,10-12 1-3,6,7,10,13,14 1-3,6,7,10,15,16

i∈ V ′III 1-3,8,9,10-12 1-3,8,9,10,13,14 —

We have tested both a breadth-first strategy and a depth-first strategy to explore the nodes of the

branching tree. There was no overall significant difference between the efficiency of these strategies

in our test instances. Our computational results are based upon the breadth-first strategy.

4.3. Route generation

In each node, a set of initial routes should be introduced in the master problem to guarantee

feasibility of the corresponding LP relaxation problem. Then, new routes are introduced in the

master problem by the column generation procedure until we reach optimality of the LP relaxation.

These new routes must be compatible with the status of the node in terms of the earlier branching

decisions, where the status of a node consists of a set of arcs with value fixed to 1 and a set of

arcs with value fixed to 0 for each period. The classic way in the literature to generate new routes

in any node (Gutierrez-Jarpa et al. 2010) is considered as part of the label-setting algorithm, and

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 19

Table 9 Setting the values of different arcs

Action

1 x
(1)
ij = 1

2 x
(1)
ji = 0

3 x
(1)

ij
′ = 0, ∀j′ ∈ V +\{j}

4 x
(2)

i
′
i

= 0, ∀i′ ∈ V +

5 x
(2)

ij
′ = 0; ∀j′ ∈ V +

6 x
(2)

i
′
,i+n3

= 0, ∀i′ ∈ V +

7 x
(2)

i+n3,j
′ = 0, ∀j′ ∈ V +

8 x
(2)

i
′
,i−n3

= 0, ∀i′ ∈ V +

9 x
(2)

i−n3,j
′ = 0, ∀j′ ∈ V +

10 x
(1)

i
′
j

= 0, ∀i′ ∈ V +\{i}
11 x

(2)

i
′
j

= 0, ∀i′ ∈ V +

12 x
(2)

jj
′ = 0, ∀j′ ∈ V +

13 x
(2)

i
′
,j+n3

= 0, ∀i′ ∈ V +

14 x
(2)

j+n3,j
′ = 0, ∀j′ ∈ V +

15 x
(2)

i
′
,j−n3

= 0, ∀i′ ∈ V +

16 x
(2)

j−n3,j
′ = 0, ∀j′ ∈ V +

works as follows. First, single-vertex paths from the depot, i.e., 0− i, ∀i∈ V , are built. Then, these

paths are further extended to two-vertex paths, i.e., 0− i− j, ∀i, j ∈ V . A path is discarded if it

does not respect some of the resource constraints. Otherwise, its corresponding route is considered:

the route that corresponds to path 0− i− j − k, for example, is 0− i− j − k− 0. It can be added

to the set of routes in the master problem provided that it respects all resource constraints, is

compatible with the status of the node, and has a negative reduced cost. Unlike the classic way

to generate new routes, we generate only those routes which are compatible with the status of the

node. In the sequel, we explain in more detail how we provide an initial feasible solution for the

master problem in each node and how we generate new compatible routes.

4.3.1. Initial routes must guarantee feasibility

Initial routes in any node are of two distinct types: (1) seed routes that guarantee feasibility, (2)

auxiliary routes that provide an additional set of good routes.

In the root node:

— Seed routes for period 1 are 0− i− 0 for all i∈ VI ∪VIII as well as for any i∈ VII such that

g
′
i = 1. Seed routes for period 2 are 0− i− 0 for all i∈ VII ∪VIII as well as for any i∈ VI such that

gi = 1.

— Auxiliary routes are the routes determined by the savings algorithm.

In any child node where we set the value of a new arc equal to 0:

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
20 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

— Seed routes are exactly the same seed routes as in its father node.

— Auxiliary routes are all routes included in the master problem of its father node at the end

of column generation, provided that they are compatible with the new branch. In other words, if

we branch on arc (i, j) in period 1 in this child node and we set x
(1)
ij = 0, then those routes from

the father node in period 1 that include arc (i, j) are discarded and the remaining ones are kept.

In this example, all routes from the father node in period 2 are kept, too.

In any child node where we set the value of a new arc equal to 1:

— Seed routes are exactly the same seed routes as in its father node except that two seed

routes merge in the corresponding period and one or two seed routes are discarded from the other

period.

Example

Consider Figure 2 where VI = {1,2,3,4,5,6}, VII = {7,8}, and VIII = {9} and neglect the current

routes. Let us assume that postponing and advancing are allowed for all stores. The set of routes

in the root node is S0 = {0−1−0, 0−2−0, 0−3−0, 0−4−0, 0−5−0, 0−6−0, 0−7−0, 0−

8−0, 0−9−0} in period 1 and in period 2. If we branch on arc (7,2) in period 1 and set its value

to 1, i.e., x
(1)
72 = 1, then the seed sets in periods 1 and 2 are S1 = {0− 1− 0, 0− 7− 2− 0, 0− 3−

0, 0− 4− 0, 0− 5− 0, 0− 6− 0, 0− 8− 0, 0− 9− 0} and S2 = {0− 1− 0, 0− 3− 0, 0− 4− 0, 0−

5−0, 0−6−0, 0−8−0, 0−9−0}, respectively. We have discarded routes 0−2−0 and 0−7−0

from seed routes in period 2 because x
(1)
72 = 1 implies that stores 7 and 2 are served in period 1; we

know that 7∈ VII , 2∈ VI , and every i∈ VI ∪VII is served either in period 1 or in period 2, and not

in both periods. Now, let us consider this newly created node as a father node with seed sets S1

and S2 in periods 1 and 2, respectively. If we branch on x
(2)
59 = 1 the seed routes for the child node

in periods 1 and 2 are {0− 1− 0, 0− 7− 2− 0, 0− 3− 0, 0− 4− 0, 0− 6− 0, 0− 8− 0, 0− 9− 0}

and {0− 1− 0, 0− 3− 0, 0− 4− 0, 0− 5− 9− 0, 0− 6− 0, 0− 8− 0}, respectively. Note that

routes 0− 5− 0 and 0− 9− 0 in period 2 merge and route 0− 5− 0 is discarded from the seed

routes in period 1 because 5 ∈ VI is served in one period only. However, route 0− 9− 0 remains

in the seed routes in period 1 because store 9 ∈ VIII can be served in both periods. Again, if we

consider this new node as a father node and branch on x
(2)

99
′ = 1, the seed routes for the child node

in periods 1 and 2 are {0− 1− 0, 0− 7− 2− 0, 0− 3− 0, 0− 4− 0, 0− 6− 0, 0− 8− 0} and

{0− 1− 0, 0− 3− 0, 0− 4− 0, 0− 5− 9− 9
′ − 0, 0− 6− 0, 0− 8− 0}, respectively. In this child

node, seed route 0− 9− 0 is discarded from period 1 because serving store 9
′

in period 2 implies

that the order of store 9 is postponed; so, it is not served in period 1 anymore.

— Auxiliary routes are all routes we eventually have in the master problem of the father node

provided that they are compatible with the new branch. In other words, if we branch on arc (i, j)

in period 1 in this child node and we set x
(1)
ij = 1, then based on Tables 8 and 9 the appropriate

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 21

actions are taken to discard a set of routes and the remaining routes from the father node are kept.

Clearly, all routes from the father node in period 2 are kept, too.

4.3.2. Every generated route must be compatible

Once we have correctly specified seed routes as well as auxiliary routes in a node we can solve the

first restricted master problem in the node, obtain dual variables, and solve two ESPPRCs whereby

we can generate new routes in each period. The interesting point is that all possible compatible

routes can be created from the seed routes. Two seed routes 0− i− j − k − 0 and 0− i′ − j′ − 0

in period 1, for example, can be combined to build new routes 0 − i − j − k − i′ − j′ − 0 and

0− i′ − j′ − i− j−k−0. These seed routes imply that x
(1)
ij = x

(1)
jk = x

(1)

i
′
j
′ = 1 in the associated node.

A new generated route is not compatible if it includes only part of the sequence i− j− k.

Example

In order to explain how all possible compatible routes are generated from the seed routes let us

consider a node at level 8 of the branching tree; see Figure 4.

Period 1 Period 2

3

6

8

5

4

7

2

1

9

d'71
d11

d21

d31

d61

d91

d'81

d51

d41

d'91-d91

9'

3

6

8

5

4

7

2

1

9

d72
d'12

d'22

d'32

d'62

d92

d82

d'52

d'42

d'92-d92

9'

Figure 4 A node at level 8 of the branching tree.

Obviously, at this level we have already branched on 8 arcs, starting from the root node down-

stream to this node. Some of these arcs are set to 1, as represented with solid arcs in Figure 4,

and the others are set to 0, as represented with dashed arcs. However, in this node, arcs (2,6) in

period 1 and (6,1) in period 2 are not the only arcs with value forced to 0. As explained before,

by setting an arc equal to 1 in period 1, for example, some other arcs in periods 1 and 2 must be

set equal to 0. Figure 5 shows the status of this node in terms of arc values.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
22 Article submitted to ; manuscript no. (Please, provide the mansucript number!)



0 1 2 3 4 5 6 7 8 9 9
′

0 0 − 0 0 0 0 − 0 − 0 0
1 0 0 0 0 0 0 0 1 0 0 0
2 − 0 0 0 0 0 0 0 − 0 0
3 − − 0 0 0 0 − 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 − − 0 0 0 0 0 0 − 0 0
7 0 0 1 0 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0
9
′

0 0 0 0 0 0 0 0 0 0 0





0 1 2 3 4 5 6 7 8 9 9
′

0 0 0 0 0 0 − − 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 1 0
6 − 0 0 0 0 − 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1
9
′

0 0 0 0 0 0 − 0 0 0 0



Figure 5 Status of a node.

By considering the solid arcs and the fact that VI = {1,2,3,4,5,6}, VII = {7,8}, and VIII = {9},
it is not difficult to verify that the seed routes in periods 1 and 2 are {0−1−7−2−0, 0−8−4−3−
0, 0−6−0} and {0−5−9−9

′−0, 0−6−0}, respectively. A compatible route in period 1 must not

include any arc set to 0 in the left side matrix in Figure 5. All possible compatible routes in period

1 can be generated by combination of two or more seed routes in period 1, provided that connecting

the conjunctive stores in each combination is admissible in terms of the arcs we have branched and

fixed to 0, i.e., x
(1)
26 . By this method we do not need to check that the generated route does not

include any arc with value 0 in the left side matrix. In other words, if any combined route includes

arc (2,6), it is not admissible; otherwise it is. If it is not admissible or if the generated route is not

feasible in terms of time windows or vehicle load we discard the generated route and continue with

other combinations. So, the first group of generated routes are {0−1−7−2−8−4−3−0, 0−8−
4−3−1−7−2−0, 0−8−4−3−6−0, 0−6−1−7−2−0, 0−6−8−4−3−0}. As we observe,

combination of {0−1−7−2−0} with {0−6−0} and generating route {0−1−7−2−6−0} is not

admissible, in that connecting conjunctive stores 2 and 6 is not admissible. Then, we continue by

combination of each generated route in this set with one further seed route which does not exist in

its current combination until all seed routes are included in each generated route. Again, we need

to check admissibility of connecting conjunctive vertices as well as feasibility of time windows and

vehicle load. The second group of generated routes are {0− 1− 7− 2− 8− 4− 3− 6− 0, 0− 8−
4− 3− 6− 1− 7− 2− 0, 0− 6− 1− 7− 2− 8− 4− 3− 0, 0− 6− 8− 4− 3− 1− 7− 2− 0}. Again,

{0− 8− 4− 3− 1− 7− 2− 0} cannot be combined with {0− 6− 0} because connecting store 2 to

store 6 is not allowed. These two groups of routes denote all possible compatible routes in period

1 to be considered in the ESPPRC. The compatible routes in period 2 are generated in the same

way.

4.4. Using the last basis

During the course of column generation, when we add a new route (column) to the master problem

in a node, we do not start solving the new master problem from scratch. We can start from the

optimal basis of the master problem in the previous iteration, add the new column, and update

the basis.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 23

4.5. Column management

Classically, in each iteration of column generation we should independently solve a pricing problem

for period 1 and a pricing problem for period 2. In each pricing problem the label-setting algorithm

is used to find a route or a set of routes with negative reduced cost. In each period, we may

stop expanding the routes in the algorithm once we obtain a route with a negative reduced cost.

Alternatively, we could stop when we obtain a pre-specified number of routes with negative reduced

costs or we could capture all of them. Our experience shows that in average the best performance

of the column generation algorithm is obtained when we simultaneously introduce a big bunch

of routes with negative reduced costs, e.g., 1000 routes. Besides adding new routes to the master

problem, some authors consider deleting inefficient routes, in terms of not appearing in the optimal

solution of the master problem during many consecutive iterations, or having a very big positive

reduced cost (Dell’Amico et al. 2006). We do not delete any route except for the sake of guaranteeing

compatibility and feasibility. The reason to keep more routes is that the IP problem we solve at

the end of column generation in each node would have a better chance to improve the upper bound

if it uses more columns.

4.6. Stabilization

Degeneracy is a very common phenomenon when we apply column generation (Lubbecke and

Desrosiers 2005). To decrease the number of degenerate solutions some authors exploit the stabi-

lization techniques. To our knowledge, no absolute superiority of any stabilization technique over

others has been reported yet (Lubbecke and Desrosiers 2005). We used the stabilization technique

introduced by Du Merle et al. (1999). Our test results demonstrate that the efficiency of this tech-

nique highly depends on the number of routes introduced in the master problem in each iteration

of column generation (the bunch size). In case where only a small number of routes are introduced

in the master problem in each iteration, the stabilization technique helps in terms of decreasing

the number of degenerate solutions, and hence the total computation time. On the other hand,

if we introduce many routes in the master problem in each iteration of column generation it is

more likely to capture a new solution and so to avoid degeneracy. Following the discussion in the

previous sub-section about column management, we add many routes (up to 1000) with negative

reduced costs in the master problem in each period, and stabilization did not prove useful in this

framework.

5. Computational results

The branch-and-price algorithm was coded in Java and the instances were run on an Intel Core Duo

processor with 2.8GHz CPU and 4GB RAM. We used ILOG CPLEX 12.4 to solve the restricted

master problems. A time limit of one hour was set for each instance.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
24 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

5.1. Instances

The 100-series instances created by Solomon (1987) were considered for the test problems. These

include randomly distributed stores (R101-R112), clustered stores (C101-C109), and randomly-

clustered stores (RC101-RC108). As in the original instances, capacity of the homogeneous freight

is Q = 200, fixed cost of using each vehicle is zero, Euclidean distances represent the cost cij

of traversing from store i to store j, time windows and service times are considered. The small

instances consist of 30 stores, and 10 stores are included in each class; they are denoted as instances

VI-VII-VIII =10-10-10. This implies that where postponing and advancing are both allowed, we

need to solve two dependent VRPs, each with 30 real stores and 10 virtual stores. The medium

instances are of size 40, and we consider 10, 10, and 20 stores in each class, respectively; these

instances are represented by 10-10-20. By the same reasoning, where advancing and postponing are

both allowed, the main problem consists of two dependent VRPs each with 40 real stores and 20

virtual ones. Finally, the big instances consist of 50 stores with the classification 20-20-10. When

generating the medium and the big instances, we always start from the first store in Solomon

instances. This means, for example, that for medium instances stores 1 to 10 are included in class

VI , stores 11 to 20 are included in class VII , and stores 21 to 40 are included in class VIII ; virtual

stores in this example are numbered from 41 to 60 so that the virtual store i is associated with

the real store i−20. Since all instances in each type (R, C, and RC) of Solomon instances consider

the same location for all stores, e.g. coordinates of store 1 are the same in all instances R101-

R112, we decided to diversify our small instances. We consider stores 1-30 in R101, stores 11-40

in R102, stores 21-50 in R103, ..., and stores 71-100 for instances R108-R112. Hence, the small R

instances are represented in the tables as R101-1, R102-11, R103-21, and so on. We followed the

same diversification strategy for types C and RC instances.

The order size of each store in class VI (VII) in period 1 (period 2) is equal to the corresponding

order size in the original instances and zero in the other period. For the stores in class VIII we

consider the same orders for both periods, each equal to the corresponding order in the original

instances. When we allow postponing, it means that orders of all stores i ∈ VI ∪ VIII can be

postponed, and when advancing is allowed, it implies that orders of all stores i ∈ VII ∪ VIII can

be advanced. We solve each instance twice; once with a positive advancement penalty per unit

and once with a zero advancement penalty. The postponement penalty is twice the advancement

penalty. The positive advancement penalty per unit for type R (respectively, C, and RC) instances

is equal to 2 (respectively, 0.2, and 1).

5.2. Results

The numerical results are presented in Tables 10-12, respectively for instances of types R, C,

and RC. For each instance we have solved three problems; A0P0 in which neither advancing nor

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 25

postponing is allowed, A1P0 in which advancing is allowed but postponing is not, and A1P1 in

which both advancing and postponing are allowed. In the tables, Gapopt. shows the optimality

gap of the best integer solution we find in the branching tree after one hour, i.e., the percentage

deviation between the value of the best GUB and the best GLB available. An absolute zero, 0,

for Gapopt. shows that we have obtained an integer solution in the root node; so, no branching is

performed. A decimal zero, 0.000, for Gapopt. shows that the instance is solved to optimality after

branching; the number of nodes is not reported in the tables. GapIP shows the gap between the

value of the integer solution obtained by solving an IP in the root node and the best GLB (the GLB

available after the instance is solved to optimality or one hour is elapsed). The next columns, Z,

Veh., and Time, show the total costs in both periods, number of vehicles in both periods, and total

time in seconds to solve the instance, respectively. %Z Imp. for problems A1P0 and A1P1 indicates

the percentage improvement of Z in these problems with respect to the value of Z for problem

A0P0. A dash sign (-) indicates instances for which we could not even solve the LP relaxation in

the root node within the time limit.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
26 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

T
a

b
le

1
0

S
m

a
ll,

m
ed

iu
m

a
n

d
la

rg
e

in
st

a
n

ce
s

o
f

ty
p

e
R

A
0
P

0
A

1
P

0
A

1
P

1
In

st
a
n
ce

G
a
p
o
p
t.

G
a
p
I
P

Z
V

eh
.

T
im

e
G

a
p
o
p
t.

G
a
p
I
P

%
Z

Im
p
.

V
eh

.
A

d
v
.

T
im

e
G

a
p
o
p
t.

G
a
p
I
P

%
Z

Im
p
.

V
eh

.
A

d
v
.

P
o
s.

T
im

e

1
0
-1

0
-1

0
R

1
0
1
-1

0
0

9
7
7
.9

1
5

0
0

0
6
.4

1
3

4
0

0
0

6
.7

1
2

4
1

0
R

1
0
2
-1

1
0
.0

0
0

0
.0

2
0

1
0
7
5
.1

1
3

0
0
.0

0
0

0
.0

2
3

1
1
.1

1
1

4
2

0
.0

0
0

0
.0

2
3

1
1
.1

1
1

4
0

3
R

1
0
3
-2

1
0
.0

0
0

0
.0

0
0

9
2
6
.2

1
0

0
0
.0

0
0

0
.0

0
0

6
.7

9
4

5
0
.0

0
0

0
.0

0
0

8
.1

9
3

1
7

R
1
0
4
-3

1
0
.0

0
0

0
.0

1
3

6
9
6
.0

8
5

0
.0

0
0

0
.0

1
6

3
.5

7
4

1
6
8

0
0

8
.6

6
2

1
2
2

R
1
0
5
-4

1
0

0
1
0
8
5
.1

1
2

0
0

0
6
.9

9
8

1
0

0
6
.9

9
8

0
1

R
1
0
6
-5

1
0

0
8
1
1
.5

1
0

0
0

0
3
.7

9
3

1
0

0
3
.7

9
3

0
2

R
1
0
7
-6

1
0

0
7
6
7
.1

8
0

0
.0

0
0

0
.0

0
0

3
.1

8
2

4
1

0
.0

0
0

0
.0

0
0

3
.1

8
2

0
2
1

R
1
0
8
-7

1
0
.0

0
0

0
.0

0
0

4
6
4
.5

6
3
0
4

0
.0

0
9

0
.0

1
0

0
.1

5
3

3
6
0
0

0
.0

0
9

0
.0

1
0

0
.1

5
3

0
3
6
0
0

R
1
0
9
-7

1
0
.0

0
0

0
.0

0
6

4
9
8
.8

6
1

0
.0

0
0

0
.0

0
3

0
.5

6
1

2
9

0
.0

0
0

0
.0

1
5

0
.5

6
1

0
1
8

R
1
1
0
-7

1
0
.0

0
0

0
.0

0
3

5
2
5
.3

7
4

0
0

1
.7

7
1

1
5

0
.0

0
0

0
.0

1
5

1
.7

7
1

0
4
7

R
1
1
1
-7

1
0
.0

0
0

0
.0

0
0

4
7
3
.7

6
1
5

0
.0

0
0

0
.0

0
9

0
.7

6
2

4
2

0
.0

0
0

0
.0

0
3

1
.0

6
1

1
3
8
2

R
1
1
2
-7

1
0
.0

0
0

0
.0

0
9

4
6
0
.4

6
7
7
9

0
.0

2
1

0
.0

3
0

0
.2

6
1

3
6
0
0

0
.0

1
8

0
.0

2
4

0
.9

6
0

1
3
6
0
0

1
0
-1

0
-2

0
R

1
0
1

0
.0

0
0

0
.0

1
2

1
4
3
3
.5

1
8

0
0
.0

0
0

0
.0

0
1

9
.3

1
5

1
0

4
0
.0

0
0

0
.0

0
1

9
.6

1
4

9
2

2
R

1
0
2

0
.0

0
0

0
.0

1
4

1
2
9
8
.8

1
6

1
0

0
1
0
.3

1
4

9
6

0
0

1
0
.6

1
3

5
2

7
R

1
0
3

0
.0

0
0

0
.0

2
9

1
1
2
7
.8

1
3

9
0
.0

0
0

0
.0

0
0

6
.7

1
1

8
4
4
9

0
.0

0
0

0
.0

0
0

8
.1

1
1

7
1

7
3

R
1
0
4

0
.0

0
0

0
.0

0
8

9
3
8
.6

9
6
9

0
.0

0
0

0
.0

1
1

6
.0

7
6

1
9
1
4

0
.0

1
6

0
.0

5
3

5
.0

7
6

0
3
6
0
0

R
1
0
5

0
.0

0
0

0
.0

2
5

1
3
0
5
.3

1
4

3
0
.0

0
0

0
.0

0
2

8
.4

1
2

9
1
9

0
.0

0
0

0
.0

0
2

8
.4

1
2

9
0

2
9

R
1
0
6

0
0

1
1
6
1
.0

1
3

1
0
.0

0
0

0
.0

0
0

7
.4

1
1

7
2
7

0
.0

0
0

0
.0

0
0

7
.4

1
1

7
0

3
2

R
1
0
7

0
0

1
0
3
4
.9

1
1

2
0

0
6
.3

1
0

5
3
3

0
0

6
.3

1
0

5
0

5
4

R
1
0
8

0
.0

0
0

0
.0

0
9

9
0
3
.8

8
9
2

0
.0

0
8

0
.0

1
2

3
.2

8
4

3
6
0
0

0
.0

1
0

0
.0

1
8

4
.5

7
5

0
3
6
0
0

R
1
0
9

0
.0

0
0

0
.0

1
9

1
1
2
6
.2

1
2

9
0
.0

0
0

0
.0

0
0

6
.6

1
0

7
2
8

0
0

6
.9

9
7

1
2
8

R
1
1
0

0
.0

0
0

0
.0

2
3

1
0
2
6
.5

1
0

1
6

0
.0

0
0

0
.0

1
3

4
.7

9
6

2
6
4

0
.0

0
0

0
.0

1
3

4
.7

9
6

0
3
3
2

R
1
1
1

0
.0

0
0

0
.0

4
9

1
0
3
2
.0

1
0

3
8

0
0

6
.0

9
4

4
9

0
0

6
.0

9
4

0
6
3

R
1
1
2

0
0

9
0
7
.4

8
5

0
.0

0
0

0
.0

0
0

3
.4

7
6

2
6
0

0
.0

0
0

0
.0

0
0

3
.4

7
6

0
4
3
2

2
0
-2

0
-1

0
R

1
0
1

0
.0

0
0

0
.0

0
3

1
4
2
2
.2

1
7

1
0
.0

0
0

0
.0

0
2

9
.3

1
6

4
3

0
.0

0
0

0
.0

0
4

9
.6

1
6

4
0

6
R

1
0
2

0
.0

0
0

0
.0

0
2

1
2
4
9
.8

1
5

1
0
.0

0
0

0
.0

0
4

1
0
.3

1
3

4
1
5

0
.0

0
0

0
.0

0
4

1
0
.6

1
3

4
0

2
6

R
1
0
3

0
.0

0
0

0
.0

0
0

1
1
1
3
.8

1
2

3
0
.0

0
0

0
.0

0
0

6
.7

1
1

5
5
3

0
.0

0
0

0
.0

0
0

8
.1

1
1

5
0

4
3

R
1
0
4

0
.0

0
0

0
.0

4
6

8
9
9
.8

9
3
1
3

0
.0

0
3

0
.0

0
3

6
.0

9
2

3
6
0
0

0
.0

1
2

0
.0

2
8

5
.0

9
2

0
3
6
0
0

R
1
0
5

0
.0

0
0

0
.0

0
3

1
2
2
9
.7

1
3

2
0

0
8
.4

1
2

4
3

0
0

8
.4

1
2

4
1

3
R

1
0
6

0
.0

0
0

0
.0

1
6

1
1
2
6
.2

1
1

1
2

0
.0

0
0

0
.0

0
4

7
.4

1
1

3
1
2
8

0
.0

0
0

0
.0

0
0

7
.4

1
1

2
3

7
2

R
1
0
7

0
.0

0
0

0
.0

0
1

1
0
0
1
.1

1
0

2
3

0
.0

0
0

0
.0

0
2

6
.3

1
0

1
6
3
9

0
.0

0
0

0
.0

0
0

6
.3

1
0

1
0

1
3
5
9

R
1
0
8

0
.0

0
0

0
.0

4
6

8
7
6
.1

8
1
7
9

0
.0

0
2

0
.0

2
2

3
.2

8
1

3
6
0
0

0
.0

2
1

0
.0

0
2

4
.5

8
1

0
3
6
0
0

R
1
0
9

0
.0

0
0

0
.0

1
4

1
0
9
3
.6

1
1

7
0
.0

0
0

0
.0

1
6

6
.6

1
0

3
9
6

0
0
.0

2
1

6
.9

1
0

2
1

2
1

R
1
1
0

0
.0

0
0

0
.0

0
6

1
0
0
9
.8

1
0

4
7

0
.0

0
0

0
.0

0
6

4
.7

1
0

2
2
0
3
7

0
.0

0
0

0
.0

1
7

4
.7

1
0

0
2

2
7
0
5

R
1
1
1

0
.0

0
0

0
.0

1
0

1
0
0
2
.5

1
0

6
1

0
.0

0
0

0
.0

0
1

6
.0

9
6

1
3
6
0

0
.0

0
0

0
.0

1
7

6
.0

9
6

0
1
8
7
7

R
1
1
2

0
.0

0
0

0
.0

0
1

8
7
9
.7

8
5
3

0
.0

0
0

0
.0

2
1

3
.4

8
1

1
3
0
0

0
.0

0
0

0
.0

2
5

3
.4

8
1

1
7
5
7

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 27

T
a

b
le

1
1

S
m

a
ll,

m
ed

iu
m

a
n

d
la

rg
e

in
st

a
n

ce
s

o
f

ty
p

e
C

A
0
P

0
A

1
P

0
A

1
P

1
In

st
a
n
ce

G
a
p
o
p
t.

G
a
p
I
P

Z
V

eh
.

T
im

e
G

a
p
o
p
t.

G
a
p
I
P

%
Z

Im
p
.

V
eh

.
A

d
v
.

T
im

e
G

a
p
o
p
t.

G
a
p
I
P

%
Z

Im
p
.

V
eh

.
A

d
v
.

P
o
s.

T
im

e

1
0
-1

0
-1

0
C

1
0
1
-1

0
0

2
9
4
.5

5
0

0
.0

0
0

0
.0

1
9

1
3
.8

4
3

1
3

0
.0

0
0

0
.0

4
9

1
3
.8

4
3

0
1
4

C
1
0
2
-1

1
0

0
4
7
0
.9

6
0

0
.0

0
0

0
.0

0
0

8
.3

5
1

8
4

0
.0

0
0

0
.0

1
8

9
.6

5
1

1
2
5
0

C
1
0
3
-2

1
0

0
2
6
5
.7

4
2

0
.0

7
3

0
.2

0
9

0
.0

4
0

3
6
0
0

0
.0

8
0

0
.0

8
4

0
.0

4
0

0
3
6
0
0

C
1
0
4
-3

1
0
.0

7
1

0
.1

4
6

4
1
9
.6

5
3
6
0
0

—
–

—
–

—
–

–
–

3
6
0
0

—
–

—
–

—
–

–
–

–
3
6
0
0

C
1
0
5
-4

1
0
.0

0
0

0
.0

5
9

4
8
7
.1

4
2

0
.0

0
0

0
.0

7
1

2
3
.4

4
1
2

2
6

0
.0

0
0

0
.0

0
8

2
4
.9

4
6

2
6
8

C
1
0
6
-5

1
0
.0

0
0

0
.0

3
4

5
3
3
.4

5
3

0
.0

9
8

0
.1

8
9

9
.1

4
1
0

3
6
0
0

0
.1

6
9

0
.2

4
5

9
.1

4
1
0

0
3
6
0
0

C
1
0
7
-6

1
0

0
5
0
1
.9

6
0

0
.0

0
0

0
.1

6
9

2
4
.7

4
1
2

1
7

0
.0

0
0

0
.1

3
3

2
4
.7

4
4

2
4
7

C
1
0
8
-7

1
0
.0

0
0

0
.1

5
9

5
4
6
.6

6
3
2

0
.0

0
0

0
.1

4
1

1
4
.0

5
1

1
5
5

0
0

1
6
.9

5
1

2
2
4

C
1
0
9
-8

1
0
.0

0
0

0
.1

5
9

5
0
9
.3

5
5

0
.0

0
0

0
.1

3
7

7
.2

5
1

1
1
1
1

0
0

1
0
.8

5
1

2
3
7

1
0
-1

0
-2

0
C

1
0
1

0
0

5
6
9
.7

8
0

0
.0

0
0

0
.0

4
0

1
3
.8

7
4

1
6
6

0
.0

0
0

0
.0

1
0

1
3
.8

7
4

0
6
2
4

C
1
0
2

0
0

5
6
8
.7

8
2

0
.0

1
8

0
.0

1
8

1
3
.7

7
6

3
6
0
0

0
.0

2
2

0
.0

2
2

1
3
.7

7
6

0
3
6
0
0

C
1
0
3

0
0

5
6
4
.7

8
6

—
–

—
–

—
–

–
–

3
6
0
0

—
–

—
–

—
–

–
–

–
3
6
0
0

C
1
0
4

—
–

—
–

—
—

-
–

3
6
0
0

—
–

—
–

—
–

–
–

3
6
0
0

—
–

—
–

—
–

–
–

–
3
6
0
0

C
1
0
5

0
.0

0
0

0
.0

0
2

5
6
9
.7

8
4

0
.0

0
0

0
.0

1
0

1
3
.8

7
4

1
8
6
5

0
.0

2
8

0
.0

3
7

1
3
.8

7
4

0
3
6
0
0

C
1
0
6

0
0

5
6
9
.7

8
0

0
.0

0
0

0
.0

4
3

1
3
.8

7
4

9
6
4

0
.0

1
6

0
.0

3
4

1
3
.8

7
4

0
3
6
0
0

C
1
0
7

0
.0

0
0

0
.0

0
2

5
6
9
.7

8
4

0
.0

2
4

0
.0

2
5

1
3
.8

7
4

3
6
0
0

0
.0

3
5

0
.0

3
9

1
3
.8

7
4

0
3
6
0
0

C
1
0
8

0
.0

0
0

0
.0

7
4

5
6
8
.9

8
4
1

0
.0

3
1

0
.0

7
8

1
3
.7

7
4

3
6
0
0

0
.0

2
3

0
.0

5
9

1
4
.7

6
5

1
3
6
0
0

C
1
0
9

0
.0

1
8

0
.0

6
7

5
4
8
.9

7
3
6
0
0

0
.0

4
2

0
.0

9
1

1
0
.5

7
4

3
6
0
0

0
.0

3
5

0
.0

8
5

1
1
.1

6
7

2
3
6
0
0

2
0
-2

0
-1

0
C

1
0
1

0
0

4
4
0
.7

7
0

0
.0

0
0

0
.0

6
7

0
.7

6
1
1

1
3
1

0
.0

0
0

0
.0

1
7

3
.6

6
0

1
3
3
7

C
1
0
2

0
0

4
3
2
.5

6
3

0
.0

0
0

0
.0

8
0

0
.3

6
4

1
0
5
7

0
.0

0
0

0
.0

2
7

2
.3

6
4

1
2
2
6
2

C
1
0
3

0
0

4
2
7
.0

6
5
4

—
–

—
–

—
–

–
–

3
6
0
0

—
–

—
–

—
–

–
–

–
3
6
0
0

C
1
0
4

—
–

—
–

—
—

-
–

3
6
0
0

—
–

—
–

—
–

–
–

3
6
0
0

—
–

—
–

—
–

–
–

–
3
6
0
0

C
1
0
5

0
0

4
4
0
.7

7
2

0
.0

0
0

0
.0

2
7

1
.1

6
1
1

6
9
7

0
.0

0
0

0
.0

5
5

3
.4

6
3

1
1
9
9
6

C
1
0
6

0
0

4
3
9
.9

7
1

0
.0

0
0

0
.0

6
4

0
.6

6
1
1

5
2
4

0
.0

0
0

0
.0

2
8

3
.9

6
4

1
4
5
1

C
1
0
7

0
0

4
4
0
.7

7
2

0
.0

0
0

0
.0

8
4

0
.8

6
1
1

6
1
9

0
.0

0
0

0
.0

1
9

3
.9

6
4

1
1
0
2
2

C
1
0
8

0
0

4
2
8
.6

6
3

0
.0

0
0

0
.0

0
7

0
.5

6
3

2
2
6
7

0
.0

0
0

0
.0

1
8

1
.6

6
3

1
2
9
7
3

C
1
0
9

0
0

4
2
5
.3

6
8

0
.0

3
3

0
.0

4
5

0
.2

6
5

3
6
0
0

0
.0

2
9

0
.0

4
8

0
.8

6
3

1
3
6
0
0

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
28 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

T
a

b
le

1
2

S
m

a
ll,

m
ed

iu
m

a
n

d
la

rg
e

in
st

a
n

ce
s

o
f

ty
p

e
R

C

A
0
P

0
A

1
P

0
A

1
P

1
In

st
a
n
ce

G
a
p
o
p
t.

G
a
p
I
P

Z
V

eh
.

T
im

e
G

a
p
o
p
t.

G
a
p
I
P

%
Z

Im
p
.

V
eh

.
A

d
v
.

T
im

e
G

a
p
o
p
t.

G
a
p
I
P

%
Z

Im
p
.

V
eh

.
A

d
v
.

P
o
s.

T
im

e

1
0
-1

0
-1

0
R

C
1
0
1
-1

0
.0

0
0

0
.0

4
0

1
0
8
7
.7

1
0

1
0
8

0
.0

0
0

0
.0

3
8

1
9
.1

7
7

3
7

0
.0

0
0

0
.0

3
2

2
0
.8

7
4

1
3
2

R
C

1
0
2
-1

1
0
.0

0
0

0
.0

0
1

8
6
4
.1

8
1
2

0
.0

0
0

0
.0

0
1

9
.3

7
2

7
0
.0

0
0

0
.0

3
9

9
.3

7
2

0
1
3

R
C

1
0
3
-2

1
0
.0

0
0

0
.0

0
2

9
2
4
.2

8
7

0
0

2
0
.1

6
6

4
0

0
2
0
.1

6
6

0
8

R
C

1
0
4
-3

1
0

0
7
7
4
.8

6
1

0
0

5
.1

5
6

1
5

0
0

5
.1

5
6

0
2
5

R
C

1
0
5
-4

1
0
.0

0
0

0
.0

1
8

8
7
3
.5

1
0

0
0

0
6
.7

9
6

1
0

0
7
.4

9
3

2
2

R
C

1
0
6
-5

1
0

0
8
3
5
.9

8
0

0
.0

0
0

0
.0

0
2

1
2
.6

6
1
0

6
0
.0

0
0

0
.0

1
0

1
3
.8

6
7

1
1
6

R
C

1
0
7
-6

1
0
.0

0
0

0
.0

0
5

7
4
0
.1

9
2

0
.0

0
0

0
.0

0
0

5
.0

7
6

2
0

0
.0

0
0

0
.0

1
5

5
.2

6
4

2
1
2

R
C

1
0
8
-7

1
0

0
6
7
0
.2

6
0

0
.0

0
0

0
.0

0
0

2
.6

7
7

5
8

0
.0

0
0

0
.0

1
1

2
.6

7
7

0
5
5

1
0
-1

0
-2

0
R

C
1
0
1

0
.0

0
0

0
.0

1
9

1
3
0
6
.7

1
2

1
7
6

0
.0

0
0

0
.0

1
9

1
0
.9

9
1
1

2
5
7

0
.0

0
0

0
.0

0
0

1
2
.9

9
4

2
1
8

R
C

1
0
2

0
.0

0
0

0
.0

0
2

1
1
9
5
.8

1
1

8
7

0
.0

2
6

0
.0

3
1

7
.6

1
0

2
3
6
0
0

0
0

1
2
.6

9
2

2
1
9

R
C

1
0
3

0
0

9
9
4
.4

9
2

0
0

0
.4

9
1

4
6

0
0

0
.4

9
1

0
4
9

R
C

1
0
4

0
0

9
0
1
.9

9
5

0
0

0
.0

9
0

1
1
5

0
0

0
.0

9
0

0
1
8
3

R
C

1
0
5

0
.0

0
0

0
.0

0
0

1
2
5
4
.9

1
2

8
3
9

0
.0

5
2

0
.0

5
7

8
.5

1
0

2
3
6
0
0

0
0

1
4
.7

9
2

1
1
9

R
C

1
0
6

0
.0

0
0

0
.0

0
9

1
1
4
5
.8

1
1

1
3
8
1

0
.0

5
9

0
.0

6
4

7
.6

1
0

2
3
6
0
0

0
0

1
3
.6

9
2

1
2
1

R
C

1
0
7

0
.0

0
0

0
.0

2
9

9
2
5
.2

9
9

0
.0

0
0

0
.0

1
3

0
.4

9
1

2
6
7

0
0

2
.6

8
1

1
5
4

R
C

1
0
8

0
.0

0
0

0
.0

0
0

8
9
4
.4

9
1
3
7

0
.0

0
6

0
.0

0
6

0
.0

9
0

3
6
0
0

0
.0

0
0

0
.0

1
1

1
.6

8
0

1
7
3
2

2
0
-2

0
-1

0
R

C
1
0
1

0
.0

0
0

0
.0

2
5

1
3
4
7
.2

1
3

5
9
2

0
.0

4
1

0
.0

6
3

1
4
.4

1
0

6
3
6
0
0

0
.0

4
9

0
.0

6
8

1
4
.4

1
0

6
0

3
6
0
0

R
C

1
0
2

0
.0

0
0

0
.0

0
8

1
1
4
3
.2

1
0

2
3
4
0

0
.0

8
4

0
.1

1
3

9
.4

9
6

3
6
0
0

0
.0

9
2

0
.1

0
6

9
.4

9
6

0
3
6
0
0

R
C

1
0
3

0
.0

3
1

0
.0

8
1

1
0
1
7
.2

9
3
6
0
0

0
.0

7
4

0
.1

4
7

6
.9

7
5

3
6
0
0

0
.1

1
6

0
.1

2
0

6
.9

7
5

0
3
6
0
0

R
C

1
0
4

0
.0

0
0

0
.0

0
6

8
5
5
.1

8
4
0

0
.0

5
3

0
.1

0
4

4
.1

7
3

3
6
0
0

0
.0

5
3

0
.0

9
6

4
.2

7
3

0
3
6
0
0

R
C

1
0
5

0
.0

0
0

0
.0

0
4

1
1
9
7
.1

1
1

2
4
7
8

0
.0

4
8

0
.0

9
3

1
3
.5

9
5

3
6
0
0

0
.0

5
0

0
.0

6
7

1
3
.5

9
5

0
3
6
0
0

R
C

1
0
6

0
.0

0
0

0
.0

0
0

1
0
7
0
.6

1
0

6
6
3

0
.0

8
9

0
.1

0
9

4
.0

9
7

3
6
0
0

0
.1

1
0

0
.1

2
1

4
.0

9
7

0
3
6
0
0

R
C

1
0
7

0
.0

1
3

0
.0

1
3

9
8
1
.6

1
0

3
6
0
0

0
.0

5
6

0
.0

7
4

5
.6

8
4

3
6
0
0

0
.0

7
5

0
.0

8
2

5
.8

8
4

1
3
6
0
0

R
C

1
0
8

0
.0

5
2

0
.0

5
8

9
1
7
.8

9
3
6
0
0

0
.0

9
2

0
.1

4
1

5
.5

7
3

3
6
0
0

0
.0

9
3

0
.1

1
5

5
.5

7
3

0
3
6
0
0

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 29

5.3. Algorithmic insights

As explained in Section 4.1, we tested the effect of solving an IP model in each node after column

generation. We applied this idea on small instances only. For each small instance we solve three

problems, i.e., A0P0, A1P0, and A1P1, each with four different values of advancing penalties (the

postponing penalties are twice the advancing penalties). Obviously, the penalty does not impact

A0P0 because neither advancing nor postponing is allowed there. So, for each small instance we

solve 1 + 2× 4 = 9 sub-instances, for a total of (12 + 9 + 8)× 9 = 261 small instances, each with

and without IP solution at each node. Out of these 261, 221 are solved to optimality within one

hour. For these 221 instances the computation time, on average, increases by 2% when we solve

IPs. The remaining 40 instances were not solved to optimality after one hour. Figure 6 shows the

optimality gap of the best integer solution with/without solving the IPs.

20%

30%

40%

50%

60%

70%

Opt. gap

0%

10%

20%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Opt. gap without solving the IPs Opt. gap when solving the IPs

Instance

Figure 6 Optimality gap in the small instances with different penalties which are not solved to optimality within

one hour.

As it appears from Figure 6, when solving the IPs we obtain a much smaller optimality gap,

mostly due to improved upper bounds. On average, the optimality gap improves by 33.6%. In

sum, our test results on 261 instances show that solving an IP in each node does not have any

significant impact on the computation time for the instances which are solved to optimality, but

considerably improves the optimality gap of those instances which are not solved to optimality.

Hence, we decided to use this procedure for all medium and big instances.

The second algorithmic idea was to record the integer solutions obtained by chance during the

course of column generation, and to check whether they improve the current upper bound. This

was not a successful test since many routes are added to the master problem in each iteration of the

column generation, and we rarely obtain integer solutions during the course of column generation.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
30 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

The third issue we tested was the quality of the IP solution in the root node compared to the

best integer solution (the best upper bound) we find within one hour. To this end, we consider all

small, medium, and big instances (including all problems A0P0, A1P0, A1P1). For each instance of

type R (respectively, C, and RC) with the advancement penalty per unit equal to 2 (respectively,

0.2, and 1) and for each problem type (A0P0, A1P0, and A1P1), we have three problem sizes,

i.e., small, medium, and big. Hence, we solve 3× 3 = 9 (sub-)instances for each instance of type

R (respectively, C, and RC), which counts for solving a total number of (12 + 9 + 8)× 9 = 261

instances.

We divide these 261 instances into those solved to optimality (209 instances) and those not

solved to optimality (52 instances) within the time limit. Figure 7 shows the optimality gap of the

IP solution in root node, i.e., GapIP, with respect to the optimal solution for 135 instances solved

to optimality for which branching was required. In other words, in Figure 7, we have excluded 74

instances which are solved to optimality in the root node, in order to avoid overestimating the

quality of an IP solution. We observe very low optimality gaps for these integer root solutions,

which are obtained before any branching. The average optimality gap of the IP solutions for these

135 instances is 2.1%.

8%

12%

16%

20%

Opt. gap

0%

4%

1 11 21 31 41 51 61 71 81 91 101 111 121 131

Opt. gap of the IP in root node

Instance

Figure 7 Optimality gap of the IP in root node, GapIP, in the instances solved to optimality.

The optimality gap of the IP solution in root node, GapIP, for the second category containing 52

instances which were not solved to optimality is represented in Figure 8 along with the optimality

gap of the best integer solution within one hour, Gapopt., both with respect to the best lower bound

after the time limit. Again, we observe that the gap of the IP solution we immediately obtain in

the root node is very close to the optimality gap we obtain after one hour.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 31

10%

15%

20%

25%

Opt. gap

0%

5%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Opt. gap of the IP in root node Opt. gap after one hour

Instance

Figure 8 Optimality gap of the IP in root node, GapIP, and the optimality gap, Gapopt., in the instances which

are not solved to optimality within one hour.

Finally, it is worth mentioning that besides three acceleration techniques mentioned in Section

4.4, considering all compatible routes of a father node when we start solving the LP relaxation in

a child node greatly helped us to increase the speed of our branch-and-price algorithm.

5.4. Managerial insights

By allowing the orders to be advanced and/or postponed, we logically expect to obtain lower

transportation costs for two periods. We have tried to quantify the improvement by testing our

models A1P0 and A1P1 against the basic model A0P0. Table 13 shows the results of solving

instances when no advancement or postponement penalty applies. So, it indicates the maximum

savings we may reap in problems A1P0 and A1P1 as compared to A0P0. The value %Adv. shows

the average percentage of the number of orders in period 2 which are advanced to period 1,

out of the number of orders which could be advanced, for the model A1P0. This is replaced by

%(Adv.+Pos.) that shows the average percentage of the orders postponed or advanced for the

model A1P1. The value %Z Imp. shows the average percentage of improvement in transportation

costs in both periods. The values %Occ. Inc. and %Veh. Dec. show the average percentage of

increase in occupation of the vehicles and the average percentage of decrease in the number of

vehicles, respectively, in both periods compared to the basic model A0P0. This table only takes

into account the instances solved to optimality.

We observe that the average maximum cost improvement (when penalty is zero) is almost the

same for both models A1P0 and A1P1, i.e., 30.6%. This implies that if the advancing penalty is very

low and the postponing penalty is at least twice the advancing penalty, then allowing advancing

is almost as efficient as allowing both advancing and postponing. Moreover, Table 13 shows that

in model A1P0 (A1P1) we can increase the occupation of the vehicles by 40% (34%) and decrease

the number of vehicles by 25.2% (26%), which are both desirable results.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
32 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

Table 13 Maximum improvements when penalty is zero

A1P0 A1P1
Instance Pen. % Adv. % Z Imp. % Occ. Inc. % Veh. Dec. % (Adv.+Pos.) % Z Imp. % Occ. Inc. % Veh. Dec.

R 0 96.1 33.3 45.4 29.4 62.8 33.3 43.6 33.7
C 0 74.3 25.3 23.2 14.4 74.3 25.4 15.3 14.0

RC 0 98.7 33.1 52.8 32.0 72.2 33.1 43.1 28.1

Average 89 30.6 40.0 25.2 60.4 30.6 34.0 26.0

Table 14 is similar to Table 13. However, in Table 14 we have considered positive penalties for all

instances. These penalties are 2, 0.2, and 1 per unit of advanced order for instances R, C, and RC,

respectively. The postponing penalties are twice the advancing ones. These penalty values have

been adjusted in such a way that the %Adv. as well as %(Adv.+Pos.) is more or less the same for

all instances R, C, and RC.

Table 14 Improvements when a positive penalty is considered

A1P0 A1P1
Instance Pen. % Adv. % Z Imp. % Occ. Inc. % Veh. Dec. % (Adv.+Pos.) % Z Imp. % Occ. Inc. % Veh. Dec.

R 2 17.5 5 11.3 9.5 12 5.3 12.8 10.4
C 0.2 24 8.8 16.1 11.3 10.9 11.1 15.4 12.2

RC 1 24.4 7.7 16.7 12.5 13.6 8.5 20.2 15.3

Average 20.6 6.5 13.7 10.6 11.3 7.4 15.4 12.1

In Table 14 the savings are reduced since a positive penalty is exercised. However, the cost savings

are still appealing: 6.5% for model A1P0 and 7.4% for model A1P1, in average. By considering

positive penalties we observe that, in our test instances, there is little difference between models

A1P0 and A1P1 in terms of cost saving, i.e., 0.9%, as long as the postponing penalty is at least twice

the advancing penalty. However, it is clear that the latter ratio may change for other instances.

For the sake of illustration, Figure 9 displays the optimal routes for instance R103 (10-10-20) when

solving model A0P0, whereas Figure 10 displays the improved routes obtained when solving model

A1P1. In these figures, stores 1-10 belong to class VI , stores 11-20 are in class VII , and stores 21-40

belong to class VIII . We observe that, in model A1P1, the orders of stores 17, 25, 33, 35, 36, 38, and

40 are advanced, whereas the demand of store 24 is postponed. According to Table 10, the savings

(while also taking the penalties into account) when applying model A1P1 is 8.1% as compared to

the basic model A0P0.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 33

F
ig

u
re

9
O

p
ti

m
a

l
ro

u
te

s
fo

r
in

st
a

n
ce

R
1

0
3

(1
0

-1
0

-2
0

)
in

th
e

b
a

si
c

m
o

d
el

A
0

P
0

.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
34 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

F
ig

u
re

1
0

O
p

ti
m

a
l

ro
u

te
s

fo
r

in
st

a
n

ce
R

1
0

3
(1

0
-1

0
-2

0
)

in
m

o
d

el
A

1
P

1
.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 35

6. Conclusions and future research

We have defined a 2-period VRP inspired from a real problem, namely inventory control of fresh

products in chain stores. The main focus of this paper is on modeling the resulting 2-period VRP

from a LSP’s perspective. Branch-and-price has been exploited to solve the 2-period VRP where the

master problem is solved by column generation and two pricing sub-problems are solved through

the label-setting algorithm. We have used many tricks and acceleration techniques for the column

generation and the pricing problems to remain competitive, in terms of computation time, with

the existing works on the VRP. Algorithmically, we investigated two ideas in the branching tree

in order to potentially improve the upper bound during the branching process; namely, we record

integer solutions we encounter during the course of column generation in each node and we solve

an IP at the end of column generation in each node. Our experimental results show that the first

idea is not efficient but the second idea considerably improves the upper bound. Moreover, solving

an IP formulation with a restricted number of columns when the column generation procedure

terminates in the root node already delivers a very good integer solution. In managerial terms, the

results demonstrate that we can significantly decrease the routing costs when orders are allowed to

be advanced, especially in case the advancement penalty is low. Moreover, for our test instances,

advancement and postponement compared to merely advancement does not yield a significantly

better solution as long as the postponement penalty is at least twice the advancement penalty.

As the numerical results appear promising, working on further acceleration techniques such as

bidirectional search (Righini and Salani 2006) to solve the pricing problems could be beneficial.

The problem described in this paper can be generalized in order to describe other real situations; a

more general problem formulation is presented in the Appendix. Furthermore, a natural extension

of the model is to deal with partial advancement and postponement rather than full ones.

Acknowledgments

The first two authors have been partially supported in the course of this research by the Interuniversity

Attraction Poles Programme initiated by the Belgian Science Policy Office (Grant COMEX P7/36).

Appendix. More classes

We assumed in section 1 that for the stores in class VI the alternative decision about the delivery quantities

is zero for period 1 and a positive quantity d
′

i2 for period 2. While the alternative delivery quantity for these

stores in period 1 is always zero, the alternative requested order in period 2 could be zero, too. This could be

the case when period 2 coincides with a holiday, e.g., Sunday. In order to extend our initial model to include

such stores we introduce a new class of stores VIV for which the initial decision about delivery quantities

is similar to class VI but the alternative decision is to deliver zero in both periods. Note that in class VIV ,

as opposed to VI , a store is not necessarily visited. This implies in particular that constraint (4) has to be

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
36 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

replaced by a weaken one, as shown by constraint (26). Moreover, the terms associated to stores in class VIV

in the objective function (3) is no longer
∑

i∈VI
∆i(
∑

r∈R2
αirur2), but it is the term represented in (21).

By a similar reasoning, we can also introduce other classes of stores as follows.

Table 15 Further classees of stores

Initial decision Alternative dec. 1 Alternative dec. 2
Class del.1 del.2 pen. del.1 del.2 pen. del.1 del.2 pen.

VI di1 0 0 0 d
′
i2 ∆i — — —

VII 0 di2 0 d
′
i1 0 ∆

′
i — — —

VIII di1 di2 0 0 d
′
i2 ∆i d

′
i1 0 ∆

′
i

VIV di1 0 0 0 0 ∆i — — —

VV 0 di2 0 0 0 ∆
′
i — — —

VV I di1 di2 0 0 d
′
i2 ∆i 0 0 ∆

′
i

VV II di1 di2 0 0 0 ∆i d
′
i1 0 ∆

′
i

VV III di1 di2 0 0 0 ∆i 0 0 ∆
′
i

Our initial model can be further developed to encompass such classes of stores. The terms to be embedded

in the objective function (3) for these five classes are presented by terms (21)-(25).

∑
i∈VIV

∆i(1−
∑
r∈R1

αirur1) (21)

∑
i∈VV

∆
′

i(1−
∑
r∈R2

αirur2) (22)

∑
i∈VV I

∆i

∑
r∈R2

αi+n3,rur2 +
∑

i∈VV I

∆
′

i(1−
∑
r∈R2

αirur2) (23)

∑
i∈VV II

∆i

∑
r∈R1

αi+n3,rur1 +
∑

i∈VV II

∆
′

i(1−
∑
r∈R1

αirur1) (24)

∑
i∈VV III

∆i(1−
∑
r∈R1

αirur1) (25)

Moreover, the pertinent constraints for these classes are as follows:

∑
r∈R1

αirur1 ≤ 1; ∀i∈ VIV (26)

∑
r∈R1

αirur1 ≥ 1− gi; ∀i∈ VIV (27)

∑
r∈R2

αirur2 ≤ 1; ∀i∈ VV (28)

∑
r∈R2

αirur2 ≥ 1− g′

i ; ∀i∈ VV (29)

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 37

∑
r∈R1

αirur1 ≤ 1; ∀i∈ VV I ∪VV II ∪VV III (30)

∑
r∈R2

αirur2 ≤ 1; ∀i∈ VV I ∪VV II ∪VV III (31)

∑
r∈R1

αirur1 ≥ 1− gi; ∀i∈ VV I ∪VV II ∪VV III (32)

∑
r∈R2

αirur2 ≥ 1− g′

i ; ∀i∈ VV I ∪VV II ∪VV III (33)

If we do not impose constraints (26) and (27) the master problem tends to consider many routes that

include i∈ VIV and i∈ VV , in that they decrease value of the objective function due to their negative terms.

We can eliminate constraints (32) and (33) and respect them during column generation. The pricing problems

should be altered accordingly, too.

References

Abdelmaguid T F, Dessouky M M (2006) A genetic algorithm approach to the integrated inventory-

distribution problem. International Journal of Production Research, 44(21):4445-4464.

Albareda-Sambola M, Fernandez E, Laporte G (2014) The dynamic multiperiod vehicle routing problem

with probabilistic information. Computers & Operations Research, 48:31-39.

Andersson H, Hoff A, Christiansen M, Hasle G, Lokketangen A (2010) Industrial aspects and literature

survey: combined inventory management and routing. Computers & Operations Research, 37:1515-1536.

Angelelli E, Savelsbergh M, Speranza M G (2007) Competitive analysis for dynamic multi-period unca-

pacitated routing problems. Networks, 49(4):318-329.

Angelelli E, Savelsbergh M, Speranza M G (2007) Competitive analysis of a dispatch policy for a dynamic

multi-period routing problem. Operations Research Letters, 35:713-721.

Angelelli E, Bianchessi N, Mansini R, Speranza M G (2009) Short term strategies for a dynamic multi-

period routing problem. Transportation Research Part C, 17:106-119.

Archetti C, Bertazzi L, Laporte G, Speranza M G (2008) A branch-and-cut algorithm for a vendor

managed inventory routing problem. Transportation Science, 41:382-391.

Bertazzi L, Paletta G, Speranza M G (2002) Deterministic order-up-to level policies in an inventory

routing problem. Transportation Science, 36:119-132.

Bertazzi L (2008) Analysis of direct shipping policies in an inventory routing problem with discrete

shipping times. Management Science, 54(4):748-762.

Bertazzi L, Speranza M G (2012) Matheuristics for inventory routing problems. In: Montoya-Torres J

R, Juan A A, Huatuco L H, Faulin J, Rodriguez-Verjan G L, Hybric algorithms for service, computing, and

manufacturing systems: routing and scheduling solutions. IGI Global, Hershey, 1-14.

Boland N, Dethridge J, Dumitrescu I (2006) Accelerated label setting algorithms for the elementary

resource constrained shortest path problem. Operations Research Letters, 34(1):58-68.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
38 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

Campbell A M, Savelsbergh M (2004) A decomposition approach for the inventory routing problem.

Transportation Science, 38(4):488-502.

Coelho L C, Laporte G (2013) The exact solution of several classes of inventory routing problems.

Computers & Operations Research, 40:558-565.

Clarke G, Wright J W (1964) Scheduling of vehicles from a central depot to a number of delivery points.

Operations Research, 12(4):568-581.

Dabia S, Ropke S, Van Woensel T, De Kok T (2013) Branch and price for the time-dependent vehicle

routing problem with time windows. Transportation Science, 47(3):380-396.

Dell’Amico M, Righini G, Salani M (2006) A branch-and-price approach to the vehicle routing problem

with simultaneous distribution and collection. Transportation Science, 40(2):235-247.

Desaulniers G, Lessard F, Hadjar A (2008) Tabu search, partial elementarity, and generalized k-path

inequalities for the vehicle routing problem with time windows. Transportation Science, 42(3):387-404.

Du Merle O, Villeneuve D, Desrosiers J, Hansen P (1999) Stabilized column generation. Discrete Math-

ematics, 194:229-237.

Feillet D, Dejax P, Gendreau M, Gueguen C (2004) An exact algorithm for the elementary shortest path

problem with resource constraints: application to some vehicle routing problems. Networks, 44(3):216-229.

Gallego G, Simchi-Levi D (1990) On the effectiveness of direct shipping strategy for the one-warehouse

multi-retailer R-systems. Management Science, 36:240-243.

Gutierrez-Jarpa G, Desaulniers G, Laporte G, Marianov V (2010) A branch-and-price algorithm for the

vehicle routing problem with deliveries, selective pickups and time windows. European Journal of Operational

Research, 206:341-349.

Irnich S, Desaulniers G (2005) Shortest path problems with resource constraints. Desaulniers G,

Desrosiers J, Solomon M M, eds. Column Generation (Springer, New York), 33-65.

Lubbecke M E, Desrosiers J (2005) Selected topics in column generation. Operations Research, 53(6):1007-

1023.

Ozener O, Ergun O, Savelsbergh M (2013) Allocation cost of service to customers in inventory routing.

Operations Research, 60(5):1-14.

Paessens H (1988) The savings algorithm for the vehicle routing problem. European Journal of Opera-

tional Research, 34(3):336-344.

Powell W E (2011) Approximate dynamic programming: solving the curses of dimensionality, (Wiley,

New Jersey).

Raa B, Aghezaaf E H (2008) Designing distribution patterns for long-term inventory routing with con-

stant demand rates. International Journal of Production Economics, 112:255-263.

Raa B, Aghezaaf E H (2009) A practical solution approach for the cyclic inventory routing problem.

European Journal of Operational Research, 192:429-441.

Righini G, Salani M (2006) Symmetry helps: bounded bi-directional dynamic programming for the ele-

mentary shorttest path problem with resource constraints. Discrete Optimization, 3:255-273.

Righini G, Salani M (2008) New dynamic programming algorithms for the resource constrained elemen-

tary shortest path problem. Networks, 51(3):155-170.

Crama, Rezaei, and Van Woensel: A branch-and-price algorithm for 2-period VRPs
Article submitted to ; manuscript no. (Please, provide the mansucript number!) 39

Solomon M M (1987) Algorithms for the vehicle routing and scheduling problems with time window

constraints. Operations Research, 35(2):254-265.

Van Donselaar K, Van Woensel T, Broekmeulen R, Fransoo J (2006) Inventory control of perishables in

supermarkets. International Journal of Production Economics, 104:462-472.

Wen M, Cordeau J F, Laporte G, Larsen J (2010) The dynamic multi-period vehicle routing problem.

Computers & Operations Research, 37:1615-1623.

