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Abstract

When a granular material is driven in microgravity environment, one can assist to the formation
of dense and slow regions in the system. Indeed, given the dissipative character of the collisions
in the media, energy is lost at each particle interaction and the grains begin to clump locally.
The phenomenon has been observed for the first time in the late nineties during sounding rocket
experimentation by Falcon and his coworkers and has attracted the interest of many scientists
since then. However, precise laws describing the formation and the dynamics of such clusters
are still lacking. In order to allow an intensive study of the phenomenon, the European Space
Agency set up the SpaceGrains project. Small bronze spheres are enclosed in a rectangular cell and
vertically driven by to pistons oscillating in phase opposition. Our work consists in the preparation
of the SpaceGrains experiment via molecular dynamics simulations and the elaboration of models
predicting the behaviour of the system.

Before we started our study concerning SpaceGrains, we reproduced and extended Falcon’s
sounding rocket experiments. We showed that, in addition to the granular gas and the cluster,
another dynamical regime can be observed in the system. Indeed, for higher filling fractions, the
entire granular media behaves like one single completely dissipative particle called the bouncing
aggregate. Bouncing modes are observed and can be explained considering the bouncing ball
paradigm. Moreover, we highlighted the role of the packing fraction φ as well as the size of the
particles R on the different observed dynamics.

Within the frame of the SpaceGrains device, we studied the impact of all tunable parameters
of the experiment on the dynamics of the system. Thanks to an appropriate scaling all transition
points that we obtained by varying the driving amplitude A, the packing fraction and the dimen-
sions of the cell L fall along a same theoretical curve. The latter is explained regarding the energy
transfer from the piston towards the center of the cell.

Once the clustering was controlled, we investigated the handling of the agglomerate. By
compartmentalizing the container, local trapping can be achieved and a granular pendant of
Maxwell’s demon can be observed in microgravity. Based on the measured particle flux between
the compartments, we realized a theoretical model predicting the asymptotic steady state of the
system depending on the total number N of particles.

In a clustered system, we investigated the impact of asymmetrical driving on the system’s dy-
namics. We showed that the mean position of the cluster can be fully controlled via the amplitude
ratio a. Moreover, the natural fluctuations of the agglomerate around its equilibrium position are
dictated by the driving frequency f and the mass of the cluster.

Finally, we realized simulations of driven bi-disperse gases and investigated the segregation
phenomena in the system. We showed that clustering and segregation are strongly linked and that
the size and the mass of the particles impact the segregation dynamics in different ways.
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Preamble

The following manuscript consists in a collection of scientific articles realized during the period of
my PhD thesis. A general introduction to the physics of granular materials and a description of
my personal contribution to the gathering and handling of granular materials in microgravity are
given in the first part of the document. The state of the art is then completed by an overview of
the numerical tools used to simulate granular media. In the two main parts of the manuscript,
we present five articles capturing the work of these last four years. In the corresponding chapters,
the motivations for each study and their main results are briefly discussed. Moreover, a copy of
the original paper is added at the end of the chapter. Finally, the conclusion and perspectives of
our work can be found at the end of the manuscript.
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Chapter 1

State of the art

From the sugar that we pour in our coffee to the gravel placed along our railroads, granular
materials are present everywhere. Accordingly, it is not astonishing that, nowadays, over eighty
percent of the materials used in industrial processes are granulates. Numerous sectors of activity
are concerned (construction, agri-food, mining, pharmaceutics...) but despite an intensive use,
most of the atypical behaviours presented by granular materials could still not be rationalized. A
better comprehension of the media would have a great impact from an industrial perspective as
well as from a scientific point of view. Before we start to investigate the interactions that lead to
the gathering and the handling of driven granular media in microgravity, it seems essential to give
a general introduction to the granular materials and their rich variety of properties.

1.1 Granular materials

Granular materials can be defined as complex materials composed by solid grains within a sur-
rounding fluid. This definition covers a large amount of very different materials and products that
we encounter everyday [1,2]. Medication and other drugs, which are nothing else than compressed
powders, crops and corn that are stored in silos and even icebergs in our oceans are only a few
examples. All those materials differ not only in size but also in the interactions between their
composing grains and the following distinction can be made: large particles with a typical size
above 50 µm are only affected by gravitational and contact forces. Smaller particles are also in-
fluenced by electrical charges in the media, the relative humidity and Van der Waals forces. This
second category is qualified as cohesive granular materials. However, Vandewalle et al. showed
recently that the relative humidity can also influence milimetric particles [3]. Figure 1.1 describes
different granular materials. The size of the composing particles grows from left to right: regolith
on the Moon’s surface, colored powders on an indian market, a mixture of crops and icebergs at
cape York, Greenland.

Figure 1.1: Different granular materials classed by growing grain sizes. (From left to right) regolith
on the Moon’s surface, colored powders on an indian market, a mixture of crops and icebergs at
cape York, Greenland.
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In the rest of this work we will focus only on large particles so that cohesive forces will not
play any role in the observed phenomena. Nevertheless, the behaviors of granular materials are
as various as astonishing [4, 5] and their macroscopic dynamics vary strongly with the external
stresses that are applied to them. Indeed, by controlling the energy that is injected into a granular
media several dynamical regimes can be observed. They are described thereafter.

1.2 Solid regime

Depending on the external stresses that are applied to them, granular materials can be found
in different dynamical regimes. For example, when a truck pours a large amount of gravels on a
construction site, a heap is obtained. During the unloading, one can notice that while some gravels
are at rest on the bottom of the pile, others slide down along its edges. Once all the particles
are at rest, the heap has a specific angle θr, called the angle of repose [6]. This angle depends
on the nature and the shape of the particles and can be seen on the left side of figure 1.2. This
static pile of gravel could naively be compared to a solid. Indeed, contacts between the composing
grains are permanent and there are no relative displacements within the media. However, despite
this resemblances, a counter example is easily found: when pressure is exerted on a real solid
its volume decreases, while the volume of a dense granular solid increases. This phenomenon is
called Reynold’s dilatancy [7,8] and can be encountered while walking on wet sand along the sea.
When your foot steps on the sand, the volume of the pores between the grains increases and the
surrounding water is absorbed which results in a dry zone around your foot.

Figure 1.2: (Left) A heap of gravel can naively be compared to a granular solid. While pouring,
a particular angle of respose is obtained. (Right) The pressure of the foot on the sand creates a
dry zone by absorbing the water into the pores between the grains.

Another feature of granular solids is the repartition of external forces that are applied to
them. If one places a scales at the bottom of a vertical cylinder and starts pouring granular
material onto it, the displayed weight will not increase linearly. Rapidly, some saturation occurs
and eventually the measured weight of the pile remains constant even though the poured mass
increases. This effect was discovered in 1895 by Janssen [9] and can be explained by the formation
of microstructures within the pile. Multiple granular arches deviate the applied vertical stresses
towards the side wall of the cylinder. The formation of such arches can be linked to the friction
between the particles themselves and between the particles and the boundaries of the system.
Based on hydrostatic criteria and on the hypothesis that each vertical constraint pv generates a
proportional and smaller horizontal constraint ph = Kpv, Janssen proposed the following model.
He considered a slice of width dh at a given depth h in a cylinder of section A and perimeter P .
A schematic view is given in figure 1.3. In order to maintain its vertical position several forces act
on the slice. One of them is its weight Adhρg, where ρ is the density of the medium. Moreover,
since the pressure in the system increases with the depth, a force Adpv is vertically exerted on
the slice. Finally, a friction force exists on the lateral surface Pdh of the cylinder and is given by
µsphPdh, where µs is the static friction coefficient. Given Janssen’s hypothesis, the equilibrium
condition can now be written, i.e.
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h

dh
pv

pv + dpv

Figure 1.3: Vertical constraints that are applied to a slice of width dh of granular material in the
cylinder at depth h.

Adpv +KµspvPdh = ρgAdh, (1.1)

with K < 1 being a constant. Dividing through by dh yields in the following differential equation

dpv
dh

+

(
Kµs

P

A

)
pv = ρg. (1.2)

Considering as initial condition that for h = 0 the pressure pv = 0, the solution of the latter
equation is given by

pv = ρg
A

PKµs

[
1− exp

(
−Kµs

P

A
h

)]
. (1.3)

For small values of h, one notes that pv ≈ ρgh, reminding the hydrostatic pressure in a liquid.
Once h becomes larger than λ = A/(PKµs), the vertical pressure saturates towards its maximum
value of ρgλ which is in total agreement with the saturation of the weighted mass in the initial
experiment.

An important industrial implication of this effect can be found on our railroads as shown in
the right part of figure 1.4. Indeed, a granular material called ballast is placed under the rails in
order to prevent their sinking into the ground.

Figure 1.4: (Left) Picture obtained by exerting pressure on stress birefringent particles. The
highlighted zone correspond to the force network through the granular media. (Right) Ballast
used to prevent rails from sinking into the ground.

The arch formation and the spatial inhomogeneous stress distributions are major characteristics
of granular media. The force network that spreads across the system can be visualized using stress
birefringent particles [10–15] as shown in the left part of figure 1.4 but a quantitative measurement
of the forces inside the three dimensional stack is difficult to obtain with this method. It is however
possible to measure the forces exerted on the boundaries of the container. Liu et al. showed in their
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experiments [16] that the spatial probability distribution for finding a normal force of intensity F
against a wall decays exponentially for forces larger than the mean F̄ . Mueth et al. extended this
result [17] and proposed a nearly uniform distribution for the forces below the mean value. The
measures were made thanks to a carbon paper method [18,19]. The side wall of the cylinder and
the surface of the pistons are covered with a thin layer of carbon paper above which classical copier
paper is placed. The pressure that each particle exerts on the boundaries creates more or less dark
spots on the copier sheet. These imprints are then digitalized, in order to treat more efficiently
the data and to obtain the distribution of the forces. Figure 1.5 presents a photography of one
of the imprinted sheets of paper from Mueth’s experience as well as the obtained distributions.
Recently, these grain-wall contact forces could be measured more precisely by using wavelength

lateral correlations between forces on different beads and
find that no correlations exist.

EXPERIMENTAL METHOD

The granular medium studied was a disordered 3D
pack of 55,000 soda lime glass spheres with diameter
d = 3.5± 0.2 mm. The beads were confined in an acrylic
cylinder of 140 mm inner diameter. The top and bottom
surfaces were provided by close-fitting pistons made from
2.5 cm thick acrylic disks rigidly fixed to steel rods. The
height of the bead pack could be varied, but experiments
described in this paper were performed with a height of
140 mm. Once the cell was filled with beads, a load, typ-
ically 7600 N, was applied to the upper piston using a
pneumatic press while the lower piston was held fixed. In
most experimental runs, the outside cylinder wall was not
connected to either piston so that the cylinder was sup-
ported only by friction with the bead pack (see Fig. 1).
We shall refer to this as the “floating wall” method. The
system could also be prepared with the bottom piston
rigidly attached to the cylinder wall, which we shall refer
to as the “fixed wall” method. To estimate the bead-
bead and bead-wall static friction coefficients, we glued
beads to a plate resting on another glass or acrylic plate
and inclined the plates until sliding occurred. We found
the static coefficient of friction to be close to 0.2 for both
glass-glass and glass-acrylic contacts.

As the beads were loaded into the cell, they naturally
tended to order into a 2D polycrystal along the lower
piston. The beads against the upper piston, by contrast,
were irregularly packed. We were able to enhance or-
dering on the lower piston by carefully loading the sys-
tem, or disturb it by placing irregularly shaped objects
against the surface which were later removed. For some
experiments, the cell was inverted during or after loading
with beads. By varying the experiment in these ways, we
probed the effect of system history on the distribution of
forces.

Contact forces were measured using a carbon paper
technique [16,17,10]. With this method, all constraining
surfaces of the system were lined with a layer of carbon
paper covering a blank sheet of paper. For the blank
sheet we used color copier paper, which is smoother,
thicker, and has a more uniform appearance than stan-
dard copier paper. Beads pressed the carbon onto the pa-
per in the contact region and left marks whose darkness
and area depended on the force on each bead. After the
load had been applied to the bead packing, the system
was carefully disassembled and the marks on the paper
surface were digitized on a flatbed scanner for analysis.
A region from a typical data set taken from the area over
one of the pistons is shown in Fig. 1. Each experiment
yielded approximately 3,800 data points over the interior
cylinder wall and between 800 and 1,100 points for each
of the piston surfaces, depending on how the system was

FIG. 1. Sketch of the apparatus used for experiments with
“floating walls.” The lower piston is fixed and the cylinder is
supported by friction with the bead pack. A load is applied
to the upper piston and the beads press the carbon paper into
white paper, leaving marks which are used to determine the
contact forces. A detail of the obtained raw data is shown in
the photograph (field of view: 76 mm across).

prepared. The position of each mark was identified and
the thresholded area and integrated darkness were calcu-
lated. At the scan resolution used, marks ranged from
several pixels to several hundred pixels in area.

The force was determined by interpolating the mea-
sured area and darkness on calibration curves that were
obtained by pressing a single bead with a variable, known
force onto the carbon paper. This was achieved by slowly
lowering a known mass through a spring onto a single
bead. The spring was essential as it greatly reduced
the otherwise large impulse which occurs when a bead
makes contact with the carbon paper and quickly comes
to rest. Both area and darkness of the mark left on the
copier paper were found to increase monotonically with
the normal component of the force exerted by each bead,
as seen in Fig. 2. Note that the only requirement is that
these curves are monotonic; we do not assume any par-
ticular functional relationship. With this carbon paper
technique, we were able to measure forces between 0.8 N
and 80 N with an error of less than 15%. We ensure that
the beads do not slide relative to the carbon paper dur-
ing an experiment by measuring the eccentricity of each
mark. We find that the eccentricities ε are narrowly dis-
tributed with a mean of 0.1, corresponding to a ratio of
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FIG. 2. Calibration curves for the conversion of pres-
sure mark size or intensity to normal force. The solid circles
represent the mark area and the open circles its integrated
darkness.

major to minor axis a
b = 1√

1−ε2
of 1.005 for both piston

surfaces and container walls.
We find that for less than approximately 0.8 N, little

or no mark is left on the copier paper. A consequence,
visible in Fig. 1, is that there are regions where there
may have been one or more contacts with normal force
less than 0.8 N, or alternatively, which may have had no
bead in contact with the surface. This ambiguity presents
a problem for the precise determination of the mean force
F . To estimate the number of contacts below our resolu-
tion, we could fill the voids with the maximum possible
number of additional beads, using a simple computer rou-
tine. However, this over-estimates the number of actual
contacts with the carbon paper. Instead, we used the fol-
lowing method: The average number of beads touching a
piston surface was measured by placing double-sided tape
on the piston and lowering it onto the pack. The tape was
sufficiently sticky that the weight of a single bead would
affix it to the tape. Subtracting the average number of
contacts with F > 0.8 N from this number, we found that
6.4% of the beads on the lower piston and 4.3% of the
beads on the upper piston have F < 0.8 N. The upper
piston had fewer points below 0.8 N because the total
number of beads in contact with that piston was typi-
cally smaller than on the bottom, raising the mean force
and decreasing the fraction of beads with F < 0.8 N. The
weight supported by the walls was calculated by subtract-
ing the net weight on the two pistons. For experiments
performed with floating walls, we verified that the pis-
tons had equal net force (since the weight of the walls
can be neglected with respect to the applied force).

RESULTS

While we conducted experiments with both fixed walls
and floating walls, most experiments were performed
with the walls floating to reduce asymmetry. In this
configuration the cylindrical wall of the system was sus-
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FIG. 3. The distribution P (f) of normalized forces f
against the top piston (open circles), the bottom piston (dia-
monds), and the walls (solid circles). The upper panel shows
P (f) for the pistons, averaged over fourteen identical experi-
ments. The curve drawn is a fitting function as explained in
the text (Eq. 1). The lower panel shows the same data, but
with data from the walls included as well.

pended solely by friction with the bead pack. Since the
applied load was much greater than the weight of the
system, any remaining asymmetry between the top and
bottom of the system must have come primarily from sys-
tem preparation, and not from gravity. In Fig. 3 we show
the resulting force distributions P (f) (where f ≡ F/F
is the normalized force) for all system surfaces, aver-
aged over fourteen experimental runs performed under
identical, floating wall conditions. We find that, within
experimental error, the distributions P (f) for the up-
per and lower piston surfaces are identical and, in fact,
independent of floating or fixed wall conditions. Note
that the lowest bin contains forces from 0 N to roughly
1 N which includes both measured forces as well as an
estimated number of undetectable contacts, giving it a
greater uncertainty than other bins. For forces greater
than the mean (f > 1), the probability of a bead having
a certain force decays exponentially,P (f) ∝ e−βf , with
β = 1.5 ± 0.1.

Also shown in Fig. 3 is a curve corresponding to the

3

Figure 1.5: (Left) Carbon imprints on a the bottom piston: the side wall of the cylinder as well as
the surface of the pistons are covered with a thin layer of carbon paper above witch classical copier
paper is placed. The stronger the pressure exerted by the grains against the walls, the darker the
obtained dots. (Right) Graphic describing the distribution of the normalized forces f = F/F̄ .
Photography and plot taken from [17].

scanning interferometry [20] and similar distribution are obtained.

1.3 Liquid regime
Let us now go back to our heap of gravel and imagine that we take away particles from the bottom of
the pile until the static equilibrium becomes unstable. The pile crumbles and an avalanche occurs.
On the surface, the gravels flow towards the ground, as a liquid would do. On the contrary, the
gravels on the bottom, remain in a solid state. In this case we have a coexistence of a granular
liquid and a granular solid. However, various phenomena show once again that the analogy with
a classical fluid is not appropriate and one should rather qualify them as complex fluids [21–23].

Understanding the rheology of these kind of materials is of great industrial interest. In various
processes, grains have to be pumped from one step of fabrication to the next and problems like the
arch blocking of the flow or the thickening of the fluid have to be avoided. Moreover, granular pastes
as concrete are still in the center of applied studies that aim higher resistance and performance
for our constructions.

In order to maintain the granular material in its liquid form, external constraints are required.
One simple way to observe a continuous flow is to enclose the material in a drum and to rotate it
at a certain rotation speed Ω. For small speeds (Ω < 0.1 rpm), an intermittent flow is observed.
Initially, the free surface of the granular media forms an angle θ with the horizontal. This angle
increases slowly up to an angle θm called the angle of movement. At this point the grains slide
down and the angle of repose θr is obtained. This cycle goes on and the system oscillates between
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Figure 1.6: Understanding the rheology of these complex fluids is of great industrial interest. In
various processes grains have to be pumped from one step of fabrication to the next. Granu-
lar liquids are also observable in nature and may have dramatic consequences as landslides and
avalanches.

both angles. For higher speeds (Ω ≈ 5 rpm), the flow becomes continuous and the free surface
bends to take an S-shape as one expects for a liquid [24]. Figure 1.7 presents both behaviors
encountered in rotating drums. If one tries to find the limit speed between both regimes, an

✓r
✓m

⌦ < 0.1 rpm ⌦ ⇡ 5 rpm

Figure 1.7: Behavior of rotated granular material for different rotation speed. For small Ω (left),
an intermitend flow is observed, for higher speeds (right), the flow is continuous and the free
surface takes the appearance of an S-shaped curve.

interesting phenomenon appears. Indeed, starting from the intermittent state, we increase Ω
until a certain value Ω↑ for which the flow becomes continuous. If we now decrease the speed, a
transition occurs for a value Ω↓ < Ω↑. This hysteresis is a particular feature of granular materials
and is not encountered for classical Newtonian liquids.

Another way to keep a granular material in the liquid regime is to oscillate it. Indeed, if a
system with a large number of particles is vertically oscillated wave structures can appear at its
surface. Moreover, due to the interaction with the energy injecting boundaries and the friction at
the walls of the system, convective motion can be observed [25]. For a classical liquid, convection
occurs when the heated particles rise up in the system while the cold ones sink, creating a rotational
motion of the fluid in the tank. In a granular system, it is the vertical shaking that creates an
upward movement of the particles. During the upward phase, the entire pile takes off but the
external grains, that are in contact with the side walls, are slowed down due to friction forces.
In addition, once the container moves downwards, a vertical shear stress forces this outer layer of
grains down to the ground much faster than the rest of the pile. Consequently, a convective motion
takes place in the system. For large systems, several convection cells can appear and interact
with each other [26]. Recent experiments [27] in slowly rotated Hele-Shaw cells present similar
behaviours. Figure 1.8 confronts the usual convection of liquids with the granular convention rolls
described by Eshuis et al.
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Heat Shaking

Figure 1.8: (Taken from [26]) Analogy between the convective motion of a classical liquid under
heating constraints (left) and a driven layer of granular materials (right).

Liquid like behaviors can also be encountered in 2d systems. For instance, shaking a granular
monolayer along a vertical axis z reveals a rich variety of behaviors [28, 29]. The small defects
of the cell’s walls and the interaction with neighboring particles transform the purely vertical
velocities into a Brownian motion in the xy plane. Depending on the filling fraction of the system
and the intensity of the shaking divers dynamical regimes are encountered. Fluid like motion,
formation of wave patterns and crystallization are only a few examples. In a recent article [30],
Merminod et al. showed that when additional repulsive forces are added to the particle interaction,
the typical properties of dissipative granular fluids are lost and tend to those expected for a
classical fluid (quasi-Gaussian velocity distributions and nearly flat pair correlation functions). In
their experiment, a vertical magnetic field B0 is applied to the system creating a dipole-dipole
interaction between the grains. Figure 1.9 describes the observed dynamics for an increasing field
amplitude. Note that a hexagonal crystal is obtained for high B0.

S. Merminod et al.
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Fig. 1: (color online) (a) Experimental setup (see text).
(b) Snapshots in the inelastic regime for B0 = 0G (ε = 0),
(c) the quasi-elastic regime for B0 = 127 G (ε = 16.2), and
(d) the hexagonal crystal-like regime for B0 = 436 G (ε = 283).
Snapshots size is 3.5 cm × 3.5 cm, and Γ = 3.32. For the
full time evolution, see movie1.m4v in supplementary material.
(e) Area fraction of balls φ in the area S versus B0 for Γ = 2.45
and 3.32. The dashed line corresponds to the area fraction for
a homogeneous particle distribution φth = N0πσ2/S0 ≈ 0.194.

tal rough bottom plate. Additionally, a vertical magnetic
field is then applied, leading to repulsive dipolar inter-
actions between particles. Using particle tracking tech-
niques, we analyse quantitatively the structural changes
within the granular gas and its dynamical properties. The
rate of inelastic collisions between particles can be easily
tuned. Indeed, increasing the amplitude of the magnetic
field enhances magnetic repulsion and thus decreases the
number of inelastic collisions. As the dissipation rate due
to inelastic collisions is proportional to the number of col-
lisions, the total dissipation in the system is reduced. We
thus show that the system undergoes a transition from a
dissipative to a quasi-elastic system when the magnetic
field is increased.

Experimental setup. – The experimental cell is de-
picted in Fig. 1(a). It consists of a horizontal, square
duraluminium bottom plate of area S0 = 9 cm × 9 cm and
covered by a sandpaper sheet in order to provide rough-
ness (RMS amplitude of 20 µm). The cell is filled with
N0 = 2000 chrome steel (AISI 52100) spherical particles

with a diameter a = 2 σ = 1 mm ± 2.5 µm and a mass
m = 4.07 × 10−6 kg. These balls are confined by rigid
aluminium walls and by a rigid, smooth, antistatic coated
polycarbonate lid placed 1.5a above the bottom plate. In
order to reach a non-equilibrium steady state, this cell is
driven sinusoidally in the vertical direction by means of
an electromagnetic shaker. The dimensionless accelera-
tion is Γ ≡ (2πf)2A/g with f = 300 Hz the frequency
and A the amplitude of the sinusoidal forcing, g being
the gravitational acceleration. Γ is measured using an
accelerometer screwed on the cell. Two coils generate a
vertical magnetic field B0 which is perpendicular to the
cell plane and is spatially homogeneous within the cell
volume with a 2% accuracy. A high speed camera (Phan-
tom V10) is located above the centre of the cell. A diffu-
sive LED ring encircling the cell illuminates from the top
the particles that appear as bright rings on a dark back-
ground. The camera acquisition rate is fixed to 779 frames
per second in order to detect the collisions between parti-
cles. Video recordings are performed once the stationary
state is reached (waiting time of 60 s) and last at least
3.85 s. To avoid measurement issues at the boundaries,
we choose a region of interest S of 5.7 cm× 5.7 cm around
the cell centre. The particle diameter then corresponds
to 20 pixels. We performed individual detection of par-
ticles from the video recordings using first a convolution-
based least-squares fitting particle detection routine [8,24]
completed by an intensity-weighted centre detection al-
gorithm. This provides particle centre positions with a
resolution of less than 0.3 pixel ∼ 0.015a [9]. Finally, in-
dividual trajectories were reconstructed using a tracking
algorithm [25,26]. Hence, from highly resolved particle po-
sition data, we compute their velocity distributions, pair
correlation functions, mean square displacements as well
as collision rate estimations.

Experimental parameters. – Let us now describe
the influence of the external magnetic field B0 on the
chrome steel particles. These balls are soft ferromagnetic,
i.e., with a low remnant magnetic field and a high mag-
netic permeability. When placed in a vertical magnetic
field of amplitude B0, each particle is uniformly magne-
tised. It behaves as an induced magnetic dipole of mag-
netic moment 4

3πσ3 χm

µ0
B0 ez, with χm the volume mag-

netic susceptibility, µ0 the vacuum permeability, and ez

the upward unit vector along the vertical axis. For a
purely 2D system of two identical spheres i and j with
B0 perpendicular to rij (the horizontal vector between
the particle centres), the potential energy of magnetic in-
teraction reads [27]:

Em, 〈i,j〉 =
4π

µ0
B0

2 σ6

|rij |3
(1)

in the limit of high intrinsic magnetic permeability. We
point out that without taking into account the geometry of
the magnetisation and the demagnetising magnetic field,
an effective susceptibility χ can be defined [15, 18], yield-

p-2

increasing B0

Figure 1.9: Snapshots of Merminod’s et al. experience [30]. The magnetic field B0 increases from
left to right. For low field values, one observes a granular fluid. At high values of B0, the system
orders into a hexagonal crystal. In the intermediate range, the system approaches the dynamics
of a classical molecular fluid.

1.4 Gaseous regime

When a large amount of energy is injected continuously into a confined and dilute granular medium,
the particles stir up and behave like a gas [31–34]. In nature, this phenomenon can be encountered
when a tornado crosses a desert region and forms a Dust Devil or, at a larger scale, in Saturn’s rings
(see figure 1.10). In the laboratory, a granular gas can be obtained by an intense driving of the
system. For instance, Falcon et al. enclosed several stainless steel beads in a cylinder and vibrated
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them vertically [35]. Their simple experimental setup, generates a model of the dynamics of a
granular gas. It is important to note that the formation of a granular gas does not only depend
on the injected energy but also on the packing fraction of the system. Indeed, increasing the
number of particles N in the system can lead to a transition from an erratic motion to a collective
behavior where all the particles bounce like a nearly solid body. Snapshots of the experiment for
respectively 480 and 1920 grains for constant driving conditions are given in figure 1.11.

Figure 1.10: Granular gases in nature, a dust devil in the ethiopian desert (left) and the rings of
Saturn (right, photography by the National Aeronautics and Space Administration).

In order to push a bit further our analogy and to grant a homogenous, gas like, distribution
of the particles, a granular gas has to be created in microgravity. This can be achieved by
various means. Parabolic flights (see right part of figure 1.11) or drop tower experiments might
be the most affordable ways but don’t assure a stable level of microgravity. Indeed, gravitational
fluctuations known as g-jitter are unavoidable. Moreover, the period of microgravity is relatively
short. At higher cost, sounding rockets (Mini-Texus, Texus, Maxus, ...) or even the International
Space Station (ISS) provide a much more stable g-level and a longer duration of the microgravity
conditions. However, given the complexity and the costs of these experiments, granular gases are
often studied via numerical simulations.
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Abstract. We report experimental results on the behavior of an ensemble of inelastically colliding particles,
excited by a vibrated piston in a vertical cylinder. When the particle number is increased, we observe a
transition from a regime where the particles have erratic motions (“granular gas”) to a collective behavior
where all the particles bounce like a nearly solid body. In the gas-like regime, we measure the density of
particles as a function of the altitude and the pressure as a function of the number N of particles. The
atmosphere is found to be exponential far enough from the piston, and the “granular temperature”, T ,
dependence on the piston velocity, V , is of the form T / V ✓, where ✓ is a decreasing function of N . This
may explain previous conflicting numerical results.

PACS. 45.70.-n Granular systems – 83.70.Fn Granular solids – 05.20.Dd Kinetic theory –
83.10.Pp Particle dynamics

Granular matter is an interdisciplinary subject, involving
soil mechanics (rheology), powder technology [1,2], geo-
physics (dunes [3], ice floes [4]), astrophysics (planetary
rings [5]) and statistical physics of dissipative media [6,7].
Recently, considerable attention has been devoted to the
role of the inelasticity of the collisions in vibrated granular
media, the so-called driven “granular gas” for which the
stationary state results from the balance between dissi-
pation by inelastic collisions and power input by external
vibrations. While over the years many attempts based on
kinetic theory [8–11] have been made to describe such dis-
sipative granular gases, no agreement has been found so
far both with experiments [12,13] and numerical simula-
tions [13–15], for the dependence of the “granular tem-
perature” with the parameters of vibration [16–18]. The
aim of this study was to guess possible gas-like state equa-
tions for such dissipative granular gas and to observe new
kinetic behaviors which trace back to the inelasticity of
collisions.
We report an experimental study of a “gas” of inelas-

tically colliding particles, excited by vertical vibrations.
When the vibration is strong enough and the number
of particles is low enough, the particles display ballistic
motion between successive collisions like molecules in a
gas (see Fig. 1a). At constant external driving, we show
that the pressure passes through a maximum for a critical
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Fig. 1. Transition from a dissipative granular gas to a dense
cluster: (a) N = 480; (b) N = 1920, respectively corresponding
to roughly 1 and 4 particle layers at rest. The parameters of
vibration are f = 20 Hz and A = 40 mm. The driving piston
is at the bottom (not visible), the inner diameter of the tube
being 52 mm.

number of particles before decreasing for large N . We also
measure density profiles and extract granular temperature
from them. When the density of the medium is increased,
the gas-like state is no longer stable but displays the for-
mation of a dense cluster bouncing like a nearly solid body
(see Fig. 1b).
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Fig. 1. Transition from a dissipative granular gas to a dense
cluster: (a) N = 480; (b) N = 1920, respectively corresponding
to roughly 1 and 4 particle layers at rest. The parameters of
vibration are f = 20 Hz and A = 40 mm. The driving piston
is at the bottom (not visible), the inner diameter of the tube
being 52 mm.

number of particles before decreasing for large N . We also
measure density profiles and extract granular temperature
from them. When the density of the medium is increased,
the gas-like state is no longer stable but displays the for-
mation of a dense cluster bouncing like a nearly solid body
(see Fig. 1b).
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En effet, des expériences préliminaires 
avaient montré le bien fondé de cette 
méthodologie expérimentale qui, dans 
des cellules avec des rapports 
d’aspects supérieurs à 1, nous avait 
permis de visualiser des « paquets » 
de petites billes autour des grosses 
billes en microgravité. Ainsi, nous 
avions pu modifier un gaz granulaire 
« homogène » à très faible nombre fixé 
de grosses billes, en additionnant 
progressivement de plus en plus de 
petites billes dans la cellule.   
L’image ci-dessus (direction de l’axe z des vibrations bas � haut) montre que les 
mouvements des grosses billes et des inhomogénéités « dense » des petites billes étaient 
de plus en plus concentrés dans une zone d’extension limitée autour de la côte z=L/2. 

 
d) Utiliser les fluctuations de microgravité des « mauvaises » paraboles pour différencier la 

dynamique des « amas granulaires convectifs » de celle de nos « amas granulaires 
attendus » dans un système constitué par un mélange de 2 types (diamètre et matière) 
différents de billes. 

 
Les images de la Figure 1 correspondent à cette cellule MAXUS 7 vibrée en position couchée dans 
deux paraboles différentes. Elles sont une illustration remarquable de cette problématique posée par 
le rôle des fluctuations de microgravité sur les milieux granulaires fluidisés par vibration et des 
difficultés d’interprétation des comportements d’amas 3d en microgravité (surtout dans la direction 
perpendiculaire à l’axe z des vibrations).  

 

 
P8. 80Hz, 90ms-2 (vp ≈ 0.2 m/s). 

 
P29. 130Hz, 30ms-2 (vp ≈ 0.04 m/s). 

Fig.1. Cellule Maxus 7 (dimension caractéristique L ≈ 9 mm, rapport d’aspect ≈ 1/3) en position 
horizontale, vibrée verticalement avec les conditions opératoires indiquées ci-dessus au cours d’une 
« bonne » parabole n°8 et d’une « mauvaise » parabole n°29 de la campagne VP 72 (oct. 2008). Les 
images (direction de l’axe z des vibrations bas↔haut) supérieures correspondent à l’observation en 
transmission d’un  gaz granulaire 2d (épaisseur de la cellule ≈ 15L/2 ~ d = 1,2 mm, ~ 1 ligne de billes 
au repos). Les doubles images inférieures correspondent à l’observation en transmission directe 
(partie supérieure) et en transmission à 90° (partie inférieure) d’un système granulaire diphasique 3d 
(épaisseur de la cellule ≈ L) .Le système diphasique correspond au même nombre de grosses (d = 1,2 
mm) billes que celui de la cellule 2d et à environ 3 couches au repos de petites (d ≈ 0,2 mm) billes. Les 
différences d’homogénéité « spatiale » entre les images de gauche et droite s’expliquent par la 
sensibilité des mouvements collectifs et des mouvements individuels des billes aux fluctuations de 
microgravité, notamment lorsque les accélérations des vibrations sont inférieures à 5g (ici réduction 
d’un facteur 3 entre 9g et 3g), et/ou lorsque la vitesse maximale de la paroi vibrée diminue (ici 
réduction correspondante d’un facteur ~5) .                                                                    

Figure 1.11: (Left, taken from [35]) Driven granular gas under gravity, depending on the filling,
a transition to a solid like regime is noted. (Right, photography by F. Palencia) Granular gas
during a parabolic flight experiment.

Unlike a molecular fluid, our system is athermal which implies that the average kinematic
energy of a granular gas is not determined by the surrounding temperature. However, in order to
approach these materials from a thermodynamical point of view different granular temperatures
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T have been proposed. One simple method to define this temperature in a mono disperse system
is to use the kinetic energy of a particle of mass m moving with the average speed 〈v〉,

T =
1

2
m〈v〉2 (1.4)

Accordingly, the speed distribution of the particles in a granular gas doesn’t follow a Maxwell-
Boltzmann (MB) law. In the nineties, theoretical works and simulations [36–38] proposed divers
distributions as Gaussians, exponentials and power laws. Experimentally, Olafsen and Urbach [39]
found velocity distributions that varied between exponential and Gaussian for an increasing ac-
celeration. Kudrolli and Henry [40] found an even larger spectrum of distributions. However, an
universal law recovering all the described dynamics is proposed by Rouyer and Menon [41]. Far
away from the boundary conditions, the distributions of all three components of the velocity are
similar and follow

P (vi) = C exp [−β(|vi|/σ)α] , i ∈ {x, y, z}; (1.5)

where α ∼ 3/2 and σ =
√
〈v2i 〉. The constants C and β are free parameters. This non-Gaussian

behavior has been reported in all kind of experimental setups. Neither the cell’s geometry nor the
shape of the particles seem to have en impact on the measured velocities. A recent example is
given by Harth et al. who observe the same kind of distribution in a drop tower experiment [42]
with driven cylindrical rods.

walls move in antiphase. Two excitation strengths were
examined (see Table I, corresponding peak accelerations
!ð1Þ ¼ 3:7g, !ð2Þ ¼ 2:9g). The container was front-
illuminated with four high-power LEDs. The observation
from front and top was realized using two commercial
digital compact cameras (SAMSUNG PL70, 29.4 fps at
1280$ 720 pixel), see Ref. [31] for details. Within this
study, the top view images were used to verify the uniform
distribution of particles in the container. The z positions of
the particleswere not evaluated. A scale of 0:1412mm=pixel
in the video refers to the midplane of the box in the field
of view. Distances and velocities appear 20% larger in the
front plane, and 20% smaller in the back plane.

Unambiguous automatic particle tracking could not be
achieved due to the limited time resolution, therefore all
rods were tracked manually. Special care has been taken to
ensure that each particle in a frame was correctly detected
and assigned. In order to find a reasonable compromise
between satisfactory statistics and manageable evaluation
efforts, we have restricted ourselves here to 2D tracking of
two representative frame sequences. The front view images
alone yield valuable information on the characteristics
of the ensemble. The results presented in this Letter were
obtained from two sequences of 101 frames in front view
(each% 25 000 out of half a million available data points).
To minimize boundary effects, only rods with centers of
mass in the central region [see Fig. 1(b)] entered the
velocity statistics. A second set of evaluated sequences
yielded similar results.

The rods distribute evenly in the x-y plane (Fig. 1(b) and
video [32]), with small transient density fluctuations.
Typical trajectories are shown in Fig. 2. We note that in
the data analysis, wemake a qualitative distinction between
the x direction, which is enclosed laterally by shakingwalls,
and the y direction, which is enclosed by fixed walls.
Momentum exchange with the container is different for
these two directions. Temporal autocorrelations and cross
correlations cðvi; vjÞ for the particle velocities are shown
in Fig. 2. The two translational degrees of freedom
are uncorrelated, as expected. The autocorrelation of vy

decreases exponentially with decay time % 0:2 s. In exci-
tation direction, x, we find positive autocorrelations over
% 8 frames (0.27 s). Thereafter, velocities are slightly anti-
correlated. These graphs evidence that the temporal reso-
lution of our measurement is sufficient to obtain relevant
statistics of the gas dynamics. It is also evident that the two
spatial directions are not equivalent, as discussed above.
Figure 3 shows the velocity distributions of all rods in the

selected region for Excitation (1), parameters see Table I.
Due to the perspective view (see above), measured velocity
distributions are an average of apparent velocity distribu-
tions from different depths. It turns out that this averaging
results in a distribution that is very close to the true
distribution in the container midplane (in z direction).
Deviations are negligible with respect to the statistical error
in the experimental data. Moments and other character-
istics of the distributions calculated from the data sets are
listed in Table I. The mean of each data set,!, is a measure
for net external accelerations (deviations of the container
trajectory from 0g). These deviations are more than 1 order
of magnitude smaller than the mean absolute velocities
and angular velocities, respectively, and thus negligible.
In earlier work on nonspherical particles, nearly

Gaussian velocity distributions were found [24,28].
Indeed, the distribution of vy can be satisfactorily approxi-
mated by a Gaussian [Fig. 3(a)]. Deviations occur mainly
near the maximum where we find some excess of slow
grains. Only slight high-velocity tails are present. The dis-
tribution of vx is clearly non-Gaussian with pronounced
high-velocity tails. Still, the central part of the distribution
of vx is not too different from a Gaussian (Fig. 3, bottom).
The solid curve corresponds to the parameters for vy in
Table I. For both velocity components, the distributions
are somewhat better described by a probability density
/ expf&ðjvi &!j=CÞ"g with " ¼ 1:5. A similar value
was found in 2D experiments with spherical grains [7–9].

z
x

y

(a) (b)

FIG. 1 (color online). (a) Schematic experimental setup and
selected coordinate system: container with 3 moveable walls
agitated by voice-coil actuators, width: 8.5 cm, height 10 cm,
depth 6.3 cm, top camera not shown; (b) freeze frame of the
granular gas of 250 colored rods excited by shaking side walls
(30 Hz) in microgravity. The white box indicates the region
selected for statistical evaluation. See Supplemental Material
[32] for movies of the granular gas.

FIG. 2 (color online). Temporal autocorrelation and cross cor-
relation of the translational velocities in the direct excitation
direction (x) in the indirectly excited direction (y) at Excitation
(1). The inset shows exemplary rod trajectories over 101 frames,
arrows indicate the beginning.
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Figure 1.12: (Left) Photo of the cell used for the GaGa drop tower experiment by Harth et
al. [42]. (Right) Snapshot taken while the rods are driven in microgravity. Non-Gaussian velocity
distributions are observed as well for the translations as for the rotations of the particles.

It is important to note that a part of the energy that is injected into a granular gas is dissipated
through the great number of collisions between the grains that compose the material. The received
kinematic energy is transformed into sound, heat and leads to small deformations of the grains.
This dissipative character is an essential feature of a granular material which can be captured by
the coefficient of restitution ε. This value corresponds to the ratio of a particle’s speed before and
after collision and depends mainly on the nature of the material but also on the impact velocity.

1.5 Pattern formation
The dissipative character of the collisions between the particles of a granular gas has an important
consequence: a steady state can only be obtained when the injected energy counterbalances exactly
the dissipated one. Moreover, this implies a constant and perpetual energy injection into the
system. If one stops the energy supply, a cooling mechanism begins and at each collision the
velocities of the grains decrease. Rapidly, dense and slow regions appear [43–46] and the time
between two successive collisions drops dramatically until the contacts between the grains become
permanent. In this case we speak about the inelastic collapse. Figure 1.13 describes the evolution
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of such a free cooling granular gas. Maaß et al. used diamagnetic granular material that could be
levitated in order to reproduce microgravity conditions. After being stirred up mechanically, the
evolution of the system is tracked and three snapshots are presented.
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We investigate the dynamics of the freely cooling granular gas. For this purpose we diamagnetically
levitate the grains providing a terrestrial milligravity environment. At early times we find good agreement
with Haff’s law, where the time scale for particle collisions can be determined from independent
measurements. At late times, clustering of particles occurs. This can be included in a Haff-like description
taking into account the decreasing number of free particles. At very late times, only a single particle
determines the dynamics, which is again described by a version of Haff’s law. With this a good description
of the data is possible over the whole time range.
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In the study of granular media it has proven useful to
define states on the basis of the solid, liquid, and gaseous
states of a molecular substance [1]. In this vein of defini-
tion, a granular gas is a dilute system of macroscopic par-
ticles in random, quasi-Brownian motion. In contrast to a
molecular gas, collisions between granular particles are
inelastic. Hence, energy has to be constantly injected into
the system to observe dynamics, and one expects the man-
ner of excitation to have a non-negligible effect on the state
of the system [2]. However, the independent characteristics
of the granular gas should be governed by the statistical
properties of collisions and by energy losses due to inelas-
ticity, which are usually referred to as cooling. As the
behavior of an excited granular gas can be divided into
short-time incipient cooling states between single excita-
tion events, an investigation of the cooling process allows
us to study fundamental characteristics of the granular gas
independent from the specific manner of excitation [3–5].

Haff [6] derived a hydrodynamic theory of granular
motion. The resulting cooling law states that the kinetic
energy of a spatially isotropic granular gas without external
driving should decrease like 1=t. This behavior emerges
after a characteristic time determined by the density, initial
speed, and particle properties.

An experimental study of the cooling of a 2D granular
gas on a surface together with a comparative molecular
dynamics simulation has been reported in [7], with a
special emphasis on clustering behavior. Haff’s law was
not observed, which might have been due to additional
energy loss by surface friction.

To extend Haff’s picture, the freely cooling granular gas
has been investigated in several analytical and simulation
studies. Here the main issue is to describe the process in the
presence of inhomogeneities, presumably introduced by
inelastic collapse. The authors incorporated clustering
and inelastic collapse [8,9] as well as a velocity-dependent
restitution coefficient [10,11]. Although all studies agree in
a decrease of cooling with time, the resulting cooling
exponents are still a matter of debate. In all studies the
quantity studied is the granular temperature hv2i, which is,
however, increasingly ill-defined for clustering states (see

snapshots in Fig. 1). Furthermore, as we will see below in a
simple derivation of Haff’s law, the speed of the particles is
a more fundamental quantity. Also, the cooling process
mainly involves the nonclustered particles, and in a video
imaging setup with a limited spatial resolution it is practi-
cally impossible to determine any very small particle
speeds in the clustered parts of the sample. Therefore,

FIG. 1. Cooling process for mechanically (left) and magneti-
cally (right) excited system. Snapshots taken at the driving
switchoff (a), the Haff time (b), and after cooling has
completed (c).
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simulations experiment
Figure 1.13: Experimental cooling of a three dimensional granular gas by Maaßet al. [46]. Particles
are levitated magnetically and cool down during 10 seconds. Snapshots are taken at 5 seconds
intervals and present pattern formation.

The free cooling mechanism of granular materials and the temporal evolution of the granular
temperature T in this kind of systems have been studied intensively by Haff [47]. The model
considers N spherical particles of cross section σ, moving with an initial mean velocity v0, in a
closed system of volume V . During the cooling process, the inelastic collisions lead to a continuous
energy decay that is captured by the following law,

d

dt
T = − (1− ε2)

τ
T. (1.6)

The time τ between two successive collisions is given by `/〈v〉 where 〈v〉 is the mean speed in
the system and ` the mean free path between two impacts. In the dilute limit, the latter can be
estimated via the relation ` = 1/(ησ), where η = N/V is the number density of the system. Since
T ∝ 〈v〉2, equation (1.6) can be reformulated into

d〈v〉
dt

= − (1− ε2)ησ

2
〈v〉2 (1.7)

Solving this differential equation, with the initial condition 〈v(0)〉 = v0, yields in Haff’s law in its
original form,

〈v(t)〉 =
v0

1 + t/τH
; τH =

2

v0(1− ε2)ησ
, (1.8)

where the typical time scale τH characterizes the cooling intensity. This hyperbolical evolution
of the mean speed has been verified several time as well experimentally [48] as numerically [49].
However, for long cooling times, the uniformity of the spatial distribution of the particles does not
hold on. Accordingly, a constant η can no longer be used. Considering a time-dependent number
density η(t) = ηf(t), Haff’s law can be adapted,

〈v(t)〉 =
v0

1 + 1/τH
∫ t
0
f(t)dt

. (1.9)

Finally, once the quasi totality of the grains contribute to the central agglomerate, the system
presents again a classical Haff cooling. Indeed, the cluster can be seen as one big particle with a
mean free path of the order of the container size. In this case, energy is only lost during collisions
with the walls. By combining the three models, the complete evolution of the mean speed can be
captured. Figure 1.14, taken from [46], describes this evolution for two different types of driving.
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law [Eq. (2)] and dashed lines the corrections for time-
dependent particle numbers [Eq. (3)]. All parameters are
known from independent experiments: the excited state
yields v0, while the container size, particle number n0,
and size ! are fixed. Thus there are no adjustable parame-
ters in the curves. The cooling behavior starts to deviate
from Haff’s law as soon as the cluster begins to form. This
can happen at times later than the typical Haff time, as can
be seen in the mechanically shaken sample. In the mag-
netically shaken sample, this roughly coincides with the
Haff time, which is marked by an arrow in Fig. 5. See also
the snapshots in Fig. 1. The deviations are in very good
agreement with our calculations derived from the extracted
particle numbers. Note also that we have no free fitting
parameters left, as speed and mean free path can be ex-
tracted from the video data and the restitution coefficient
can be established independently.

Especially in the mechanically excited system, we can
observe that at a time of about 10 s after switchoff, when all
but a few particles have merged with the cluster (Fig. 2),
the system seems to revert to a Haff-like behavior.

We see that there are no qualitative differences in the
plots for different excitation methods. This implies that
both methods produce a similar state of initial excitation.
However, the experiments differ in sample density and
particle speeds, which allows us to probe the parameter
space and test the scaling of Haff’s law with respect to
these parameters.

In conclusion, we have demonstrated a novel method to
study granular cooling directly, validating Haff’s law. The
data can be described by the decreasing density of the free
particles outside the cluster. This gives a description of the
cooling ground state of a granular gas even in the presence
of clustering. Theoretically, the challenge remains to cal-
culate the temporal dependence of the density of free
particles from clustering properties in order to have a full
description of the system.
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FIG. 5 (color online). Mean particle velocity versus time for the mechanically (left) and magnetically (right) excited system. Haff’s
law without [dotted lines, see Eq. (2)] and with [dashed lines, see Eq. (3)] cluster correction. Time starts from end of shaking, arrows
mark the Haff time "H . At very late times, the system reverts to the cooling behavior of a single particle, which is determined by the
size of the container (thin solid line).
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Figure 1.14: (Taken from [46]) Evolution of the mean speed 〈v(t)〉 for mechanical (left) and
magnetical driving (right). Thanks to the three models, the entire evolution can be captured. The
red arrow indicates the Haff time τH at which 〈v(t)〉 reaches the half of its initial value.

Cooling phenomena appear in granular media as soon as there is no more external energy
supply. However, even when a granular material is continuously driven, a significant fraction
of its composing particles might be unaffected by the energy injection, especially if the latter
occurs only near the borders. This means that patterns might also form within a hot granular
gas [50, 51]. Pioneer works concerning the apparition of such a dynamical cluster of grains have
been realized by Falcon et al. in the late nineties [52, 53]. Their experiment consisted in three
cubic cells filled with different amounts of bronze spheres. The whole setup was then oscillated
under microgravity condition in a Mini-Texus sounding rocket. Depending on the filling fraction
of the system, clustering could be observed. For the two highest fillings, a dense aggregate of
grains was located in the center of the cell. This cold region of low energy is however surrounded
by a hot granular gas that transmits the incoming impulse from the borders of the system. The
dynamical aspect of this kind of pattern is important. Indeed, the formation of observed cluster is
the result of a complex equilibrium between the injected and the dissipated energy. Accordingly,
the continuous oscillation of the system is needed in order to maintain the system in its bi-phasic
state. If the driving is suddenly stopped the cluster evaporates into the gaseous phase and a
cooling process begins. One assists to a transition from a dynamical cluster to a cooled cluster.

1.6 Segregation

In a system presenting a dynamical cluster, the particles that compose the granular material seem
to be ordered according to their velocities. Indeed, the central part of the cell contains mostly
slow grains while the surrounding region is composed by fast gas grains. In general, segregation
phenomena are not only observed in dilute granular systems but are commonly encountered in
each dynamical regime of granular materials.

Every year the industry processes large amounts of granular materials. Unfortunately, most
operations induce a segregation of the composing particles of the treated material. The vibrations
due to transport or the granular flows trough divers machines can be enough to separate the
components of a mixture that was meant to be homogeneous. A similar phenomenon, known as
Brazil Nut Effect (BNE) [54–57], occurs when you pour a poly-disperse mixture of particles into
a bowl. The more the bowl is manipulated, the more large particles can be found at the surface.
For instance, the parts a and b of figure 1.15 show respectively the state of a bi-disperse mixture
of spheres before and after vertical shaking of the system. The large metallic beads traveled all
the way up to the top of the pile.

Binary granular mixtures do not only segregate because of size variations between the com-
posing particles, various parameters such as the mass or the rugosity of the grains can lead to a
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x

Fig. 1. (Top) Typical view of an axial segregation pattern. Dark grains are smaller than white grains.
The picture emphasizes that bands are characterized by di!erent slopes. (bottom) Sketch of the segregation
pattern. The slope di!erence "! between adjacent bands leads to a segregation #ux "s in the Savage’s
model.

reported [3] that the bands merge and only three stripes remain after very long times.
One should also remark that magnetic resonance imaging (MRI) experiments have
shown that a radial segregation is also present in the center of the tube [9]. Small
grains being located in the center of the tube.
On the theoretical side, it has been proposed [10] that the axial segregation is similar

to a spinodal decomposition. A simple and elegant model for di!usion of the di!erent
sand species along the tube axis has also been proposed by Savage [11]. This model
considers the di!erence "! of dynamical angles for both species as a relevant param-
eter. If #(x; t) is the density of one species along the tube axis x, the di!erent slopes
involve a segregation #ux

"s = $
9#
9x (1)

for that species. The positive coe$cient $ is a function of the slope di!erence "! and
the rotation speed ! of the tube. In addition, a Fickian di!usion

"d =−D 9#9x (2)

is taken into account. The di!usion coe$cient D is a function of the rotation speed !.
Summing both #uxes and taking into account the continuity equation for "s+"d, one
[11] obtains the classical di!usion equation

9#
9t = De

92#
9x2 (3)

with an e!ective di!usion constant De = D − $ which could be negative for de%ned
"! and ! values. A negative coe$cient explains the formation of bands because any
inhomogeneity in # is then ampli%ed towards full segregation. The Savage’s model

Figure 1.15: (Left, photos by C. Vandu) Initial pile of bi-disperse spheres, large particles are placed
on the bottom. After vertical oscillations, the large particles traveled all the way up to the surface.
(Right, photo by H. Caps) Rotating cylindre filled with binary granular mixtures. Both granular
species have different angles of repose and axial segregation is observed.

separation. In the case of a rotating drum experiment [58–61] as presented in figure 1.15, it is
the difference between the angle of repose of both granular species that triggers the segregation.
Initially, a homogeneous mixture is placed in a cylindrical container that rotates around its axis of
symmetry. Avalanches occur and after a few minutes bands corresponding to the different particle
species emerge. Moreover, Magnetic Resonance Imaging (MRI) experiments have shown that a
radial segregation is also present in the center of the tube [62].

Segregation can also lead to a localization of granular materials and can be used to sort out its
composing grains. As shown in figure 1.16, by dividing the bottom of an oscillating cell containing
a granular gas into several subcells, it is possible to locally trap particles. For an initial strong
driving, particles move around the system and are not influenced by the subcells. When the
driving is sufficiently decreased, grains start to gather in one of the small compartments. This
phenomenon is the granular pendant of Maxwell’s demon [63,64] and was considered as a paradox
for a long time. Indeed, it seems that despite a constant energy injection, the system’s entropy
decreases since the particles gather. An explanation of the phenomenon is simply given by the
dissipative character of the collisions. In order to jump out of its subcell, a particle needs a certain
amount of energy that is always granted for strong driving. For lower excitation, it is not that
easy for a grain to leave its compartment and rapidly multiple grains can be found in the same
subcell. The interactions between those grains lead to a loss of energy so that escaping becomes
even more difficult. The consequence of this vicious circle is the gathering of all the particles.
Maxwell’s granular demon has been studied intensively [65–67]. Different cell geometries and
granular mixtures have been tested and even more complex systems as granular fountains [68] and
ratchets [69] could be rationalized. Regarding the next section, it is interesting to note that recent
studies [70] stress the importance of gravity on the phenomenon.

Figure 1.16: (Phys. Rev. Lett cover page april 2002) Granular version of Maxwell’s demon. For
an initial strong driving, particles move around the system and are not influenced by the subcells.
When the driving is sufficiently decreased, grains start to gather in one of the small compartments.
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1.7 SpaceGrains project

SpaceGrains (SG) is an international project of the European Space Agency (ESA) whose goal
is to study the dynamics and the statistical mechanics of granular materials in microgravity en-
vironment. A series of experiments taking place in the ISS are programmed for 2019 and are
nowadays prepared by collaborating scientific teams. The experiments focus on various thematics
as clustering, thermal fluctuations, convection, segregation and physical phenomena related to
excited granular systems. In order to organize the research, four different working packages (WP)
were established: WP1 (Granular gases and pattern formation), WP2 (Dense granular systems),
WP3 (Convection) and WP4 (Segregation and phase separation). In the instrument, each WP







13391-TN-ER-032-AFigure 1.17: Schematic view of the experimental instrument of the SpaceGrains project as pre-
sented in september 2011 by COMAT at an ESA Topical Team Meeting in Paris. (Left) Complete
payload. (Right) Exchangeable experimental cell.

has a specific cell. Their general design consists of a 3D cell filled with particles where two op-
posite container walls act as vibrating pistons and inject energy. The containers can be split into
several sub-compartments and can be exchanged on the instrument. The number of particles N ,
the driving amplitude A and the frequency f are tunable parameters of the system. Moreover,
the distance L between both pistons at rest can also be modified in order to vary the accessible
volume of the cell. Impact force sensors are used to resolve collisions of particles on cell walls
and to estimate the velocity distributions of the particles. Accelerometers screwed in the shaft of
each vibrating piston allow to infer mean injected power and the temporal fluctuation of injected
power. Two high speed cameras film the system, and perform quantitative measurements from
particle tracking in dilute regime and correlations between particle displacements. Figure 1.17
shows a schematic view of the instrument and its design.

1.8 Personal contribution

The main goal of this work is to make predictive simulations in order to prepare the working
packages WP1 and WP4 of ESA’s SpaceGrains project. However, granular materials, being a
paradigm of dissipative systems, our research is also of fundamental interest from a scientific and
an industrial point of view. The present work is divided into two main parts. The first concerns the
gathering of particles in microgravity and the conditions that lead to phase transitions. The second
part concerns the manipulation of granular agglomerations and their dynamics in the stationary
state.

The main actor in these phenomena is the dynamical clustering process that can be encountered
in granular gases. The first step, in this purely numerical work, was the adaptation of our home
made software, initially dedicated to granular compaction, to the simulation of granular gases. For
this purpose, we proceeded to the reproduction of the Mini-Texus experiment by Falcon et al. [52].
A numerical counterpart of the original setup was designed and the same experimental protocol
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was applied. All observed dynamical regimes could be reproduced and new ones were discovered.
The results concerning this research were published in Physical Review E and are joined to the
manuscript.

Once our model validated, we proceeded to first predictive simulations concerning the clustering
phenomenon in SpaceGrains. The experimental cell of WP1 was reproduced and the necessary
conditions for dynamical clustering were explored. This work is of great importance. One the one
hand, it helps to fix the range of the parameters for future experiments, on the other hand it allows
a better understanding of the different encountered phenomena et has provided a model predicting
the formation of a cluster. Further details are given in our joined article that was published in
Europhysics Letters.

Once the clustering mechanism was rationalized, we turned towards the manipulation and the
handling of granular materials. Inspired by the work of Dorbolo et al. [65], we designed a partic-
ular cell geometry which may allow the apparition of Maxwell’s demon within the SpaceGrains
instrument. We tested numerically a compartmentalized version of the experimental cell in order
to trigger locally a dynamical cluster. Our research is exposed in Physical Review E. and is in
good agreement with previous works [66,67].

In parallel to the work concerning Maxwell’s demon, we investigated the behavior of a cluster
which is exposed to an asymmetrical driving. Indeed, in the SpaceGrains cell, the motion of
both pistons is independent and can easily be modified. By tuning the amplitude ratio, in order
to obtain a hot and a cold boundary, the cluster’s equilibrium position can be moved along
the axis of vibration. By connecting several cells via small apertures, this process can be used
to create ratchet effects in the system and may provide a way to transport granular materials
in microgravity. The global dynamics of the cluster and its fluctuation around the position of
equilibrium are described by a theoretical model. Concerning works were submitted to European
Physical Journal E.

Finally, the clustering behavior of a bi-disperse granular gas was studied. Dynamical clustering
is observed and goes hand in hand with a segregation of the granular material. Deeper investiga-
tions concerning the particles of the SpaceGrains experiment were performed and the theoretical
model predicting the clustering for a mono-disperse system could be adapted. Taking into account
the latest interest of the scientists and companies in the industrial exploitation of asteroids and
other near-Earth objects, clustering and segregation phenomena are of great interest since they
could help to sort out valuable materials in microgravity. Our results were submitted to European
Physical Journal E.
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Chapter 2

Molecular Dynamics

In order to study properly a granular gas, long and stable microgravity conditions are required.
However, the costs and the preparation time for experiments in parabolic flights, sounding rockets
or on the ISS are important. Moreover, strict security requirements have to be respected which
often complicates the development of the instruments and may even cause the abortion of some
risky experiments. An interesting and powerful answer to this problematic is given by numerical
simulations.

2.1 History and origins

Molecular Dynamic (MD) simulations are a computational method developed in the late seven-
ties in order to model the behaviour of atoms and molecules in liquid or gaseous environment.
Nowadays, the MD algorithm is still used in biological research for the calculation of the time
dependent behaviour of molecular systems. Cundall and Strack [71] were the firsts to transpose
MD to granular materials in order to solve problems related to rock mechanics. The method con-
siders soft and deformable particles which interact through multiple collisions that are described
by adequate contact and friction laws. Moreover, it allows to calculate the instantaneous positions
and velocities of each simulated particle at any moment of time. This remarkable feature grants
the access to data that would remain unachievable experimentally. Given the recent technological
progress in terms of calculations speed and data storage, MD became more and more efficient and
is now one of the most reliable and widespread method for the simulation of granular materials.
Further details can be found in [72–74].

2.2 Principle

The basic principle of molecular dynamic simulations relies on a simple algorithm: each particle i
is given an initial position ~ri(t0) and an initial velocity ~vi(t0). During a time step dt, the particles
move according to their velocities and new positions are obtained. Overlaps with other grains
or with the boundaries of the system may be observed and have to be treated in order to model
the corresponding contact. A repulsive force is derived from the depth of the overlap and applied
to the concerned particles. Finally, the forces are integrated and new velocities are obtained.
Figure 2.1 gives a schematic overview describing the algorithm used for the simulation of soft
granular matter.

2.3 Force computation

Whenever two particles i and j collide, a series of forces appear at their point of contact. By
defining an appropriate orthonormal basis B, these forces can be decomposed into a normal force

29
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Initial state
{~ri(t0), ~vi(t0)}

Contact
detection

Force
computation

New state
{~ri(t), ~vi(t)}

first time step

overlaps

integration

next time step

Figure 2.1: Schematic overview describing the principle of the molecular dynamics algorithm used
for the simulation of soft granular matter.

~Fnij and a tangential force ~F tij . If one denotes ~ri and ~rj the respective positions of both particles
the normal vector ~nij , along which the normal force is orientated, is given by

~nij =
~ri − ~rj
|~ri − ~rj |

. (2.1)

In other words, ~nij is the unitary vector pointing from particle j towards i. The tangential vector
~tij is obtained via the sliding velocity ~vsij of the contact point. This velocity depends on the
translational velocities ~vi and ~vj as well as on the rotational velocities ~ωi and ~ωj of the grains,

~vsij = (~vi − ~vj)− ~nij [(~vi − ~vj) · ~nij ]− (Ri~ωi −Rj~ωj)× ~nij . (2.2)

The tangential vector can then simply be defined by the normalization of the sliding velocity,

~tij =
~vsij
|~vsij |

. (2.3)

In order to complete B, the third basis vector ~sij is defined by ~sij = ~nij × ~tij and the origin of
the axes is the point of contact. Figure 2.2 presents a schematic view of the contact between the
particles and the corresponding normal and tangential vectors.

j

i

~nij ~tij

Figure 2.2: Schematic view of contact between two spherical particles i and j. The normal
vector ~nij and the tangential vector ~nij are represented by red arrows. The bended black arrow
corresponds to the displacement of the contact point.
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2.3.1 Normal component
When a soft body collides in nature, an elastic deformation is encountered. For instance, when
a tennis ball impacts the ground, it flattens since its kinematic energy is partially converted into
a potential energy of deformation. Eventually, the stored energy is released and the ball bounces
off the court.

In 1882, Hertz proposed a law giving the force that is exerted on such a spherical particle
impacting a flat surface [75]. However, in order to model entirely a granular system, this law has
to be adapted to the collision between two spherical particles i and j. The resulting contact force
depends on the radii Ri and Rj of the grains and on the nature of the used material,

FHertzij =
2Y

3(1− P 2)

√
Rij |δij |3/2 where Rij =

RiRj
Ri +Rj

. (2.4)

The parameters Y and P are respectively the Young and the Poisson moduli. The penetration
depth δij , which numerically corresponds to an overlap, is defined by δij = |~ri − ~rj | − (Ri + Rj).
Despite the great reliability of this model, a simpler law is frequently used to estimate the normal
forces at impact. Indeed, Hooke’s law describing the force needed to extend or to compress a
linear spring can also be used to describe a contact. One has,

FHookeij = −knδij . (2.5)

The stiffness parameter kn is a function of the grain’s radii and the Young modulus. Using Hooke’s
law has the advantage that the duration ∆tc of the contacts does not depend on the impact velocity
of the particles. Since multiple collisions, as expected for clustered systems, require a time step
dt much smaller then ∆tc, the control of the latter is of great importance. For this reason, we
decided to use Hooke’s law for our simulations.

ji

kn

⌫

Figure 2.3: Modeling of the contact between two spherical particles i and j by a linear spring-
dashpot model of stiffness kn and viscosity ν.

Given the dissipative character of granular materials, a part of the mechanical energy is lost
at the impact. This inelasticity can be modeled in different ways. A first very simple approach is
to exchange springs during the collision. A first spring of stiffness kn is used while the spring is
compressed and a second one of stiffness ke < kn is used at relaxation. The value of ke is linked
kn via the coefficient of restitution ε according to following relation,

ke = ε2kn. (2.6)

Even though this model grants a good reproduction of the energy loss during a collision, it is not
very realistic and another method was used to introduce the dissipation in our simulations. The
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loss of energy can also be modeled by adding a viscous friction force to the system. This force
depends on a viscosity parameter ν and on the velocity of the deformation,

F νij = −ν dδij
dt

. (2.7)

The coupling of this viscous force with Hooke’s law, given in equation (2.5), results in a linear
differential equation that can be solved analytically. Naming the masses of both particles mi and
mj , the following relation is obtained

mij
d2δij
dt2

+ ν
dδij
dt

+ knδij = 0 where mij =
mimj

mi +mj
. (2.8)

Accordingly, the contact duration ∆tc and the restitution coefficient ε can be reformulated as,

∆tc = π

√
mij

kn

(
1− ν2

4mijkn

)−1/2
, (2.9)

ε = exp

(
− ν

2mij
∆tc

)
. (2.10)

These relationships create a link between the physical parameters, ∆tc and ε, and the numerical
parameters, kn and ν. Practically, kn can be estimated by balancing the typical kinematic energy
of a grain in the system with the potential energy produced by an overlap δij = Rij/100. Since ε
is fixed by the nature of the material, ν and ∆tc can be easily deduced.

Despite the fact that there are no physical arguments to justify a viscous dissipation, the
coupling of a linear spring with a viscous damper, commonly known as linear spring-dashpot, is
the most frequently encountered model.

2.3.2 Tangential component

Unless the impact velocities of two colliding grains are perfectly aligned, tangential friction forces
appear at contact. These forces can be described by Coulomb’s law [76, 77] stating that the
tangential force F tij is proportional to the normal force Fnij , in particular,

|F tij | ≤ µFnij . (2.11)

The parameter µ is the dynamic friction coefficient. As one can see in the left part of figure 2.4,
the signature of the tangential force is linked to the sliding velocity vsij of the contact point and
the value of F tij is undetermined for vsij = 0. Since this behavior has to be avoided numerically, a

µFn
ij

�µFn
ij

µFn
ij

�µFn
ij

vs
ij vs

ij

F t
ij F t

ij

kt

Coulomb’s law Regularized law

Figure 2.4: Modeling of the contact between two spherical particles i and j by a linear spring-
dashpot model of stiffness kn and viscosity ν.
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regularized version of Coulomb’s law is used in our simulations. For this purpose, both possible
values are connected by a steep segment of slope kt � kn and the tangential force is given by,

F tij = −min(kt|vsij |, µFnij). (2.12)

However, a problem remains, for vsij = 0 the generated tangential force is nil. This implies that the
stabilization of a static pile of grains becomes impossible. Since we will only study dilute dynamic
systems, the regularized form of Coulomb’s law is sufficient for our simulations.

2.4 Integrating the forces

The next step of the algorithm is to integrate the forces and to move the particles of the system
according to Newton’s equations of motion. Given the presented decomposition along a normal
and a tangential vector, the total force that is exerted by a particle j on a particle i can be written
as the following

~Fij = Fnij~nij + F tij~tij . (2.13)

The corresponding torque ~Mij is given by

~Mij = Ri ~Fij × ~nij . (2.14)

At each time step, the following system of equations has to be solved for all particles in order to
deduce the all new positions and velocities based on their old values. One has,





mi
d~vi
dt

=
∑
j 6=i

~Fij + ~Fi,ext

Ii
d~ωi
dt

=
∑
j 6=i

~Mij

(2.15)

where ~Fi,ext is the sum of all external forces acting on the particle i. The parameter Ii corre-
sponds to the inertia of a filled spherical particle of mass mi and radius Ri rotating around its
axis of symmetry. Applying a second order theta-method, with dt = ∆tc/100 for the numerical
integrations, leads to the new position,

~ri(t+ dt) = ~ri(t) + ~vi(t)
dt

2
+ ~vi(t+ dt)

dt

2
, (2.16)

~vi(t+ dt) = ~vi(t) +
1

mi

∑

j 6=i

~Fijdt+ ~Fi,extdt. (2.17)

The rotation of a vector ~a through an angle θ around a unit vector ~u = (ux, uy, uz) can be
realized via the well known three dimensional rotation matrix R(~u, θ) given in (2.18). Accordingly,
the components of ~a, after the rotation, are given by R(~u, θ)~a. The matrix is given by




cos θ + u2x(1− cos θ) uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uy sin θ
uyux(1− cos θ) + uz sin θ cos θ + u2y(1− cos θ) uyuz(1− cos θ)− ux sin θ
uzux(1− cos θ)− uy sin θ uzuy(1− cos θ) + ux sin θ cos θ + u2z(1− cos θ)


 . (2.18)

However, this method requires an important number of operations and leads to an accumula-
tion of numerical imprecisions. A more stable method consists in the application of quaternion
calculation. The set of quaternions H is a four dimensional vector space over the real numbers.
It is provided with three intern operations: addition, scalar multiplication and a more particular
one called the Hamiltonian product (∗). This definition requires the choice of a basis which is
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generally denoted as (1, i, j,k) where 1 is the identity quaternion. Accordingly, every q ∈ H can
be written as

q = q01 + q1i + q2j + q3k = (q0, q1, q2, q3). (2.19)
Let p and q be two quaternions and r a scalar. One has,

q + p = (q0 + p0, q1 + p1, q2 + p2, q3 + p3), (2.20)
rq = (rq0, rq1, rq2, rq3). (2.21)

The Hamiltonian product is given by

q ∗ p =




q0p0 − q1p1 − q2p2 − q3p3
q0p1 + q1p0 + q2p3 − q3p2
q0p2 + q2p0 − q1p3 + q3p1
q0p3 + q3p0 + q1p2 − q2p1


 . (2.22)

It is now possible to make a link between the classical rotation matrix and the set of quaternions.
For any quaternion q ∈ H, one can define following matrix

R(q) =




1− 2q22 − q23 2q1q2 − 2q3q0 2q1q3 + 2q2q0
2q1q2 + 2q3q0 1− 2q21 − 2q23 2q2q3 − 2q1q0
2q1q3 − 2q2q0 2q2q3 + 2q1q0 1− 2q21 − 2q22


 . (2.23)

Using simple trigonometric relations, one can show that R(p) = R(~u, θ) if one chooses the quater-
nion p as the following

p =

(
cos

θ

2
, ux sin

θ

2
, uy sin

θ

2
, uz sin

θ

2

)
=

(
cos

θ

2
, ~u sin

θ

2

)
. (2.24)

Finally, using the definition of the Hamiltonian product, one can easily prove that several rotations
can be composed so that one has

R(q)R(p) = R(q ∗ p). (2.25)

In our simulations each particle i is orientated via its own local basis Ei(t) that can be repre-
sented by a three dimensional matrix. The latter is initialized by the vectors ~ex = (1, 0, 0), ~ey =
(0, 1, 0) and ~ez = (0, 0, 1) meaning that Ei(0) = I,∀i. This particular choice yields in an instanta-
neous evaluation of the new basis after the first rotation. Thanks to relation (2.25), this method
can be used recursively so that the numerical effort for the next rotations is reduced to the calculus
of a Hamiltonian product (28 operations) instead of a matrix product (45 operations). All we have
left to do is to make the link between the angular velocities of the grains and the quaternions.
From relation (2.15) it is possible to deduce the new angular velocity,

~ωi(t+ dt) = ~ωi(t) +
1

Ii

∑

j 6=i

~Mijdt. (2.26)

As for the linear position ~ri(t+ dt), the angular position θi(t+ dt) is obtained via a second order
theta-method for which each particle i rotates at angular velocity ~ωi(t) during the first half time
step and at ~ωi(t+ dt) during the second. If one defines the quaternions pi(t+ dt) and qi(t+ dt)
as the following,

pi(t+ dt) =

(
cos
||~ωi(t)||dt

4
,
~ωi(t)

||~ωi(t)||
sin
||~ωi(t)||dt

4

)
, (2.27)

qi(t+ dt) =

(
cos
||~ωi(t+ dt)||dt

4
,
~ωi(t+ dt)

||~ωi(t+ dt)|| sin
||~ωi(t+ dt)||dt

4

)
. (2.28)

the new angular position is obtained by multiplying qi(t + dt) ∗ pi(t + dt) with the product of
all previous rotation quaternions noted Pi(t). Given relation (2.25), the corresponding rotation
matrix gives automatically the new local basis of the particle i. Indeed, one has

Ei(t+ dt) = R(qi(t+ dt))R(pi(t+ dt))Ei(t) = R(qi(t+ dt) ∗ pi(t+ dt) ∗Pi(t))I. (2.29)
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2.5 Applications
In the following section, some applications of our algorithm are proposed in order to demonstrate
the polyvalence of MD and to highlight the importance of several numerical parameters as friction
and restitution. Segregation phenomena and particular behaviors of granular flows are reproduced
and the velocity distributions of driven rod-shaped particles are captured.

2.5.1 2D billiard
The example of a two dimensional billiard demonstrates the importance of the friction in the
system. The simulations start with five discs at rest (gray points) in the system and another disc
(black point) with an initial velocity ~v0. The further evolution of the system depends strongly on
the friction coefficient. Figure 2.5 describes the trajectories of all particles (for µ = 0.4 on the left
and µ = 0 on the right side) during three seconds. One can easily see that the system’s dynamics
are modified since the first collision. Moreover, it is to note that the presence of friction leads to
partial transformation of the kinematic energy of translation into and kinematic energy of rotation
which might explain why the frictional system is less explored.

µ = 0.4 µ = 0.0

Figure 2.5: Importance of the friction µ in a two dimensional billiard. Both simulations starts
with five discs at rest (gray points) in the system and another disc (black point) with an initial
velocity ~v0. The system’s dynamics are modified since the first collision.

2.5.2 Rotating drum
As presented in the introduction, a granular material can be fluidized using a rotating drum. Since
the presented tangential model doesn’t allow us to reproduce static phenomena, we focused on a
system with high rotation speed. We realized a two dimensional simulation (in analogy to a Hele-
Shaw cell) in which 1200 grains of radius R are rotated at high frequency ω in a drum of radius
Rd � R. As expected a steady granular flow is obtained and the surface presents the typical
S-shape as explained in section 1.3. Figure 2.6 presents a photography of the central region in a
rotating drum (left) and snapshots from the simulation (right). The linear color gradient describes
the speed of the particles normalized by the linear speed Rdω of the drum’s wall. This particular
study shows that, thanks to a simple modeling of the contact forces at the scale of the particles,
a macroscopic phenomenon can be reproduced efficiently. The following section is dedicated to
another of these phenomena.

2.5.3 Brazil nut effect
In this simulation we placed a large (gray) grain in the lower part of a mono disperse pile of
small particles. The system is then agitated continuously according to a sinusoidal signal. During
the driving the large particle rises upwards until it reaches the surface after about 10 seconds
(see figure 2.7). The color gradient applied on the small particles corresponds to the vertical
component of the velocity. The latter suggests the presence of convection in the system which
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Figure 2.6: (Left, Photography by Hubert Raguet) Experimental view of the central region in a
rotating drum. Surface flow and a slight S-shape are visible. (Right) Snapshot taken from our
rotating drum simulation. Steady granular flow and surface curvature is obtained. Color gradient
describes the speed of the particles normalized by the linear speed of the drum’s wall.

helps our intruder to realize its upwards movement. Once again our model gives excellent results.
Let us now consider more dilute systems such as the granular gases as studied by Harth and
coworkers [42] and analyze the distribution of the internal speeds.
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Figure 2.7: Simulation of the Brazil nut effect. The large intruder particle rises up in a driven
media composed by smaller grains. Convection may play a role in the process as suggested by the
distribution of the vertical velocities in the system.

2.5.4 Granular gases

An interesting feature of our simulations is the possibility to create our own particles by agglom-
erating spheres. For each particle a corresponding center mass ~cm and an inertia matrix can be
computed. The contacts between two particles are detected by testing the contacts between their
composing spheres. The particle is moved by integrating all the forces, as they were acting on ~cm,
and all the torques, by taking into account the distance of the contact point to the center of mass.

In our simulations, we realized rod shaped particles by aligning five spheres of radius R. The
latter overlap and form a spherocylinder of length l = 6R. In order to reproduce gas like dynamics,
150 rods are enclosed in a rectangular container. The whole system is then driven during 5 seconds
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with an amplitude A at frequency f . During the last second of simulation we recorded the linear
as well as the angular velocities of the particles in the system. Based on this data we established
the Probability Density Functions (PDF) of the normalized velocities:

ui =
vi

2Aπf
, Ωi =

wi
2πf

; (2.30)

where i ∈ {x, y, z}. All six distributions could be fitted by the universal law (1.5), presented in the
introduction. Since the excitation is uniaxial, the distributions along x and y are quasi identical
and can be plotted on the same graph. The distributions of the linear and the angular velocities
are presented in figure 2.8. The normalized velocities along the x, y and the z axes are represented
by crosses, circles and triangles respectively.
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Figure 2.8: Distributions of the normalized velocities along the x, y (left column) and the z axes
(right column) represented by crosses, circles and triangles respectively. The solid black line,
corresponding to the universal law presented in the introduction, is in excellent agreement with
our numerical data.

2.6 Other methods
Molecular dynamics do not represent the only way to simulate granular materials. In the following
two sections, a brief overview of two other popular algorithms that are used in the field of granular
physics will be given.

2.6.1 Event Driven Simulations (ED)
As the name suggests it, this algorithm is based on a series of events that occur one after each
other. An event can be a collision, the addition of a new external force or any modification of
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the system that could have an impact on its dynamics. Since the system is not modified between
two events, there is no reason to model it during this period. Accordingly, the simulation jumps
from one event to the next which implies a dynamic time step. At each event, the positions and
velocities of the relevant bodies are computed and a new time step (allowing to jump to the next
event) is evaluated. For dilute systems this method is very efficient. However, high densities
imply multiple collisions or even permanent contacts between particles. In such situations, the
resulting time step is nil and the simulation has to be aborted. In order to avoid the problem, a
hybrid algorithm, mixing ED and MD can be used. Indeed, once the time step becomes too small
to assure a efficient modeling of the system via event driven simulations, the algorithm switches
towards molecular dynamics until the critical situation is resolved.

2.6.2 Non Smooth Contact Dynamics (NSCD)
The non smooth contact dynamics algorithm has been developed in order to simulate frictional
hard spheres [78]. Unlike MD, the repulsive normal component in NSCD is derived from the
relative velocity at the impact. Moreover, Coulomb’s law is used in its exact form, without any
regularization. In order to avoid any indetermination, additional equations (a discretized form of
Newton’s third equation) are added into the system which leads to a coupling of all the contact
forces along the network of contacts. This model is particularly interesting for quasi static systems
for which large time steps can be used.
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Chapter 3

Phase transitions in granular gases

The dissipative character of a granular gas leads to a series of intriguing phenomena. The granular
temperature of the system drops continuously and dense agglomerates begin to form. The system
transits from a gaseous state towards a clustered state. The latter can be seen as a cold granular
liquid surrounded by a hot granular gas. In the late nineties, the first dynamical cluster is observed
in microgravity environment [52]. Realizing a series of experiments in a Mini-Texus sounding
rocket, Falcon et al. studied the dynamics of driven granular material. Three filling fractions
were tested and led to different behaviors. Moreover pressure measurements were performed using
piezoelectric sensors.

3.1 Motivations

In this chapter, I will present our work concerning granular phase transitions. In a first paper, we
reproduced Falcon’s experiment [52] in order to validate our numerical model. This step is very
important since the rest of our work relies on the efficiency of our numerical model. Moreover a
deeper investigation of the original system was performed and additional dynamical regimes were
detected. In a second publication, we investigated the impact of the driving parameters on the
cluster formation and linked the different dynamics to the mean kinematic energy in the system.

3.2 Original setup

The experiment is composed of three cubic cells of 1 cm3 in inner volume. The cell’s walls are
made of clear sapphire in order to allow a good vision while resisting to the constraints of the
experiment. Each cell is respectively filled with about 1420, 2840 and 4510 bronze spheres of
diameter 0.3-0.4 mm. An electrical motor drives the system sinusoidally at a frequency f with an

N = 1240 N = 2480 N = 4510

Figure 3.1: (Left) Experimental cells used by Falcon et al during sounding rocket experiments [52].
(Right) First observations of three dimensional dynamical clusters. The filling number N increases
from left to right. For large values of N , a dense and slow region forms in the center of the cell.
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amplitude A. The latter parameters are varied during the experiment in the ranges 1 to 60 Hz
and 0.1 to 2.5 mm respectively. The dynamics of the experiment are recorded via a CCD camera
fixed in the frame of the space probe. In order to realize pressure measurements, a piezoelectric
sensor is fixed at the top of each cell. A photography of the experimental setup is shown in the
left part of figure 3.1. The right part is a snapshot of the three cells taken at maximum downward
velocity for f = 30 Hz and A = 2.5 mm.

3.3 Experimental results

Falcon et al noted that, for increasing density, the particles in the cell interacted via inelastic col-
lisions which led to the formation of a dense and motionless cluster surrounded by a loose granular
gas. The latter behavior can be seen on the snapshot of the densest cell. For an intermediate
filling, a smaller cluster is reported. Indeed, the agglomerate doesn’t seem to spread out in the
entire horizontal plane.

3.4 Reproducing the experiment

In order to compare qualitatively the visual output of our simulations we choose to reproduce the
experiment corresponding to figure 3.1 (f = 30 Hz and A = 2.5 mm). We simulated spherical
particles with a density ρ = 8000 kg/m3 and a radius R = 0.175 mm which roughly corresponds
to the mean radius of the grains in the experiment. The coefficients of friction and restitution are
respectively fixed to 0.2 and 0.9. Particles are placed randomly and at rest in the three cubic cells
and are driven during 10 seconds (i.e. 300 cylces). In a second run, we realized a large number of
simulations in which we varied the number as well as the size of the particles in order to explore
more deeply the system’s behaviors.

3.5 Main results

The first important result of this study was the validation of our numerical model. As shown in
figure 3.2, all experimentally observed dynamics could be reproduced in our simulations. One can
note the excellent qualitative agreement with the experimental data presented in figure 3.1.

N = 1240 N = 2480 N = 5410

Figure 3.2: (Taken from [79]) Snapshots of the simulations corresponding to Falcon’s Mini-Texus
experiments. All observed dynamics are recovered and an excellent qualitative agreement with
the pictures of figure 3.1 is obtained. Dark shading corresponds to dense zones in the system.

A second result was the observation of new dynamics in the system. Indeed, we realized
simulations with even higher fillings than in Falcon’s experiment. Above a certain threshold, a
collective and coherent motion of the particles appears. The entire granular media behaves as one
single completely dissipative particle called the bouncing aggregate. Bouncing modes are observed
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and can be explained regarding the bouncing ball paradigm [80]. This specific behavior has been
observed experimentally by Bannerman, Kollmer and Sack [81–83] (see section 3.8). The final
result of our work was the realization of a phase diagram classifying the different encountered
dynamics (I granular gas, II partial cluster, III complete cluster and IV bouncing aggregate)
according to the packing fraction1 φ of the system and the normalized particle size r. In order
to treat efficiently the great amount of collected data, we developed an automated and reliable
cluster detection method based on a Kolmogorov-Smirnov (KS) test [84] that we continue to use
throughout all of our studies. The transition points detected by this method are represented by
circles, diamonds and squares on the below figure.

Figure 3.3: (Taken from [79]) Phase diagram describing the four encountered dynamical regimes.
I granular gas, II partial cluster, III complete cluster and IV bouncing aggregate. Squares corre-
spond to Falcon’s experiment, circles, diamonds and triangles correspond to the transition points
that were detected by our statistical method. Solid curves are only visual guidelines.

3.6 Conclusion
The results of this first study allow us to validate our numerical model. Moreover, the reliability of
our algorithm has been reinforced by the experimental observation of the bouncing aggregate [81–
83]. Finally, our work has shown that the dynamics in driven systems are much richer than
expected and that the encountered transitions can’t be explained by simple arguments as a limit
density or a critical number of granular layers [85] (represented by dashed lines on figure 3.3).

1In the articles [79,86] the symbol η was used instead of φ for the denomination of the packing fraction.
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We numerically investigated various dynamical behaviors of a vibrated granular gas in microgravity. Using the
parameters of an earlier Mini-Texus 5 experiment, three-dimensional simulations, based on molecular dynamics,
efficiently reproduce experimental results. Using Kolmogorov-Smirnov tests, four dynamical regimes have been
distinguished: gaseous state, partial clustering, complete clustering, and bouncing aggregates. Different grain
radii and densities have been considered in order to describe a complete (r,η)-phase diagram. The latter exhibits
rich features such as phase transitions and triple points. Our work emphasizes the complexity of diluted granular
systems and opens fundamental perspectives.
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I. INTRODUCTION

Granular materials exhibit a great number of intriguing
behaviors. Unlike continuous states, the dissipative character
of the interactions between the constituents of a granular
system triggers phenomena such as inelastic collapse [1]
and clustering [2,3]. Nevertheless, granular materials can
be found in different dynamical regimes similar to classical
thermodynamical states. Solid and liquid regimes have been
thoroughly investigated during the past few decades (rotating
drums [4], granular compaction [5,6], granular flow [7–9]).
Several models were established but could not give answers
to all fundamental questions [10]. The gas regime is far more
complex. Because of the numerous dissipative collisions, the
gaseous state needs a constant external energy supply to sub-
sist. Experimentation with vertically driven granular material
revealed the presence of resonance phenomena [11] convecting
rolls and granular Leidenfrost effects [12]. Gravitational forces
are an important factor for the dynamics that the system
displays [11,13]. In microgravity, pioneer work has been done
by Falcon et al. during Mini-Texus 5 experimentation [3]. The
presence of clustering has been reported. Different theoretical
mechanisms have been proposed to explain its formation [1]
but, experimentally, the criterion for the appearance of the
phenomenon is related to the number of layers in the box [3].
The transition between the gas and the denser regime has
motivated several studies and phase diagrams depending on
the vibration parameters A and ω and the restitution coefficient
ε have been established [14,15].

This work aims to perform numerical simulations in order
to emphasize the relevant parameters that trigger clustering in
a driven granular gas. We will show that clusters are dynamic
structures and that their formation is more complex than
expected.

II. MODEL

We are using a 3D model based on molecular dynamics
[16,17] where friction and angular momentum are taken into
account. Our approach differs from earlier simulations of hard
sphere granular gases based on event-driven algorithms [1,18]
where inelastic collapse was avoided by using a time cutoff
model [19]. The system is made of N spherical particles
gathered in a cubic container of size L3 following a sinusoidal

motion of amplitude A and angular velocity ω = 2πf along
the z axis. Identical particles have a mass m and a radius R.
At initialization, each one is given a different random position
(that allows no contact between the particle and the rest of the
system). Moreover, their initial linear and angular velocities
are null. Contact forces are computed following two simple
models.

Normal forces Fn
ij are composed by a repulsive (F rep

ij )
and a dissipative (F dis

ij ) component. The repulsive component
follows a simple Hooke’s Law,

F
rep
ij = −knδij , (1)

where δij = dij − 2R with dij the distance between the
centers of the solids i and j . The constant kn is the normal
stiffness which is a purely numerical parameter. Indeed, this
stiffness is not linked to specific physical properties of the
simulated material. It’s value is calculated in order to keep the
static deformation of the particles lower than 10−4R. (In our
simulations kn ranges typically between 100 and 1000 kg/s2).
The dissipative component is taken into account by viscous
forces according to the following law:

F dis
ij = −γn(kn,ε)

∂δij

∂t
, (2)

where the viscous constant γn is a nontrivial function of
the normal stiffness kn and the restitution coefficient ε.
This restitution coefficient is used for both grain-grain and
grain-wall collisions. In contrast to other models (like Hertz’s
model) using a Hooke’s Law and viscous dissipation allows
us to work with a constant contact duration 	t , independent
of the impact velocities. In order to assure the integration of
the forces, each contact should be resolved in about 100 time
steps τ (i.e., τ ≈ 	t/100).

Tangent forces F t
ij are bounded and depend on the relative

tangent velocities vt
ij between the colliding solids i and j . One

has

F t
ij = −ktv

t
ij and

∥∥F t
ij

∥∥ � μFn
ij , (3)

where μ is a friction coefficient and kt a purely numerical
constant. The friction coefficient μ as well as the restitution
coefficient ε can be adapted to fit the intrinsic properties of the
system. A complete description of MD simulations is given by
Taberlet [20].

051306-11539-3755/2011/84(5)/051306(5) ©2011 American Physical Society
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FIG. 1. (Top row) The experimental results for respectively
N = 1420, 2840, and 4510 particles at the box maximum downward
velocity [3]. Falcon’s experiments are represented by a square in
Fig. 5. (Bottom row) Numerical results in the same conditions. Dark
gray shading of the cluster is realized by a proximity rule described
in the text.

III. RESULTS

In a first step, we reproduced the results of Falcon et al. [3].
Bronze spheres of radius R are confined in a box of size
L considering the ratio r = R/L = 0.0175. The system is
oscillating with an amplitude of A/L = 0.25 and a frequency
of f = 30 Hz along the z axis. We set the friction coefficient to
μ = 0.2, the restitution coefficient to ε = 0.9, and the volume
density to ρ = 8 × 103 kg/m3. Figure 1 presents, from left to
right, the system with N = 1420, 2840, and 4510 particles at
its maximum downward velocity, −Aω. Dense regimes can be
observed thanks to shading effects [3]. The lower three pictures
of Fig. 1 correspond to our simulations where the dark gray
particles belong to the central cluster according to a simple
proximity rule: (i) two particles are neighbors if the distance
between them is less than 2.5r; (ii) particles that are close
enough to the system’s center of mass form a seed; (iii) step
by step, the seed is extended by its neighbors; and (iv) when
no other neighbors are found, the obtained cluster is colored
gray (see Fig. 1). Our simulations are in qualitative agreement
to the real experiment presented in the upper row. Indeed,
the most diluted system (N = 1420) of Fig. 1 remains in a
gaseous state and presents a density gradient decreasing toward
the center of the box. The densest case (N = 4510) presents
clustering around the center of the box and the distribution
is homogeneous over the xy plane (i.e., the plane that is
perpendicular to the direction of oscillations). However, the
intermediate case (N = 2840) presents partial clustering: the
cluster does not occupy the entire xy plane. The latter behavior
was not addressed in Falcon’s experiment but can be seen in
their pictures.

Based on these results, we realized a larger series of
simulations in the same conditions as Falcon et al. but
modifying the dimensionless radius r of the particles and the
volume fraction or density η = 4Nπr3/3 of the system. Since
we work with different grain sizes this last parameter seems
more appropriate than N . We choose 16 different values of r

ranging from 0.0139 to 0.032 and about 60 fixed density values
η ranging from 0.02 to 0.16. Unlike to the restitution ε, these
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FIG. 2. Semilog plot of the probability density function (PDF) of
the particle velocity along the z axis. Data is collected at the boxes
maximum downward velocity (−Aω) for the four different dynamical
regimes.

geometrical parameters can be easily tuned in experiments.
In our simulations, we distinguished four different dynamical
regimes as follows:

(i) Gaseous state: Encountered in dilute systems, the
grains exhibit a broad and asymmetric distribution of vertical
velocities vz as shown in Fig. 2. This asymmetry evolves
according to the phase oscillation of the box. Particles can be
found everywhere in the system, but their density is decreasing
from one wall toward the center of the box, as shown in Fig. 3.

FIG. 3. (Color online) Snapshots of the four dynamic regimes
when the box is at its maximum downward velocity −Aω. Different
colors correspond to selected ranges of the vertical velocity: dark
gray (blue) if |vz| < Aω, gray (green) if Aω � |vz| < 2Aω, and light
gray (orange) if 2Aω � |vz|.
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According to earlier experimentations [21,22], we found vx

and vy distributions of the form exp(−|v/v0|γ ) with γ ∈ {1,2}
and v0 as fitting parameter.

(ii) Partial clustering: For some values of the parameters,
the system presents a partial clustering. Particles are more or
less stabilized around the origin of the z axis but then start
to gather along a wall of the box. It could be assumed that
the system needs a typical cluster width to be energetically
stable. In the distribution of velocities along z (Fig. 2), a
sharp peak appears around zero which is a signature for
clustering. However, the distribution remains broad since a
gaseous regime coexists in the system. Multiple simulations
have shown that cluster can appear on a particular lateral
wall with a probability 1/4. Moreover, simulations in a
cylinder with identical volume and base section revealed that
the lateral clustering is not related to corner effects. Note
that the partial cluster is a subphase of the following total
cluster.

(iii) Complete clustering: When the density increases, we
observe that the cluster spreads over the entire xy plane.
A peaked velocity distribution around zero can be observed
in Fig. 2. One can note the presence of a second peak
at vz = ±2Aω (also seen for partial clustering) due to the
granular gas trapped in between the cluster and the vibrating
walls. A steady state due to the balance of condensation and
evaporation of the cluster is observed. By tracking particles
and analyzing the dynamics of clusterization during several
periods, we can conclude that the cluster is a dynamic
state with a constant renewal. Indeed, high-speed particles
arriving from the walls crush into the cluster, dissipate their
energy, and eventually become part of the cluster. The energy
partially transmitted across the cluster provokes internal
rearrangements and eventually ejects particles. It should be
noted that the packing fraction measured inside the cluster is
about η = 0.30 which is far below the jamming limit. A deeper
analysis of the collision frequency is also needed and will be
published elsewhere.

(iv) Bouncing aggregate: For denser systems a new phe-
nomenon is observed, the large amount of granular material
confined in the system leads to higher kinetic energy than in
other regimes. This energy cannot be dissipated only through
successive collisions like in a cluster. Indeed, the local density
in the system’s center is high enough to assure permanent
contacts between many particles, when the gaseous phase
encounters this denser region all the grains are pushed toward
the wall. The bouncing state is characterized by a coherent
motion of all particles and peaked velocity distribution around
±Aω. Particles stay gathered in a dense arrangement that
describes a movement similar to a totally dissipative bouncing
ball [23]. Moreover, density distribution along the z axis
reveals crystal-like structures inside the packing. In particular,
layers along the xy plane are observed.

In order to discriminate these four dynamic regimes, the
elaboration of an automated and reliable cluster detection
algorithm is of a capital interest. We choose a statistical test
based on the spatial distribution of the particles. Unlike in
the velocity distribution, the spatial distribution follows a
well-known theoretical law. Indeed, at very low densities,
when the system is assumed to be in a gaseous state, collecting
data every half-period during the last 5 s of simulations

demonstrated that the particle distribution along the three axes
were almost uniform. Moreover, with the exception of the steep
transition between the cluster and the bouncing aggregate,
the evolution of the velocity PDF is continuous when density
increases.

The detection of regime III is done by a two-sample
Kolmogorov-Smirnov (KS) test [24] with a significance level
α = 0.01. The KS test compares the cumulative distribution
function (CDF) of a uniform distribution with the CDF of the
particles distribution along the z axis. The null hypothesis (H0)
of the test is the assumption that the observed distribution is
uniform, hence, that the system is gaseous. The alternative
hypothesis is noted (H1). We define the parameter D as the
following:

D = sup
|z|�L/2

‖F (z) − U (z)‖, (4)

where F (z) is the observed CDF of the particle distribution
along z axis and U (z) the theoretical uniform distribution.
The KS test value is defined by Tz = D

√
n/2, where n is

the number of classes. H0 is rejected at level α if Tz > Kα .
The statistical threshold Kα can be found in tables. Regime II
displays a strong heterogeneity in the xy plane; therefore, its
detection relies on a two-sample KS test between the particle
distribution along the x and y axes with a significance level α =
0.01. The test is denoted by Txy . Finally, regime IV is detected
by analyzing frequency fluctuations in the center of the box.
If the central part of the box has a density at least 2 times
lower than the one corresponding to a uniform distribution, the
system is evolving like an inelastic body bouncing between two
oscillating plates. Figure 4 describes the cluster detection in
the studied system for a fixed dimensionless radius r = 0.0175
and for increasing density η. The first four graphics represent
the PDF of the positions along the x, y, and z axes at
specific (r,η) values illustrating the four regimes. The lower
graph describes the evolution of Tz and Txy compared to the
statistical threshold Kα and the evolution of the central class
frequency as a function of η. Density zones corresponding
to the different regimes are separated by red vertical lines.
One can see that both PDF and evolution of the KS test
are in good agreement with the behavior of the system
described in Fig. 3: four dynamical regimes are found when η

increases.
Using the above statistical method for detecting the cluster,

different transition points could be numerically obtained by
selecting a ratio r and by scanning the granular behavior
for various η values. The (r,η)-phase diagram, illustrated in
Fig. 5, shows the dynamical regimes from I to IV. Transition
curves are drawn and described below. It should be emphasized
that those curves meet on triple points. Earlier studies [3]
considered that the cluster may be expected once there is
initially more than a single layer of particles in the system. In
this configuration particle-particle collisions become frequent
events that encourage dissipation and, thus, cluster formation.
In our phase diagram, isolayer curves correspond to straight
lines with the equation

r = η

2ηeN

, (5)
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FIG. 4. Detection of different dynamic regimes with a two-
sample Kolmogorov-Smirnov test of level 0.01. (Top four graphs)
PDF of the positions of the particles where the square, circle, and
triangle denote, respectively, the distribution along the x, y, and z

axes. (Bottom graph) The KS tests Tz and Txy as well as f (z = 0),
the frequency of the central class along the z axis as a function of the
density η when r = 0.0175.

where ηe is determinate by using Falcon’s data and N is the
number of granular layers. The gas-cluster frontier (©) is
better described by the empirical law

rmax − r = β

(
1 − η

η

)
, (6)

where β ≈ 6.88 × 10−4 is a constant. Equation (6) supports
two arguments: (i) There is a critical dimensionless radius
rmax ≈ 0.032 above which no cluster appears and (ii) the
ratio between free volume and occupied volume is a relevant
parameter. It should be noted that this ratio is also relevant for
describing the mean free path in our system. One can say that,
globally, two physical ingredients are necessary to describe the
gas-cluster transition: confinement (since a maximum radius
exists) and inelastic collisions (since the mean free path is
relevant).

The transition curve between partial and complete cluster-
ing is rather complex. One should note that partial clustering
is present only for small particles.

FIG. 5. (Color online) Phase diagram (r,η) distinguishing four
different dynamical regimes described in the text. Symbols
(©,∇,�,	) represent the transition points detected in our simula-
tions. The squares correspond to the parameters of Falcon’s et al.
Mini-Texus 5 experiments [3]. Dashed lines correspond to conditions
with a constant numbers of layers.

The bouncing aggregate regime (IV) appears for large
packing fractions. Large particles condense without clustering.
The frontier between gaseous and condensed states (	) is a
vertical line of equation η = 0.127. Considering the whole
granular assembly as a single inelastic body, this critical
value can be established theoretically by adapting the latest
results concerning the Fermi-Box problem [25]. A point mass
is confined in a box of height h which follows a sinusoidal
motion of amplitude A. For a restitution coefficient ε = 0, it is
shown that the dynamics switch from a monoperiodical motion
(similar to the diluted gaseous state) to a regime presenting
sticking phenomena (similar to the condensed state) once the
critical height h/A = π is reached. In our case, the size of
the particles cannot be neglected; therefore, the Fermi-Box
condition becomes

L − (
Lη∗
ηrlp

)
A

= π, (7)

where the random loose packing fraction ηrlp = 0.59 can be
used [26,27]. The value η∗ ≈ 0.127 is obtained and is in
excellent agreement with our numerical simulations.

For smaller particles, the transition between cluster and
bouncing aggregate is also triggered when η increases. We
have noted that the cluster-aggregate frontier (�) corresponds
roughly to the relationship r ∼ log N which consists of a
Lambert-W function provided by the inversion of

η ∼ 4π

3
r3 exp r. (8)

This transition curve needs deeper investigations since
different bouncing modes (like period doubling) can be
observed in some cases. This is left for future studies.

IV. CONCLUSION AND PERSPECTIVES

In summary, the phase diagram is richer than expected
since we have found four different dynamic regimes instead of
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gas/cluster regimes. Moreover, the transition curves cannot be
described by simple rules or arguments, except for the behavior
of large grains. Small variations of A and ω parameters will
slightly modify the diagram but the phases and the transitions
will be qualitatively recovered. Our results raise fundamental
questions and open new perspectives in particular for future
experiments in microgravity planned for the International
Space Station.
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3.7. COMPLEMENTARY MEASURES 49

3.7 Complementary measures
The following study is an extension of our work concerning the reproduction of Falcon’s experi-
ments. In addition to our first simulations, we investigated the influence of the driving parameters
on the system’s dynamics and on the transitions from one regime to another. Both the amplitude
A and the frequency f were modified so that three new phase diagrams could be obtained. We
showed that the varying f does not change the aspect of the phase diagram. Indeed, f only fixes
the time scale for which the phenomenon takes place. On the other hand modifying A has a large
impact on the dynamics. Our simulations with a smaller amplitude present only two of the initial
four regimes for identical filling fractions. However, the appearance of a dynamical cluster for such
small amplitudes is not trivial and can’t be explained only by a geometrical confinement.

A last measure consisted in the realization of an energy mapping of the system as a function
of the packing fraction2 φ and the normalized particle size r. Indeed, for a system with amplitude
A = 2.5 mm and frequency f = 30 Hz, we measured the mean kinematic energy K in the system
for all simulated couples (r, φ). As presented in figure 3.4, three particular energetic signatures
can be observed: low energy for small r and intermediate fillings, medium energy for dilute
systems of large particles and high energy for dense systems. If one places the transitions from
figure 3.3 (here in purple) onto the same graphic, it is obvious that each observed dynamical
regime (gas,cluster,bouncing aggregate) corresponds to a particular level of energy. Note that the
high energy level of the bouncing aggregate is corroborated by Sack et al. who identified it as the
regime of most efficient damping in their study [83] .

r (mm) η

K (mJ)

0.16

0.020.14

0.325
0

0.25

Figure 3.4: (Taken from [86]) Energy mapping of the system as a function of the filling fraction and
the particle size. For a system with amplitude A = 2.5 mm and frequency f = 30 Hz, we measured
the mean kinematic energy K in the system for all simulated couples (r, φ). One can note that
the different dynamical regimes present particular energy levels. Transition lines corresponding to
figure 3.3 are given in purple.

2In the articles [79,86] the symbol η was used instead of φ for the denomination of the packing fraction.
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Abstract. We propose a numerical model, based on molecular dynamics, which is able to
reproduce the behavior of a dissipative granular gas in microgravity. Granular material is
confined in a cubic box of side length L following a sinusoidal motion of amplitude A and
angular velocity ω = 2πf along the z-axis. The simulations are performed using the parameters
of earlier Texus experiments [15]. Our results are in excellent agreement with experimental
data. Moreover, we discovered various dynamical regimes and the physical conditions for their
appearance : a gaseous state, the formation of either small or large clusters, the collective
motion of grains. Phase diagrams are drawn where transitions between these different granular
states are emphasized. Transitions are discussed by considering Statistical Physics models.

1. Introduction
The intriguing behaviors of grains and powders fascinate scientists since the nineteenth century.
Properties like Reynolds dilatancy [1], Brazil Nut effect [2, 3], heterogenous force networks [4, 5]
and clustering [6, 15] have been discovered. Nowadays, granular material like coal, sand and
even powders are part of all economic activity such as agriculture, construction, cosmetics and
aerospace research.

Different granular states could be encountered. Solid and liquid states have been deeply
investigated during the last decades by studying granular compaction [7, 8, 9] and granular
flows [10, 11]. A great number of models were suggested but could not give complete answers to
all fundamental questions [12]. Among all phases, gaseous are the most complex. The dissipative
character of the collisions implies a constant external energy supply and microgravity to subsist.
Indeed, experimentation with granular material requires parabolic flights, sounding rockets,
drop tower experiments or ISS missions that are bound to high costs and long preparation
times. Nevertheless, these micro-gravity studies are of an capital interest in order to prepare
longtime space missions, to study the impact of asteroids [13] or to understand the dynamics of
planetary rings [14].

Pioneer work has been done by Falcon et al. during Mini-Texus 5 experimentation [15, 16].
Clustering has been reported and refers to particles mostly remaining in the center of the box,
forming a denser region in the system. Incoming particles are trapped in the cluster, while
other particles leave the dense region. Different mechanisms like inelastic collapse [17] have
been proposed to explain the clustering phenomenon. A criterion for the appearance of the
cluster has been proposed, based on experimental observation. It is related to the number of
grain layers inside the box. Low densitiy granular gases have been investigated by Evesque [18].
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Local measures of granular pressure and granular temperature as well as exponential velocity
distributions were reported. Numerical simulations have been realized and sustain experimental
results.

However, the behavior of granular gases, especially for extreme densities, is still not well
understood. Given the great number of parameters, too few experiments have been realized
and nowadays no model is able to describe completely the behavior of this material. A lot of
fundamental research will be needed to illuminate the remaining questions.

2. Model
In opposition to classical Event Driven algorithm (ED) [17, 19] for which inelastic collapse is
avoided by a time cutoff model [20], we are using a three-dimensional model based on Molecular
Dynamics (MD) [21, 22]. A cubic container of side length L, following a sinusoidal motion of
amplitude A and angular velocity ω = 2πf along the z-axis, is filled with N spherical particles
of mass m and a radius r. At initialization, each one is given a different random position (that
allows no contact between the particle and the rest of the system). Moreover, their initial linear
and angular velocities are null. Contact forces are computed following two simple models.

Normal forces Fnij are composed by a repulsive (F repij ) and a dissipative (F disij ) component.
The repulsive component follows a simple Hooke’s Law

F repij = −knδij (1)

where δij = dij−2r with dij the distance between the centers of the solids i and j. The constant
kn is the normal stiffness which is a purely numerical parameter. Indeed, this stiffness is not
linked to specific physical properties of the simulated material. It’s value is calculated in order
to keep the static deformation of the particles lower than 10−4r. (In our simulations kn ranges
typically between 100 and 1000 kg/s2). The dissipative component is taken into account by
viscous forces according to the following law

F disij = −γn(kn, ε)
∂δij
∂t

(2)

where the viscous constant γn is a non-trivial function of the normal stiffness kn and the
restitution coefficient ε. This restitution coefficient is used for both, grain-grain and grain-
wall collisions. In opposite to other models (like Hertz’ model) using a Hooke’s Law and viscous
dissipation allows us to work with a constant contact duration ∆t, independent on the impact
velocities. In order to assure the integration of the forces, each contact should be resolved in
about 100 time steps τ (i.e. τ ≈ ∆t/100).

Tangent forces F tij are bounded and depend on the relative tangent velocities vtij between the
colliding solids i and j. One has

F tij = −ktvtij and ‖F tij‖ ≤ µFnij (3)

where µ is a friction coefficient and kt a purely numerical constant. Friction coefficient µ as
wall as restitution coefficient ε can be adapted to fit the intrinsic properties of the system. A
complete description of MD simulations is given by Taberlet [23].
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3. Results
In our simulations, we reproduced the results of Falcon et al [15]. Three cubic cells of side length
L = 10 mm are filled with bronze spheres of radius r = 0.175 mm. The system is oscillating with
an amplitude A = 2.5 mm and a frequency f = 30 Hz. According to the materials properties,
friction coefficient is set to µ = 0.2, restitution coefficient to ε = 0.9 and volume density to
ρ = 8 103 kg/m3. Figure 1 presents simulations and experiments of the system with N = 1420,
2840 and 4510 particles at its maximum downward velocity −Aω. Dense regions are observed
thanks to shading effects [15].

N=1420 N=2840 N=4510

ba ba ba

Figure 1. (a) The experimental results for respectively N=1420, 2840 and 4510 particles at the
box maximum downward velocity [15]. (b) Numerical results in the same conditions. Shading
of the cluster is realized by a proximity rule described in the text.

The right three pictures (b) correspond to our simulations where dense regions are blackened
according to a simple proximity rule : (i) Two particles are neighbors if the distance between
them is less than 2.5r. (ii) Particles that are close enough to the system’s center of mass are
forming a seed. (iii) Step by step, the seed is extended by its neighbors. (iv) At saturation, the
cluster is colored in black (see Figure 1). Simulations are in a qualitative agreement to Falcon’s
experiment presented in pictures (a). Indeed, the less dense system (N = 1420) of Figure 1 stays
in a gaseous state and presents a density gradient decreasing towards the center of the box. For
the densest case (N = 4510) clustering is observed around the center of the box. Moreover,
the distribution is homogeneous over the xy-plane. Finally, the intermediate case (N = 2840)
presents a new phenomenon : the cluster does not occupy the entire xy-plane. That behavior
was not addressed in Falcon’s experiment but can be seen on their pictures.

After the reproduction of the Texus experiments and the detection of partial clustering, the
second step was to modify the different parameters. We decided to investigate the behavior of
a system with a large number of grains. At this point, the densest system (N = 4510) had only
a global density of η = 0.11. By progressively increasing the number of grains up to N = 6800
(η ≈ 0.15) a fourth state has been found. Particles stay gathered and present a coherent motion
with a velocity close to ±Aω. Figure 2 describes the different dynamical regimes of a system
with respectively N = 1420, 2840, 4510 and 6800 grains at its maximum downwards velocity
−Aω. Different colors correspond to selected ranges of the vertical velocity : blue if |vz| < Aω,
green if Aω ≤ |vz| < 2Aω and orange if 2Aω ≤ |vz|.
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Gas Partial Cluster Complete Cluster Bouncing Aggregate

N = 1420 N = 2840 N = 4510 N = 6800

Figure 2. By increasing the grain number N , one can observe four different dynamical regimes:
a gaseous phase, partial and complete clustering and an aggregate phase. Color stand for
different velocity ranges: Blue for subsonic grains, green for velocities between one and two
times the maximum velocity of the box and orange for even higher velocities.

Each dynamical regime is discussed in the following and introduced by two figures. On the
left, the Probability Density Function (PDF) of particle positions, along the three axis, collected
at the systems maximum velocities ±Aω. On the right, the PDF of U , the vertical velocities of
the particles normalized by Aω. Data is collected at the systems maximum downward velocity
−Aω.

3.1. Gas state
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Figure 3. (Left) PDF of particle positions in the system collected every half period. (Right)
Semi-log PDF plot of particle velocities in the gaseous state.

The gaseous state is found in dilute systems, the grains exhibit a broad and asymmetric
distribution of vertical velocities vz as shown in Figure 3. This asymmetry evolves according to
the phase oscillation of the box. Particles can be found everywhere in the system, but follow a
density gradient decreasing from one wall towards the center of the box, as shown in Figure 2
and 3. According to earlier experimentations [24, 25], we found vx and vy distributions of the
form P γλ (v) = λ exp (− |λv|γ), γ ∈ {1, 2} and λ as fitting parameter. Note that λ ≈ 1

v0
, where v0

is the mean velocity. A γ value is preferred to another depending on the velocity range in the
system.
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3.2. Partial Cluster
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Figure 4. (Left) PDF of particle positions in the system collected every half period. (Right)
Semi-log PDF plot of particle velocities in the a partial cluster.

When the number of grains increases, the system could present a partial clustering. Particles are
more or less stabilized around the origin of the z-axis but stay gathered along a wall of the box.
One could assumed that the system needs a typical cluster width to be energetically stable.
In the distribution of velocities along z (Figure 4), a sharp peak appears around zero which
is a signature for clustering. However, the distribution exhibits a broad foot since a gaseous
regime coexists in the system. Multiple simulations have shown that a cluster can appear on a
particular lateral wall with a probability 1/4. Moreover, simulations in a cylinder with identical
volume and base section revealed that the lateral clustering is not related to corner effects. The
reason of this phenomenon is yet not well understood

3.3. Complete Cluster

 0

 50

 100

 150

 200

 250

 300

-4 -2  0  2  4

PD
F

Position (mm)

x
y
z

10-4

10-3

10-2

10-1

100

101

-4 -3 -2 -1  0  1  2  3  4

PD
F

U

Ux
Uy
Uz

Figure 5. (Left) PDF of particle positions in the system collected every half period. (Right)
Semi-log PDF plot of particle velocities in the a complete cluster.

When the density further increases, we observe that the cluster spreads over the entire xy
plane. A peaked velocity distribution around zero can be observed in Figure 5. The presence
of two sharp peaks at vz = ±2Aω (also seen for partial clustering) is due to the granular gas
trapped in between the cluster and the vibrating walls. We assist to an equilibrium between
condensation and evaporation of the cluster. By tracking particles and analyzing the dynamics
of clusterisation during several periods, we can conclude that the cluster is in a dynamical state
with a constant renewal. Indeed, high speed particles arriving from the walls crush into the
cluster, dissipate their energy and eventually become part of the cluster. The energy partially
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transmitted across the cluster provokes internal rearrangements and eventually ejects particles.
It should be noted that the packing fraction measured inside the cluster is about η = 0.30 which
is far below the jamming limit.

3.4. Bouncing aggregate
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Figure 6. (Left) PDF of particle positions in the system collected every half period. (Right)
Semi-log PDF plot of particle velocities in a bouncing aggregate.

For denser systems a new phenomenon is observed. The important amount of granular material
confined in the system leads to higher kinetic energy than in other regimes (see figure 9).
This energy cannot only be dissipated through successive collisions like in a cluster. Indeed,
the local density in the system’s center is high enough to assure permanent contacts between
many particles, when the gaseous phase encounters this denser region all the grains a dragged
towards the wall. This bouncing state is characterized by a coherent motion of all particles
and peaked velocity distribution around ±Aω. Particles stay gathered in a dense arrangement
which describes a movement similar to a totally dissipative bouncing ball [26]. Moreover, density
distribution along the z-axis revealed crystal-like structures inside the packing. Layers are
observed along the three axes.

4. Discussion
4.1. Phase Diagrams
An automated and reliable detection of the different dynamical regimes can be done by statistical
means. The complete cluster detection relies a two-sample Kolmogorov-Smirnov (KS) test [27]
with a significance level α = 0.01. The KS test compares the cumulative distribution function
(CDF) of a uniform distribution with the CDF of the particles distribution along z axis. The
null hypothesis (H0) of the test is the assumption that the observed distribution is uniform,
hence that the system is gaseous. The alternative hypothesis is noted (H1). We define the
parameter D as the following

D = sup
|z|≤L/2

‖F (z)− U(z)‖ (4)

where F (z) is the observed CDF of the particles distribution along z-axis and U(z) the theoretical
uniform distribution. The KS test value is defined by Tz = D

√
n/2 where n is the number of

classes. H0 is rejected at level α if Tz > Kα. The statistical threshold Kα can be found in tables.
In a partial cluster regime, the system displays a strong heterogeneity in the xy-plane, therefore
its detection relies on a two-sample KS test between the particles distribution along the x and
y-axes with a significance level α = 0.01. The test is denoted by Txy. Finally, bouncing regime is
detected by analyzing frequency fluctuations in the center of the box. If the central part of the
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box has a density at least two times lower than the one corresponding to a uniform distribution,
the system is evolving like an inelastic body bouncing between two oscillating plates. A large
number of MD simulations allowed us to obtain four typical (η, r) phase diagrams that are shown
in figure 7.

Figure 7. Simulated (r,η) phase diagrams for two different amplitudes A = 2.5 mm and
A = 0.3 mm and for two different frequencies f = 30 Hz and f = 60 Hz. Curves correspond to
the transitions from one dynamical regime to another. Differnt phases are denoted by numbers
from I to IV.

For high amplitude (A = 2.5 mm), the four dynamical regimes can be observed and are
denoted on figure 7 (I gas, II partial cluster, III complete cluster and IV aggregate). For low
amplitude (A = 0.3 mm), only the gas and the complete cluster state is observed. Parameters
such as η, r and A seem to have a deep impact on the systems dynamics in opposite to ω
whose fluctuations have only minor effects. The emergence of a cluster for low amplitude is not
trivial. While the formation of a high density zone in the case of A = L/4 = 2.5 mm could be
triggered by geometrical reasons and confinement, the appearance of such a dynamical regime for
A = 0.3 mm requires the presence of additional phenomena such as inelastic collapse. Moreover,
measuring the standard deviation σ of the position PDF along the z-axis for 2 simulations with
N = 5000, r = 0.175 mm and respectively A = 2.5 mm and A = 0.3 mm shows us that the
difference of the cluster width is negligible compared to the difference of amplitude. Collecting
data every period, we found in the first case σ2.5 = 1.51 mm and in the second σ0.3 = 1.72 mm.
Figure 8 shows the position PDF along z-axis for both simulations. Shaded zones refer to the
volume visited by the box’ walls during oscillation.
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Figure 8. (Left) Distribution of the particle positions along z-axis for 2 simulations with
N = 5000, r = 0.175 mm and respectively A = 2.5 mm and A = 0.3 mm. Data is collected
every period. (Center) Lateral view of the system with an amplitude of A = 2.5 mm. (Right)
Lateral view of the system with an amplitude of A = 0.3 mm. Shaded zones refer to the volume
visited by the box’ walls during oscillation.

4.2. Transition lines
For large amplitudes, the (r, η)-phase diagrams, illustrated in the first row of Figure 7, exhibit
all the dynamical regimes. Different regimes are separated by transition curves that meet on
triple points. Earlier studies [15] considered that cluster may be expected once there is initially
more than a single layer of particles in the system. In this configuration, particle-particle
collisions become frequent events which encourages dissipation and thus cluster formation. In our
phase diagram, iso-layer curves correspond to dashed straight lines with an angular coefficient
proportional to the inverse number of granular layers. The layer criterion clearly misses the
transition from a gas to a (partial) cluster. The (©)frontier is better described by the empirical
law

rclust − r = δclust

(
1− η
η

)
(5)

where δclust and rclust are constants. Eq. (5) supports two arguments : (i) a critical size
rclust ≈ 0.32 mm for the grains above which no cluster appears, and (ii) the ratio between
free volume and occupied volume becomes a relevant parameter. It should be noted that this
ratio is also relevant for describing mean free path in our system.

The transition between partial and complete clustering is rather complex. One should note
that partial clustering is only present for small particles and large amplitudes and. Moreover,
it needs a long formation time (about 100 periods).

The bouncing aggregate regime IV appears for large packing fractions. Large particles
condensate without clustering. The ♦-frontier between gaseous and condensed states is a vertical
line of equation η = 0.127. Considering the whole granular assembly as a single inelastic body,
this critical value can be established theoretically by adapting latest results concerning the Fermi-
Box problem [28]. A punctual body is confined in a box of height H which follows a sinusoidal
motion of amplitude A. For a restitution coefficient ε = 0, it is shown that the dynamics switch
from a mono-periodical motion (similar to the diluted gaseous state) to a regime presenting
sticking phenomena (similar to the condensed state) once the critical height h = (H/A) = π
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is reached. In our case, the size of the particles cannot be neglected, therefore the Fermi-Box
condition becomes

L−
(
Lη∗

ηrlp

)

A
= π (6)

where the random loose packing fraction ηrlp ≈ 0.59. The critical value η∗ ≈ 0.127 is obtained
in an excellent agreement with our numerical simulations.

For smaller particles, the transition between cluster and bouncing aggregate is also triggered
when η increases. We have noted that the 4-frontier corresponds roughly to the relationship
r/L ∼ logN which consists in a Lambert-W function [29] provided by the inversion of (7).

η =
4π

3

( r
L

)3
exp

rba − r
δba

(7)

This transition curve needs deeper investigations since different bouncing modes (like period
doubling) can be observed in some cases. This is left for future works.

The different values of the free fitting parameters for the various transition curves are given
in table 1. In opposite to the small impact of the frequency, we can see that the variations are
important when the amplitude changes.

A (mm) f (Hz) δclust (mm) rclust (mm) δba (mm) rba (mm)
2.5 30 6.8817 10−3 0.31908 6.5718 10−2 0.75250
2.5 60 6.3164 10−3 0.31239 6.4548 10−2 0.74515
0.3 30 9.2490 10−3 0.33101 - -
0.3 60 1.1143 10−2 0.34529 - -

Table 1. Values of the free fitting parameters for the various transition curves in four diagrams

4.3. 3D Phase Diagram
In order to understand the origin of the cluster phenomenon, the internal energy of the system
with amplitude A = 2.5 mm and f = 30 Hz has been investigated. By collecting the
translation and the rotation velocities of the particles during one period, a three dimensional
graph representing the mean kinematic energy in the system as a function of the packing fraction
η and the grain radius r has been obtained. As shown in figure 9, the surface is colored by a
color gradient and displays different energetic levels according to the dynamical regimes we
determinate by statistical means. The corresponding transition lines shown in the previous
figures are denoted by purple vertical surfaces.
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Figure 9. 3D view of the mean kinematic energy in the system with an amplitude A = 2.5 mm
and frequency f = 30 Hz as a function of grain size r and packing fraction η. The corresponding
transition lines shown in the previous figures are denoted by purple vertical surfaces.

5. Conclusion and Perspectives
In summary, the phase diagram is richer than expected since we have found four different
dynamical regimes instead of gas/cluster regimes. Moreover, the transition curves cannot be
described by simple rules or arguments, except for the behavior of large grains. Small variation
of A and ω parameters will quantitatively modify the diagram but the phases and the transitions
will be qualitatively recovered. We can assure that the diagram is locally stable. Our results
raise fundamental questions and opens new perspectives in particular for future experiments in
microgravity planned on the International Space Station.

In order to collect new relevant data, ESA is setting up ”VIP-Gran”, a series of
experimentation expected to join the ISS in a closer future. In the experiment a certain amount
of granular material is trapped in a cell volume of 30x30x70 mm between two independent
oscillating walls. The main diagnostic tool is a CCD camera. Effects of the global packing
fraction on the systems dynamics will be studied with a special interest in very dense systems
and systems in a Knudsen regime. Different grain sizes as well as different shapes for the box will
be tested. Moreover, experimentation with granular mixtures are planned. The following work
has been realized in order to accomplish a first step for the calibration of VIP-Gran. Effects
of parameters as grain size and packing fraction have been investigated and a granular phase
diagram has been obtained.
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3.8. A BOUNCING AGGREGATE AS A GRANULAR DAMPER 61

3.8 A bouncing aggregate as a granular damper

In parallel to our simulations predicting the bouncing aggregate (a solid like behavior in driven
granular systems), a scientific group from the Friedrich-Alexander University in Erlangen realized
a series of experiments concerning the damping capacity of granular media.

In a first study [81,82], they attached a rectangular polycarbonate cell containing 37 steel balls
on a flat spring. The initial position of the system was deflected by an amplitude A0 and released
so that a damped oscillation could be observed. The experiment was performed during a parabolic
flight and the data collected via a high speed camera. An overview of the experimental setup is
given in figure 3.5.

M. N. BANNERMAN et al. PHYSICAL REVIEW E 84, 011301 (2011)

high-precision discrete element method (DEM) simulations
are performed (Sec. III). The two free parameters of the
model (coefficients of restitution) are obtained by adjusting
the values until the simulation matches the experiment as
closely as possible for a single experiment (Sec. III C). From
the excellent agreement of the simulation results for the fitted
system and for all other experiments, it is concluded that
the model underlying the simulation replicates the system’s
essential features (Sec. III D). Thus, the DEM simulations are
an effective model for granular damping in the collisional
regime. In Sec. IV, a simple equation for the optimal design
of a simple damper is derived and tested against the results of
the DEM simulations. Section V discusses the observed linear
decay of the amplitude. Finally, in Sec. VI the conclusions of
the paper are outlined.

II. EXPERIMENTAL SETUP

Figure 1 is a diagram of the experimental setup. Our
granular damper comprises a container of adjustable length
which is partially filled with granular material. The damper is
mounted to one end of a spring-steel blade and the opposite end
is clamped in a solid aluminum base plate. The spring blade is
described fully in Sec. III C. The rectangular damper container
is constructed from 5-mm-thick transparent polycarbonate
plates. The internal dimensions of the container are 50 mm ×
50 mm × L, where the length L (in the direction of the
oscillation) is adjusted by altering the spacing of the end walls.
The container’s net weight (without granulate) is M = 434 g.
In this work, four different container lengths of L = 40,65,85,
and 104 mm are used. The damper is loaded with N = 37
precision steel ball bearings of diameter σ = 10 mm and mass
m = 4.04 g. This number of particles is chosen as it packs
to form a layer two particles deep on the end walls of the
container.

The motion of the damper and contained granulate is
recorded using a high-speed camera (MotionScope M3TM),

FIG. 1. Schematic of the experimental setup in front view (left)
and side view (right). The curvature of the oscillations is exaggerated
for the purpose of illustration.

FIG. 2. An example frame from the high-speed camera. An
example video which compares simulation and experimental results
is available online [37].

which records at a frame rate of 500 fps and with a spatial
resolution of 1024 × 1280 pixels. A 45◦ mirror is placed at
the side of the container and allows for the simultaneous
observation of the granulate from the top and the side
(see Fig. 2). The position of the damper and the center of
gravity of the particles are extracted from the top view using
standard image-processing techniques. Although the side view
facilitates more complex methods of reconstruction, it will be
shown that the motion of the granulate is well described by
the center of mass motion. All position measurements are
made in a two-dimensional (2D) plane which is parallel to and
intersecting the top of the container while it is in its equilibrium
position. Although this introduces some error at the peaks of
the oscillations due to the curved damper trajectory, this error
is negligible.

At the start of the experiment, the spring blade is deflected
and held at the initial displacement of "0 = 107.5 mm using
an electromagnet. A trigger mechanism begins the experiment
and starts the camera recording. After a short delay of 1 s,
the spring blade is released from the electromagnet and the
oscillations are recorded for 30 s.

To assure conditions of weightlessness, the experiment is
performed on a modified Airbus A300 aircraft which has been
retrofitted for performing parabolic flights. The parabolic flight
provides a suitable microgravity environment (±0.05 g) which
lasts around 22 s and allows a number of experiments to be
performed. In the following section, the numerical model and
simulation techniques are described.

III. NUMERICAL MODEL AND SIMULATION METHOD

A sufficiently complex model, capable of reproducing the
observed experimental behavior, must be found if the system’s
dynamics is to be understood. The model presented here is
complex enough to yield quantitative agreement with the
experiments and yet simple enough to gain insight into the
dynamics of the system. The model for the granulate consists
of a system of N = 37 smooth inelastic hard spheres, each of
mass m = 4.04 g and diameter σ = 10 mm. Although inelastic
hard spheres are a basic model for the granulate they capture all
of the essential behavior of the system: dissipative interactions
between hard spherical particles.

To model the oscillating mass and granular damper, the
hard spheres are shaken in a rectangular box of mass M ,
which is coupled to a linear spring. The box is assumed

011301-2

Figure 3.5: (Taken from [81]) Schematic view of the experimental setup of the granular damper
used in the parabolic flights.

During the first seconds of the experiment, the amplitude of oscillation decays linearly until a
critical value Ac is reached. From that moment, a much weaker decay is found. The reason for
this change is the transition from a bouncing aggregate regime (called collect-and-collide regime in
the experiment) to a gaseous regime. The upper row of figure 3.6 shows snapshots of the system
for several amplitudes of oscillations. In the lower row the complete dynamics can be followed
over a period of 5 seconds. The transition occurs after about 4 seconds.

In addition to the experimental observation of the bouncing regime, the theoretical develop-
ments concerning the transition from a granular gas to a collect-and-collide regime, presented
in [82], is in perfect agreement with our predictions. Indeed, in our first article [79], comparing the
aggregate to a complete inelastic particle led us to define the following vertical frontier between
both regimes by

φ∗ = φrlp

(
1− πA

L

)
. (3.1)

where φrlp = 0.59 is the packing fraction of a random loose packing. Rearranging the terms shows
that this equation is equivalent to the relation found by Kollmer and his coworkers:

A0 = Lg/π, (3.2)

where A0 is the threshold amplitude and Lg the difference between the box length and the thickness
of the packed layer of particles in box.
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Figure 1. Typical attenuation of a linear spring damped by a granular
damper [38]. Two regimes are separated by a rather sharp transition at time t⇤ ⇡
11 s. The linear decay (dashed line) for t < t⇤ was reported in many publications,
e.g. [15, 18–30].

Figure 2. Modes of excitation of the granulate in a vibrating container, obtained
from the high-speed recording of the oscillating box during one period (see
text). (a)–(e) Each sub-figure shows the granulate moving in a box sinusoidally
driven at constant amplitude A. (f) The granulate moves in a box attached
to an oscillating spring for time t = 0–5 s. The corresponding decay of the
amplitude over time is shown in figure 3(c). For better visibility, the position
of the container (also obtained from the video data) is highlighted in color.

These lines were stacked-up to give an image of the flow of granulate during the oscillatory
motion. For large amplitude, A(t), see figures 2(a)–(c), the particles move collectively as a
cluster and arrive at the wall at a phase of oscillation when the wall is accelerating inwards, i.e.
toward the colliding particles. This way, the particles arriving at the incoming wall are collected,

New Journal of Physics 15 (2013) 093023 (http://www.njp.org/)

Figure 3.6: (Taken from [82]) Trajectories of the particles inside the oscillating cell. Below a critical
amplitude Ac, the collective motion of the granular material vanishes and gaseous dynamics are
observed. The transition leads to a modified damping of the system.

In another study [83], the energy dissipation rate in a driven granular gas was investigated
in detail. It appears that both dynamical regimes (gas and bouncing aggregate) correspond to
different dissipation mechanisms leading to different scaling with amplitude and frequency of the
oscillation and with the mass of the grains. This time the cell is no longer fixed on a flat spring but
mounted on a strain gauge that is attached to a carrier moving on a linear bearing. The system
is driven by a computer controlled stepper motor according to a sinusoidal motion of amplitude
A and frequency ω. Figure 3.7 gives a sketch of the experimental setup.

adjustable parameter, the results may be collapsed to a
single curve characterizing the physics of granular
dampers.

Experiment.—The experimental setup is sketched in
Fig. 1. The sample box is mounted on a strain gauge which
in turn is attached to a carrier moving on a linear bearing.
A gear belt connects the carrier with a computer controlled
stepper motor which drives the carrier to perform sinusoi-
dal oscillations of adjustable angular frequency ! and
amplitude A. The time-dependent position of the con-
tainer was measured by using Hall-effect-based position
encoders with a resolution of 20 !m and a 10 kHz sample
rate to check that the deviation of the container’s motion
from the set sinusoidal oscillation is negligibly small;
typically, the spurious free dynamic range is 56 dB. The
experiment was monitored by a high-speed camera at a
frame rate of 240 fps. The entire setup was built up twice
such that the containers move in opposite direction to
cancel the vibrations transmitted to the external mounting
structure.

The strain gauge delivered signals proportional to the
forces in the direction of driving and the two directions
perpendicular to it. Only the first one is relevant for our
experiment; we checked that the forces in the other direc-
tions are negligibly small as compared to it; i.e., the side
walls confine the granular material while the main transfer
of momentum occurs parallel to the direction of motion.

The samples consist of polycarbonate boxes (wall thick-
ness 4 mm) partially filled by different amounts of steel
beads (diameter 4 mm, material density 7:8 g=cm3,
Young’s modulus 203.5 GPa). The number and the total
mass of particles within each sample is given by N and m,
respectively. The clearance Lg is the difference between
box length and the thickness of the packed layer of parti-
cles in the box. It can be obtained by computing the volume
occupied by particles in random close packing [30] at

volume fraction 64%. Table I summarizes the character-
istics of our samples.
To exclude the influence of gravity, the experiment was

performed during a parabolic flight allowing for stable
microgravity condition ð0" 0:05Þ g for time intervals of
about 22 s which determine the duration of each single
measurement, where amplitude and frequency of the exci-
tation were fixed. The data resulting from the strain gauges
and the position sensors were sampled simultaneously at a
rate of 10 kHz and stored for later evaluation of the
dissipated energy. About 4 s after the onset of microgravity,
the experiment had entered the stationary state which could
be identified by both the rate of dissipation deduced from
the measurement of the driving force and the recordings of
the high-speed camera. For the results reported here, we
use only the data obtained in the stationary state.
Regimes of dynamical behavior.—Analyzing the high-

speed video recordings, we can identify two different
regimes of dynamical behavior; see Fig. 2. For large
amplitudes of the vibration, the damper operates in the
collect-and-collide regime; that is, during the inward
stroke all the material is ‘‘collected’’ and accumulates as
a relatively densely packed layer at the wall of the con-
tainer. After passing the phase of maximal velocity, the box
decelerates and the layer of particles leaves the wall col-
lectively. When the bulk of particles impacts the opposite
wall of the container, a large part of the kinetic energy is
dissipated by inelastic collisions. The amount of energy
dissipated depends on the relative velocity between the

strain gauge

particles 

box

linear bearing

motor

FIG. 1. Sketch of the experiment. For an explanation, see the
text.

FIG. 2. Snapshots from the high-speed video recordings of
sample 4 illustrating the two distinct regimes of excitation:
collect-and-collide regime at A ¼ 50 mm (left column) and a
gaslike state at A ¼ 2:5 mm (right column). Each column shows
the box at a phase range from 0 (top) to " (bottom).

TABLE I. Table of samples.

Sample no. Box L%W %H (mm3) m (g) N Lg (mm)

1 100% 50% 50 126.3 473 89.4

2 50% 50% 50 135.3 507 38.7

3 50% 50% 50 71.0 266 44.1

4 100% 50% 50 63.8 239 94.7

PRL 111, 018001 (2013) P HY S I CA L R EV I EW LE T T E R S
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Figure 3.7: (Taken from [83]) Schematic view of the driving device. The cell’s position is controlled
via a computer controlled stepper motor according to a sinusoidal motion. A strain gauge allows
the measurement of forces acting on the cell.

The energy that is dissipated by the granular media during one period of oscillation T can be
obtained by integration. Indeed, one has

Ediss =

∫

T

ẋ(t)F (t)dt, (3.3)

where x(t) = A sin(ωt) is the position of the box and F (t) is the force measured by the strain
gauge. The maximum energy that can be dissipated in the system is given by

Emax = 4mA2ω2, (3.4)

withm being the total mass of the particles. Sack and his coworkers measured the ratio Ediss/Emax
in four different samples. The latter were obtained by changing the number of grains as well as the
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length of the box. Both parameters were tuned so that the samples 1 and 4 (respectively 2 and
3) presented approximatively the same clearance Lg. As shown in figure 3.8, different scaling is
obtained on either side of the threshold amplitude A0 presented in equation (3.2). The energetic
jump at A0 corresponds to the transition between the gas and the bouncing aggregate regime and
can also be observed in our simulated energy landscape on figure 3.4.

particles and the wall at the time of the impact, determined
by the amplitude and frequency of the vibration and the
filling ratio of the container. The collect-and-collide
regime was theoretically and experimentally investigated
in Ref. [31] and identified as the regime of most efficient
damping. It was confirmed also by numerical MD simula-
tions [32,33] and identified as one out of four different
regimes of dynamical behavior of vibrated granulate in
microgravity.

For small amplitudes we observe a gaseous state where
only a small fraction of the particles interact with the
oscillating walls during one oscillation period. In the gase-
ous state, the collisions of the particles with the driving
walls are just sufficient to balance the energy loss accord-
ing to dissipative particle-particle collisions in the bulk of
the material. Here, the dissipation rate is smaller than in the
collect-and-collide regime [31].

Energy dissipation rate.—To obtain the energy dissi-
pated by the granulate during one period, T ! 2!=!, of
the sinusoidal driving, x ¼ A sinð!tÞ, we integrate the
product of the measured force FðtÞ and velocity _xðtÞ over
one period of oscillation:

Ediss !
Z
T
_xðtÞFðtÞdt: (1)

The maximum energy that can be dissipated during one
cycle in the system is given by

Emax ¼ 4mA2!2: (2)

This is the case if all particles collide inelastically with the
wall at maximum relative velocity. In the following,Emax is
used for normalization.

We measured the dissipated energy per period for the
following ranges of frequency: Samples 1 and 4 were
shaken at 1, 2, and 4 Hz, while samples 2 and 3 were
shaken from 1 to 5 Hz in 1 Hz increments. For each setup,
Fig. 3 shows Ediss=Emax versus the amplitude of the
oscillation.

Let us first consider the gaslike state observed for small
amplitude A < A0. In this regime, we expect the dissipated
energy to be proportional to the number of particles collid-
ing with the wall. If we assume a monodisperse system
with homogeneous density, this number is determined by
the volume swept by the container’s wall. We further
assume the characteristic velocity of the particles to scale
with the velocity of driving A! and the particles hitting the
wall at random phases, due to their disordered motion, and
arrive at

Eg
diss / m

A3!2

L
¼ A

4L
Emax: (3)

Note that particle-particle collisions in the bulk of the
material contribute only indirectly to Eg

diss, since such
collisions do not transfer momentum to the container.

Equation (3) was developed under the assumption of a
homogenous density distribution. This, however, may not
always hold true. Unlike molecular gases, heated granular
gases are not homogeneous, but density increases in a
nonlinear way with distance from the driving wall [34] to
form regions of enhanced density (clusters) far away from
the wall. Following the arguments of Ref. [35], the number
of particle-wall collisions depends only weakly on the total
mass of particles in the system. Consequently, for the limit
of no dependence on the total mass we may write

Eg
diss

Emax
/ A

4Lm
; (4)

shown in the inset in Fig. 3(a).
For the cases described by Eqs. (3) and (4), the experi-

mental data shown in Fig. 3 collapse despite the fact that
the data points shown for a certain amplitude correspond to
different frequencies of driving. That is, the dissipation rate
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FIG. 3 (color online). Normalized dissipated energy per period
of external vibration. Symbols: Experimental data. %: 1 Hz, h:
2 Hz; e: 3 Hz, v: 4 Hz; x: 5 Hz. Lines: Solution of the impact
model, valid for A > A0 [solid line, numerical, Eq. (6); dashed
line, analytical, Eq. (9)]. Dotted lines: Dissipation rate for the
gaseous regime [A < A0; see Eq. (3)]. Inset: The same data (only
gas regime) but normalized to Emax=m [see Eq. (4)]. The error
bars for the gas regime are shown in the inset. For all other
measurements, the errors are about the size of the symbols. The
threshold amplitude A0 (vertical lines) obtained from the model
[see Eq. (10)] agrees with the experimental data.
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Figure 3.8: (Taken from [83]) Schematic view of the driving device. The cell’s position is controlled
via a computer controlled stepper motor according to a sinusoidal motion. A strain gauge allows
the measurement of forces acting on the cell.
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Chapter 4

Modeling the dynamical cluster

In classical thermodynamics, the simplest way to capture the behavior of a fluid is the concept of
the ideal gas. This model considers a dilute system, without any particle interaction, in which the
movements of the particles are dictated only by the temperature. Note that for very low pressure,
most common gases can be considered as ideal gases. In general, one can qualify as ideal any
gas that satisfies simultaneously the laws of Boyle-Mariotte, Avogadro, Gay-Lussac, Charles and
Dalton. Accordingly, the behavior of an ideal gas can be described by the following equation of
state,

PV = NkBT, (4.1)

where N is the number of particles, T the temperature, P the pressure and V the volume of the
system. The parameter kB is the Boltzmann constant. In hard sphere models, that are closer to
our system, additional parameters are considered in order to take account the interactions between
particles and the excluded volumes. For instance, the Carnahan-Starling equation of state [87] is
an approximate equation of state for the fluid phase of the hard sphere model in three dimensions.
It is given by,

PV

NkBT
=

1 + φ+ φ2 − φ3
(1− φ)3

, φ = N
4

3

πR3

V
; (4.2)

R being the radius of the gas particles and φ the packing fraction of the system.
However, the case of the granular gas is even more complex since the system is dissipative.

Indeed, at each collision, a small amount of energy is lost which will eventually result in an inho-
mogeneous distribution of the particles and in the formation of a cluster. This local condensation
is not observable with a regular hard sphere model. Moreover, the system is out of equilibrium
and requires a permanent energy supply in order to remain in a steady state. Finally, the granu-
lar gas is athermal, meaning that the temperature (as classically defined) has no influence on its
dynamics. The following table summarizes the differences between both models.

Hard spheres vs. Granular gas
yes excluded volumes yes
yes equilibrium no
yes thermal system no
no dissipative system yes

P, V, T, φ parameters φ, ε,R, δ

The parameter δ is the typical length scale of the system and ε is the coefficient of restitution.
During the past decades, several hydrodynamical models for (dense) granular fluids [88–91] have
been proposed but none of them recovers the entire field of observable phenomena.
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4.1 Motivations
Despite the lack of an equation of state for granular fluids, parameters such as the packing fraction
φ, the dimensions of the system and the size R of the particles can provide enough information
to predict roughly the dynamics of the system. In the following article (published in Europhysics
Letters) we have shown that, based on simple arguments, it is possible to predict the transition
from a gas like regime to a dynamical cluster in a granular fluid. Our model considers the balance
between two antagonist processes in the system: on the one hand, the tendency to stir up the
granular material by injecting energy and on the other hand, the tendency to cool it down via
multiple dissipative collisions. In order to collect first informations for the upcoming SpaceGrains
project, we realized our simulations within the frame of the experimental cell dedicated to the first
working package (Granular gases and pattern formation).

4.2 Setup for SpaceGrains
In our simulations, we reproduced the experimental cell using a rectangular box of h =60 mm in
height an ` =30 mm in side length. The top and bottom plates of the cell, noted respectively π1
and π2, oscillate in phase opposition with an amplitude A and a frequency f . Both parameters
are tunable but given the low impact of f on the observed dynamics, only the influence of A will
be explored. The distance between both oscillating plates is noted L and can be modified. This
allows us to change the accessible volume in the system and thus to tune the packing fraction for
a constant number of particles. Figure 4.1 is a sketch of the simulated cell.

A, f

�

�

60
m

m

z1 + A sin(2πft + π)

z2 + A sin(2πft)

L

π1

π2

Figure 4.1: (Taken from [92]) Sketch of the cell dedicated to granular gases and pattern formation
in the SpaceGrains instrument. The top an bottom plates of the container oscillate in phase
opposition with an amplitude A and a frequency f . The distance L is a tunable parameter.

In order to realize a complete study of the system, we also simulated a cell of side length ` = 15
mm even though no corresponding cell is planned for the SpaceGrains instrument. However, it
seemed important to be able to modify the volume without additional constraints on A. We
realized several simulations, varying the different geometric parameters of the cell and the radius
R of the enclosed spherical particles. For each simulation, the number of particles is tuned in
order to obtain a transition from a granular gas to a dynamical cluster and a phase diagram is
established.

4.3 Main results
In our study [92] we highlighted the cluster’s formation mechanisms at two different scales. At
the scale of the grains, the presence of a cluster is related to the caging of particles within their
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neighborhood. Indeed, we show that the statistical detection of a cluster coincides with a sharp
increase in the number of caged grains. At the scale of the entire system, the upcoming of a cluster
can be explained by the competition between the energy propagation stirring up the granular media
and the energy dissipation at each collision. A characteristic time scale can be defined for each
process. The typical relaxation time in the system is given by the parameter τH found in Haff’s
cooling law (1.8). The typical time for the propagation of the injected energy can be estimated as
following,

τP = λ

(
n∑

i=0

1

v0εi

)
, (4.3)

where v0 = Aω is the initial velocity near the pistons and ε is the coefficient of restitution. The
mean free path λ and the average number of collisions during one period n can be deduced by
purely geometric means. If the system cools down faster than the energy can be propagated,
which corresponds to the criterion τH ≤ τP , particles start to gather and a cluster appears. The
equality τH = τP leads to a theoretical law predicting the frontier between the gas and the cluster
regimes. Note that our model is in excellent agreement with the transition that we measured
in our simulation concerning SpaceGrains and in the reproduction of Falcon’s experiments [79].
Figure 4.2 shows the obtained phase diagram in which we superposed our model with all transition
points from the different setups.

 30
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Figure 4.2: (Taken from [92]) Phase diagram of the dynamics presented by the driven granular
system. Different symbols correspond to the gas-cluster transition points concerning different
setups. Our theoretical model is represented by the solid red line.

4.4 Conclusion
Thanks to this work, the mechanisms behind the gathering of driven granular media could be
determined. Indeed, our theoretical model allows us to describe the frontier between the gaseous
and the cluster regime and is in excellent agreement with the statistical frontier from figure 3.3.
Accordingly, it is now possible to predict, for various rectangular cell geometries, the apparition
of a dynamical cluster. This new ability is important for the SpaceGrains project since the large
field of parameters that had to be explored can be reduced dramatically regarding our model.
Moreover, being able to create efficiently a clustered system allows us to begin to explore the
manipulation of these gathered granular materials.
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Abstract – Driven granular gases present rich dynamical behaviors. Due to inelastic collisions,
particles may form dense and slow regions. These clusters emerge naturally during a cooling
phenomenon but another dynamical clustering is observed when the system is continuously excited.
In this paper, the physical processes that trigger the transition from a granular gas to a dynamical
cluster are evidenced through numerical simulations. At the granular scale, the transition is
evidenced by the observation of caging effects. At the scale of the system, the transition is
emphasized by density fluctuations. Physical arguments, based on relaxation times, provide an
analytical prediction for the edge between dynamical regimes.

Copyright c© EPLA, 2012

Introduction. – Driven granular materials represent
a paradigm of dissipative systems. Collisions provoke a
loss of energy that is counterbalanced by the external
excitation. In dilute systems, this equilibrium leads to a
stationary regime being the granular gas [1]. This dynam-
ical regime is fundamentally different from the classical
continuous gas. Indeed, velocities do not follow Maxwell-
Boltzmann [2] distributions and usual thermodynamical
laws have to be readapted [3–5]. Moreover, the dynamics
of a granular gas depend on the type of energy injection.
Mechanical shaking with pistons modifies the accessible
volume of the cell. Oppositely, magnetically shaking [6]
can lead to magnetic effects and additional potentials
between the particles. In addition to the shaking mech-
anism, the gravitational field has also a major impact on
system. Under gravity, the density increases towards the
bottom of the cell and resonance has been reported [7].
In order to avoid these parasite phenomena, the study of
granular gases requires microgravity. Indeed, under this
condition, stationary homogeneous states can be reached
for a small external driving. Once the energy supply is
turned off, the system starts a cooling process. Inho-
mogeneities are created and form dense patterns [8,9]
generally called clusters. However, even for continuously
driven systems, local density variations have also been
observed [10,11]. This dynamical clustering needs injected
energy to subsist because it endures a constant renewal of
its particles [12].

(a)E-mail: eric.opsomer@doct.ulg.ac.be

Our interest goes to the transition from the granular
gas to the dynamical cluster that can be triggered by the
manipulation of a broad range of parameters. Since micro-
gravity is required for sustaining a granular gas, numeri-
cal simulations using DEM-like algorithms are performed.
Our work is based on the experimental features of the
VIPGRAN [13] device of the European Space Agency.
In this paper, the detection of the dynamical regime

in the system is achieved by a statistical adequation test
already used in earlier simulations [12,14]. Space-time
diagrams of the mean kinetic energy in the system are
presented and open new perspectives.

Numerical model. – Our numerical model reproduces
the experimental setup of VIPGRAN. Figure 1 gives
a brief overview of this system geometry. Inside a cell
of dimensions 30× 30× 60mm, two pistons π1 and π2
encloseN spherical particles of radius R. These pistons are
oscillating sinusoidally in phase opposition around their
respective equilibrium points z1 and z2 with an amplitude
A and a frequency f . The distance L= |z1− z2| can be
modified in order to change the mean volume for a fixed
amplitude. The period of oscillation is noted T .
The simulations are based on the Molecular Dynamics

(MD) [15,16] approach. This model is widely used in soft-
matter physics and especially in the simulation of granular
materials [12] because of its capacity to handle efficiently
multiple collisions that are unavoidable in dissipative
systems. Normal forces Fnij are composed by a repulsive

F repij and a dissipative F disij component. The repulsive
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A, f
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m

m

z1 + A sin(2πft + π)

z2 + A sin(2πft)

L

π1

π2

Fig. 1: (Color online) Sketch of the VIPGRAN cell. Two
pistons are oscillating sinusoidally in phase opposition around
their respective equilibrium points z1 and z2. The oscillation
parameters are the amplitude A and the frequency f . The
distance L separating z1 and z2 is tunable. Finally, the side
length ℓ is fixed during each experiment.

component follows Hooke’s law

F repij =−knδij , (1)

where δij is the overlap of two adjacent solids i and j.
The constant kn is the normal stiffness which is a purely
numerical parameter. The stiffness is determinate by a
maximum particle deformation of R/100 for two grains
in frontal collisions with relative velocity 2Aω, where
ω= 2πf . The dissipative component is taken into account
by viscous forces according to the following law:

F disij =−γn(kn, ε)
∂δij
∂t
, (2)

where the viscous constant γn [15] is a function of the
normal stiffness kn and the restitution coefficient ε. This
restitution coefficient is used for both, grain-grain and
grain-wall collisions. Tangent forces F tij are bounded and
depend on the relative tangent velocities vtij between the
colliding solids i and j. One has

F tij =−ktvtij and ‖F tij‖� μFnij , (3)

where μ is a friction coefficient and kt a purely numer-
ical constant. For more realistic force models, such as
viscoelastic forces, similar results are expected. Further
details concerning the MD simulations are given by
Taberlet [17].

Numerical results. – A large number of numerical
simulations were realized in order to cover the complete
set of tunable parameters. For fixed values of L,A and R,
different dynamical regimes could be observed depending
on the number N of grains in the system. A complete
description of the investigated parameters is given in
table 1. The side length ℓ cannot be changed in the
VIPGRAN experiment but its influence on the system’s
dynamics is numerically investigated. Note that all simula-
tions were realized for fixed values of ε= 0.9 and f = 10Hz.

Table 1: Parameters for the different simulated systems.
Symbols are given according to the results presented in figs. 5
and 7. The symbol S stands for a typical set of parameters
corresponding to figs. 2, 3, 4 and 6. The symbol × corresponds
to earlier simulations [12].

A (mm) L (mm) ℓ (mm) R (mm) Symbol
4.0 30.0–47.5 30 0.5 •
5.0 30.0–47.5 30 0.5 ◦
6.0 35.0–47.5 30 0.5 �

5.0 32.5–47.5 30 0.6 �

5.0 35.0–47.5 30 0.7 �

5.0 47.5 30 1.0 △

5.0 30.0–47.5 15 0.5 �

5.0 40.0 30 0.5 S
2.5 10.0 10 0.13–0.32 ×

N = 1000 N = 4000

Fig. 2: (Color online) Snapshots of the main cell for, respec-
tively, N = 1000 and N = 4000 grains. One grain layer at rest
contains nearly 1000 grains. For small number of grains the
system behaves like a gas. When the number of grains increases,
dense and slow moving clusters are formed in the corners and
grow towards center of the system. These dark gray (blue) clus-
ters are detected by the following caging criteria.

Indeed, the latter exhibits that the frequency might not be
a pertinent parameter for the emergence of the expected
phenomenon. Figure 2 presents snapshots of the simulated
cell for a typical set of parameters referred as S in table 1.
In the dilute case of 1000 grains (nearly one grain layer at
rest), particles are homogeneously distributed in the whole
volume. Moreover, collisions are rare events and the parti-
cle velocities approach Aω. In opposite, for 4000 grains,
contacts between particles are frequent events and accord-
ing to the dissipative character of these collisions, energy is
dissipated. When the number of grains increases, one can
assist to the formation of dense zones of low grain velocity
growing from the corners towards the centre of the cell.
These dark gray (blue) clusters, that can be detected by
a following caging criteria, are surrounded by a loose gas-
like zone. Both phases are coexisting and form a complex
dynamical equilibrium. Surface grains are indeed ejected
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Fig. 3: (Color online) Three typical trajectories of grains in the
system along the (y, z)-plane during 20 periods. For N = 1000,
displacements are of the size of the system and straight lined,
in opposition to the short and curly trajectories observed for
N = 4000 which are characteristics of caging effects.

by the cluster, but this loss of matter is recovered by new
energetic particles coming from the pistons.
At the scale of grains, the presence of clusters can be

linked to some “caging effect”. Indeed, high local densities
imply that a grain cannot leave its neighborhood without
colliding and losing kinetic energy. Evidence of such caging
effect is illustrated in fig. 3 by the tracking of randomly
chosen particles during 20 periods. The system is based
on the set of parameters S. In order to simplify the
visualization a (y, z)-projection is used. The trajectories
of three particles are represented by a black, a gray (blue)
and a light gray (red) line. For a gas (N = 1000), the
trajectories are rather straight lined and of the size of the
system. The entire volume is visited, which is expected
for a homogenous gas. For a clustered system (N = 4000),
trajectories are straight lined in the gas phase near the
pistons, but once a grain travels into the central zone, a
caging effect is observed. Indeed, the trajectories remain
localized. The grains are trapped and their energy is
dissipated by a succession of inelastic collisions.
The loosest local configuration corresponding to a cage

is a grain surrounded by 6 neighbors in a cubic lattice of
side length

√
6R. For this arrangement, the central grain

cannot travel behind its neighborhood without collision.
In terms of packing fraction φ=Nvg/V , where vg is the
volume of a grain and V the maximum volume of the
cell, a cage is formed above a threshold value φc = 0.285
that was already observed in earlier work [12]. In order
to count the number Nc of grains that are caged in the
system, a local packing fraction φℓ has to be measured.
This can be achieved from a Voronöı tessellation. Indeed,
for each particle a Voronöı cell of volume Vℓ is obtained.
Accordingly, a grain is considered as caged if φℓ = vg/Vℓ >
φc. For the set of parameters S, fig. 4 describes in gray
(blue) the evolution of Nc for increasing N . The first

cluster

gas
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Fig. 4: (Color online) Gas-cluster transition in the system
depending on the number N of grains for the set of parameters
S. The Kolmogorov-Smirnov test TKS is plotted in black as a
function of the number of grains with local packing fraction
φℓ > 0.285 in gray (blue). The light gray (red) line corresponds
to the statistical threshold. The vertical dashed black line
refers to the transition detected by the statistical test and
corresponds with the apparition of the first significant number
of caged grains.

significant value ofNc is obtained forN = 3525. Important
dissipative phenomena are then expected.
At the scale of the whole system, the signature of the

cluster formation is given by the positions of the grains
in the cell volume. Expecting that for low densities the
grains will spread homogeneously, a uniform distribution
corresponds to a gas-like system. A statistical test is
a reliable tool in order to detect the dynamical regime
of the system [12]. The two-sample Kolmogorov-Smirnov
adequation test (KS test) [18] compares the cumulative
distribution function F (z) of the grain positions along the
z-axis with the cumulative distribution function U(z) of
a uniform law. For a fixed number of grains N , the test
value TKS is given by

TKS =

√

k

2
sup

|z|�L−2A

|F (z)−U(z)|, (4)

where k is the number of classes characterizing the
distributions. If TKS exceeds the statistical threshold Kα,
depending on k and on the the level of significance α,
the hypothesis of uniformity is refuted and the system is
assumed to be in a cluster regime. Figure 4 describes in
black, the evolution of TKS as a function of N realized
for the set of parameters S. The statistical threshold
Kα is represented in light gray (red). Once TKS >Kα,
a critical number of grains triggering the transition can
be extracted. Moreover, this transition corresponds to the
apparition of the first significant number of caged particles
and the results of the global test are in perfect agreement
with the results of the local detection method.
An automatic detection of the gas-cluster transition

curve is introduced. In each simulation, the KS test is used
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Fig. 5: Gas-cluster transition points, as detected by the KS
test, depend on the number of grains and on the height of
the constraint-free zone of the cell. The symbols correspond to
different simulation parameters according to table 1.

to detect the dynamical regime of the system. Starting
with two initial filling numbers of N = 500 and N = 5000,
a gas and a cluster are respectively detected. Obviously,
the transition occurs between those values and can be
approached by interpolation. For the obtained number
of grains a new simulation is performed and the test is
applied again. This dichotomy allows to refine the edge
with sufficient precision. Figure 5 presents the gas-cluster
transition points depending on the number of grains and
on the height L− 2A of the constraint-free zone of the cell.
The symbols refer to the different simulation parameters
according to table 1. The error bars correspond to the
precision of the detection and depend on the number of
iterations in the dichotomy procedure.
All transition lines present similar behaviors but for

different ranges of the parameters. For a fixed height, as
more energy is dissipated, clustering appears when the
number of grains increases. Moreover, a cluster appears for
a constant grain number by increasing L− 2A. This seems
counterintuitive since the number density η=N/V gets
lower. Nevertheless, if the volume increases for constant
N , less particles are present next to the pistons and
less energy is injected in the cell. As only few energetic
particles arrive in the central part of the cell, the system
cools down, which leads to the formation of a dense region.
In order to investigate more deeply this energetic approach
of clustering, space-time diagrams were established. Based
on the set of parameters S, fig. 6 describes the evolution,
at different heights z, of the mean kinetic energy Ek in
the system as a function of the dimensionless time t/T .
This energy is normalized by the kinetic energy of a single
grain moving at speed Aω and displayed using a linear
color scale. In order to improve the statistics, the diagram
is averaged over 20 periods.
In the gas state (fig. 6, top) one observes that for

0.4� t/T < 0.8 a large amount of energy is injected
into the system according to the motion of the pistons.
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Fig. 6: (Color online) Space-time diagram of the mean kinetic
energy for 1000 grains (top) and 4000 grains (bottom) in the
cell. A linear color scale is used. In the gas regime, periodic
patterns corresponding to high speed trajectories are observed
and could correspond to different bouncing modes of the grains.
In the cluster regime, a deviation of these trajectories is
observed as the grains encounter a dense central region. The
constant decrease of the slope of the trajectories is due to
successive collisions through the media.

Evaluating the slopes of typical trajectories in this
diagram leads to an approximative injection velocity
v0 that lies between Aω and 2Aω. Despite the average
of the collected data, discrete energetic trajectories are
visible for 0.8� t/T < 1.4. This could evidence a periodic
behavior of the particles in the cell. Indeed, the energetic
branches on the diagram could correspond to the different
oscillation modes established in the system. In the cluster
case (fig. 6, bottom) one can find a correspondent energy
injection near the pistons. However, even if initially the
slopes are similar, the energy level is much lower which
means that for high η less grains are near the pistons.
Moreover, one observes a deviation of the trajectories
at about t/T = 0.7 corresponding to the encounter of
the energetic grains with the cluster. Due to multiple
collisions, the speed drops and the slope of the trajecto-
ries decreases more and more. The discrete trajectories
present in the gas are no longer visible and only a few
grains are leaving the central zone. At the scale of one
period, the injected energy reaching the center of the
system is not high enough to break up the clusters and to
spread the grains through the system.

Energetic approach. – Our numerical results stress
the importance of two main processes in the cluster
formation mechanism: i) the amount of injected energy
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and its propagation; ii) the dissipation of this energy
through a series collisions. This last mechanism has been
quantified for free cooling systems and follows Haff’s
law (5) as long as the system is dilute. One has

〈v(t)〉= v0
1+ t/τH

, (5)

where v0 is the typical injection velocity and the operator
〈·〉 denotes the average. The Haff time τH is the typical
relaxation time [19] for granular gases and is given by

τH =
2

v0(1− ε2)ησ
, (6)

where σ is the cross-section π(2R)2 of the grains. The
propagation of the energy through the system is more
complex and depends on the mean free path of each
particle as well as on the size of the system. The typical
length δ of the system is given by the mean distance that
the grains achieve when they pass across the constraint-
free zone. Accordingly, δ corresponds to the average
distance separating two points P1 and P2, respectively,
in the surfaces π1 and π2 of the pistons when they are as
close as possible.

δ= 〈|−−−→P1P2|〉. (7)

The effective volume visited by a grain is then given by δσ
which leads to a number n= ηδσ of encountered collisions
during its particle motion. At each binary collision, a
certain amount of energy is dissipated. This loss can be
translated in terms of velocity according to the law v′ = vε,
where v and v′ are, respectively, the grains velocities before
and after the collision. If one sees the energetic transfer
as a dissipative chain reaction through the system, a
characteristic propagation time τP can be estimated. One
has

τP =
δ

n

(

n
∑

i=0

1

v0εi

)

, (8)

where δ/n acts as the mean free path. If the energetic
impulse coming from the piston has enough time to
travel across the system and to spread the particles in
the whole volume as is seen in fig. 6 the system is in
a gas-like regime. In the opposite, if the system has
not enough time to propagate, dense central zones are
generated due to cooling. The system dynamics appear
as a competition between both time scales. Accordingly, a
clustering condition can be given by

τH < τP . (9)

By simplifying and using the geometric character of the
sum in τP , the condition (9) can be reformulated as
follows:

δ >
ξ

ση
, (10)

where ξ depends on ε according to

ξ =−
ln
(

1+ 2
ε(1+ε)

)

ln ε
− 1. (11)
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Fig. 7: (Color online) Transitions points detected by the KS
test using the symbols according to table 1 in black and f(φ)
in gray (red).

However, the estimation of τP neither takes into account
the size of the grains nor their deviation at impact. Since
the interaction between particles depends on a surface-
to-surface distance, a corrective term nr0, with 0< r0 �
2R has to be subtracted from the typical length δ. This
value r0 is linked to the impact angle θ and can be
determined by considering the repartition of the velocities.
Indeed, after each binary collision assuring the energy
transmission, both grains continue their movement with
different velocities. The transmitted speed corresponds to
v cos θ, where v is the velocity of the incident grain before
impact. By following after each collision the fastest grain,
the deviation in the energy transmission is limited by a
critical angle of π/3 that leads to the estimation

r0
R
=
3

π

∫ π

3

0

2 cos(θ)dθ= 1.654. (12)

By reorganizing condition (10) in order to use the
packing fraction φ= σηR/3, a dimensionless expression
can be obtained and the parameters φ and δ/R assure
the collapse of the gas-cluster transition points presented
in fig. 5 along a unique curve of equation

f(φ) =
ξ

3φ

(

1

1− 3(r0/R)φ

)

. (13)

Figure 7 is a (δ/R, φ)-phase diagram presenting these
transition points by using the symbols of table 1 in black
and f(φ) in light gray (red). Equation (13) captures the
transition for all sets of data investigated herein.
In order to confirm the reliability of the presented law,
f(φ) is compared to the empirical frontier between gas
and cluster regime of earlier Mini-Texus simulations [12]
represented by the gray (blue) crosses in fig. 7. The
agreement is excellent. Nevertheless, f departs from the
set of points for large values of φ. Indeed, the limits of
the model are reached, the hypothesis of strong dilution
is not respected and Haff’s law [19] is no longer valid.
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Conclusion. – In summary, we characterized and
numerically confirmed the transition between a granular
gas and a dynamical cluster at the scale of the grains and
at the scale of the entire system. Both approaches concord
and lead to an efficient cluster detection. A model based
on the energy propagation in the system provides a scaling
law for the edge between both dynamical regimes. The
only fitting parameter r0/R of this law is constant for
systems of different dimensions and oscillation types.
Our work opens new perspectives. Indeed, our results

could help to fix the parameters of the VIPGRAN
experiment. Moreover, a model taking cells with several
compartments into account could be imagined in order to
manipulate or to direct clusters.
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Part III

Handling of granular materials in
microgravity
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Chapter 5

Clustering and Maxwell’s demon

In the scientific literature, the notion of clustering is often associated to a granular trapping. In
general, this trapping corresponds to a localization of the majority of the granular material in
a particular region of the container. For instance, by dividing a driven system into several sub
cells, it is possible to observe the granular pendant of Maxwell’s demon [65–67]. Let us imagine a
rectangular system in which a vertical wall divides the container in two (see figure 5.1). The latter
wall is however not as high as the entire container so that the enclosed particles can travel from one
side to another. In this case the granular trapping is easy to understand since the collisions between

gravity

Figure 5.1: Sketch of the a compartmentalized container contain granular material. The system
is driven and a gathering of the grains can be expected in one side of the cell

the particles are dissipative. Once enough grains have found themselves (randomly) in the same
compartment, too much of the injected energy is dissipated by the particle’s interactions. The
grains can’t overcome anymore the potential barrier represented by the wall and remain trapped
on this side. But what happens if the same experiment is realized under microgravity conditions?
Has the cell to be adapted? Is the gathering even possible? Answers to these questions can be
found considering our clustering theory.

5.1 Motivations
The dimensions of the cell are important parameters that can trigger the clustering in the same
way than the number of particles. Accordingly, creating smaller sub cells in a container encourages
locally the formation of a dynamical cluster. A trapping of the grain can thus be achieved without
any potential barrier induced by gravity. However, if one considers the up-down symmetry induced
by the weightlessness, the cell should be adapted.
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In the following article, we studied the feasibility of granular trapping in the SpaceGrains
instrument. We realized simulations in order to reproduce the phenomenon and to analyze the
formation of the traps. Depending on the global filling of the system, different clustering regimes
are observed and a corresponding bifurcation diagram is presented. Finally, we proposed two
models predicting the steady states of the system.

5.2 Setup for SpaceGrains

The first step consisted in the design of the container and its subcells that is compatible with the
SpaceGrains instrument. Inspired by the setup of Dorbolo and coworkers [65], we decided to divide
our cell according to a lattice. We placed two perpendicular walls in the center of the simulated
cell in order to create four smaller compartments. The height of this additional structure is 30 mm
which is small enough to allow the exchange of particles between the cells for any piston position.
A sketch of the simulated setup is given in figure 5.2. Once again, the pistons oscillate sinusoidally
in anti-phase with an amplitude A and a frequency f . Note that for this study the mean distance
L has been fixed to 50 mm.

A sin(2⇡ft)

A sin(2⇡ft + ⇡)

60
m

m

30 mm 30 mm

3
0

m
m

L = 50mm

Figure 5.2: Sketch of the modified SpaceGrains cell. The addition of two perpendicular walls in
the center of the cell lowers locally the clustering threshold and allow thus the trapping of the
grains. Both pistons oscillate in phase opposition with amplitude A and frequency f . For this
study the mean distance L is fixed to 50 mm.

5.3 Main results

We realized simulations for fixed driving parameters and for an increasing number of grainsN . The
trapping of particles in one or more compartments is observed and can be linked to a dynamical
clustering in particular subcells. Indeed, the formation of a single trap in the system can be
predicted by our clustering theory presented in [92]. The dynamics of the particles and the
granular exchange between the compartments are captured by two complementary models. A first
iterative model allows us to reproduce efficiently the evolution of the system. A second theoretical
model, based on the particle fluxes in the system, gives us the asymptotic stable states. Note that
despite the resemblance to many similar experiments (granular fountains and ratchets) on earth,
the microgravity conditions leads to residual particle fluxes from one compartment to another even
for high fillings. Figure 5.3 shows snapshots of the simulated system for different values of N .
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Figure 5.3: (Taken from [93]) Snapshots of the simulated cells for an increasing number of particles
N (from left to right: 500, 1400, 3100, 5900, 7500). For low values of N , granular gas is observed.
For higher fillings, one can assist to the formation of several trapping regimes.

5.4 Conclusion
We showed that a granular version of Maxwell’s demon can be realized in microgravity environ-
ment. The presented design could easily be implemented in the SpaceGrains instrument which
would allow an experimental study of the relevant trapping mechanisms. Moreover, this study
corroborates our theoretical model concerning the transition from a granular gas toward a dynam-
ical cluster. Indeed, the one trap regime could be predicted by applying our cluster criterion to a
cell whose dimensions correspond to those of the subcells.
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In microgravity, the gathering of granular material can be achieved by a dynamical clustering whose existence
depends on the geometry of the cell that contains the particles and the energy that is injected into the system.
By compartmentalizing the cell in several subcells of smaller volume, local clustering is triggered and the so
formed dense regions act as stable traps. In this paper, molecular dynamics simulations were performed in order
to reproduce the phenomenon and to analyze the formation and the stability of such traps. Depending on the total
number N of particles present in the whole system, several clustering modes are encountered and a corresponding
bifurcation diagram is presented. Moreover, an iterative model based on the measured particle flux F as well as
a theoretical model giving the asymptotical steady states are used to validate our results. The obtained results are
promising and can provide ways to manipulate grains in microgravity.
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I. INTRODUCTION

When granular material is vertically driven, the system
rapidly reaches a steady-state for which the injected energy
and the dissipated energy perfectly outbalance over one period
of oscillation [1]. Each collision between particles causes
an energy loss that can be quantified via the coefficient of
restitution ε. Nevertheless, for strong external forcing, high
isotropic velocities are observed and the media behaves like
a macroscopic dissipative gas. When such a granular gas
is generated in a cell that is compartmented by a vertical
wall allowing exchange through a slit, a symmetry breaking
can appear under certain conditions [2,3]. Indeed, the grains
spontaneously start to gather in the same compartment, which
can naı̈vely be related to a sudden drop of the system’s entropy.
By analogy, this phenomenon is referred to as the granular
pendant of Maxwell’s demon. Different cell geometries such
as cylindric systems [4] and grids [5] can be used, but the
relevant physical mechanism remains the same.

In microgravity, granular materials can be gathered by a
clustering [6–8]. Clustering is the tendency of a granular
material to form dense and slow regions that can trap new
incoming grains. While dissipative nature of the collisions
are the main motor of the phenomenon, one can make a
differentiation between the classical clustering, referring to the
cooling of granular media [9], and the dynamical clustering,
which is a condensed steady-state in a driven granular system
[10]. Indeed, the first one is obtained through a long process
of successive collisions that dissipate the energy and slows
down the grains so that nearly immobile stripe-like regions
are formed. On the other hand, the second type relies on a
permanent energy injection (at the walls) that counterbalances
the dissipation. This assures the equilibrium between the
dense cluster phase in the center of the system and the
gas phase surrounding it. If the energy supply is stopped,
the dynamical cluster evaporates and the particles spread in
the entire system until a cooling begins. Figure 1 de-
scribes these different clustering dynamics via a Kolmogorov-
Smirnov (KS) test that confronts the particle distribution with
a uniform law. If the test’s value is above the threshold, the
hypothesis of uniformity is refuted and clustering is observed.
Data is obtained by prolonging earlier simulations of granular

gases [11] and stopping the driving in the system after 10 sec-
onds. The gray (red) KS curve indicates that dynamical clus-
tering is detected until t = 10 s, when the energy injection is
stopped. As the cluster evaporates, the KS curve sharply drops
under the threshold (black line), and the system evolves into
a gas state that rapidly starts to cool down. The KS curve in-
creases and crosses the threshold again at about t = 15 s, which
corresponds to the very beginning of a classical clustering.

Dynamical clustering has been observed in horizontal 2D
cells [12], parabolic flights, and rocket missions [10] that have
been reproduced and completed numerically using molecular
dynamics simulations [13]. Moreover, the European Space
Agency (ESA) is doing intensive research on the behavior of
granular media in microgravity. In particular, the SpaceGrains
project [14] focuses on cluster formation and Maxwell’s
demon. In the main cell of the SpaceGrains device, N spherical
particles with a radius R are enclosed in a box of dimensions
60 × 30 × 30 mm3. Two pistons are oscillating in phase
opposition with an amplitude A and a frequency f around
their respective positions z1 and z2. The distance L between z1

and z2 can be modified in order to tune the accessible volume
of the system. Figure 2 provides a brief description of the
systems parameters.

This work aims to investigate the formation of traps
and the occurrence of Maxwell’s demon in microgravity
by numerical simulations. In order to provide predictive
results, the simulated system is based on a compartmentation
of the main cell of the ESA’s SpaceGrains project. We discuss
the triggering role of clustering for Maxwell’s demon under
microgravity conditions and present two theoretical models
reproducing the observed phenomena.

II. NUMERICAL APPROACH

The realized simulations are based on a molecular dynamics
(MD) approach. This model is widely used in soft-matter
physics and especially in the simulation of granular ma-
terials [13,15] because of its capacity to handle efficiently
multiple collisions that are unavoidable in dissipative systems.
Normal forces Fn

ij are composed by a repulsive F
rep
ij and a

dissipative F dis
ij component. The repulsive component follows

012202-11539-3755/2013/88(1)/012202(7) ©2013 American Physical Society
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FIG. 1. (Color online) The KS test, represented by a gray (red)
curve, indicates the evaporation of a dynamical cluster in microgravity
once the driving is stopped (at t = 10 s). After a short period of gas
phase, a cooling process is observed.

Hooke’s law,

F
rep
ij = −knδij , (1)

where δij is the surface-to-surface distance between two
solids, i and j . The constant kn is the numerical normal
stiffness, which is determined by fixing the maximum particle
deformation at R/100. The dissipative component is taken into
account by viscous forces according to the following law:

F dis
ij = −γn(kn,ε)

∂δij

∂t
, (2)

where the viscous constant γn is function of kn and the
restitution coefficient ε. This restitution coefficient is used
for both grain-grain and grain-wall collisions. Tangent forces
F t

ij are bounded and depend on the relative tangent velocities
vt

ij between the colliding solids i and j . One has

F t
ij = −ktv

t
ij and

∥∥F t
ij

∥∥ � μFn
ij , (3)

where μ is a friction coefficient and kt a purely numerical
constant. A complete description of this MD approach is given
by Taberlet [16].

III. NUMERICAL RESULTS

A. Observations

We realized a large number of numerical simulations
reproducing a compartmentalized version of SpaceGrains. Our
cell is filled homogeneously with N spherical particles of
radius R = 0.5 mm. The average distance L between the
pistons is fixed at 50 mm. In addition to the basic cell, two
orthogonal walls of height h = 30 mm are inserted in the
center of the cell, as displayed in Fig. 3. This way four
subcells are formed. The system is periodically driven with
an amplitude A = 5 mm and a frequency f = 10 Hz. The
granular media is shaken up and grains are free to travel from
one compartment to another. The observed dynamics depend
strongly on N . Indeed, for a small number of grains, the whole
system remains in a gas state. The particles travel with high
speed and spread homogeneously. For a larger N , a cluster

A, f

60
m

m

z1 + A sin(2πft + π)

z2 + A sin(2πft)

L

30 mm
30

m
m

FIG. 2. (Color online) Sketch of ESA’s SpaceGrains cell. Spher-
ical particles of radius R are enclosed in a 60 × 30 × 30-mm3 box.
Two pistons are oscillating in phase opposition with an amplitude A

and a frequency f around their respective positions z1 and z2. The
distance L = |z2 − z1| can be modified in order to tune the accessible
volume of the system.

forms and the grains start to gather in the same compartment.
This cluster keeps growing and traps the incoming grains until
the compartment is filled. When more grains are injected
in the system, a second cluster can form and a competition
between two traps is observed. Moreover, the second cluster
mostly forms in the diagonal neighboring compartment of
the first cluster. A further increase of N leads then to the
formation of three and, finally, four clusters. This last regime
can also be considered as a second homogenous state since all
particles are distributed equally in the system. Figure 3 gives a
brief overview of the encountered dynamics for an increasing
total number of particles. The top row presents the simulated
systems while the bottom row shows the top views of the
corresponding cells.

B. Filling measures

In addition to its dependency on the total number of grains,
the formation of the traps in the system is a dynamical
process that evolves continuously. Tracking the filling number
n1,n2,n3, and n4 of the four compartments allows us to evaluate
the stability of the observed clusters. This measure implies
a temporal discretization that is achieved by using as unit
time step the oscillation period T . Figure 4 presents in black
lines the evolution of ni as a function of the number of time
steps t . The total number of grains in the system is fixed at
N = 4200 (two traps are formed). Other colors correspond to
complementary simulations explained in Secs. V and VI.

For most simulated systems, a steady-state is reached
after 1200 periods. Thanks to the obtained final compartment
fillings, a bifurcation diagram describing the different values of
n1,n2,n3, and n4 as a function of N is established and presented
in Fig. 5. Until a certain threshold Nc (left dashed line),
no trap is observed and all compartment fillings are roughly
equal. Then, abruptly, a very neat bifurcation corresponding
to the cluster formation occurs. Almost all grains gather
in a single compartment leaving three others poorly filled.
Recent results [11] allow us to predict the apparition of such
dynamical clustering. Indeed, for a given system of maximal
volume v = �2(L + 2A), the clustering criterion is given by
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N = 500 N = 1400 N = 3100 N = 5900 N = 7500

FIG. 3. (Color online) Dynamics of the compartmentalized system for increasing N . The top row displays snapshots of the simulated cells.
For high enough filling numbers, clustering is encountered and grains gather in one (or more) compartment(s). The bottom row shows the top
view of the corresponding cells.

the following condition:

δ(L,�,A)

R
>

ξ (ε)

3φ

(
1

1 − cφ

)
, (4)

where δ is the characteristic length scale of the cell, c is a
constant, and the function ξ depends only on ε. The packing
fraction φ is defined by

φ = N
4πR3

3v
. (5)
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FIG. 4. Evolution of the filling number of the different com-
partments over 1200 periods in a system of 4200 grains. Molecular
dynamics simulations are represented in black, the iterative model in
light gray, and the asymptotic results are displayed as two dark-gray
horizontal lines.

By introducing the geometrical parameters of a compartment
into Eq. (4), the local threshold is found to correspond to a
filling number Nc = 808, denoted by a vertical dashed line in
Fig. 5. This single cluster regime persists until a filling number
of approximatively 3000 particles, when it is replaced by a
regime with two traps. This region is far more noisy, so that
the relative compartment fillings ni/N spread around the value
of 0.5. Systems with three clusters are recorded for N > 4200;
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FIG. 5. Bifurcation diagram of the encountered final states of the
system. After 1200 periods, the filling ration ni/N is plotted with
black triangles against the total number of particles N . The first
bifurcation is predicted by Eq. (4) at a value of N = 808. The vertical
dashed lines correspond to the critical values of Nc and Nm discussed
in the main text.
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however, they are rarely observed and seem less stable. Finally,
above 6000 grains, the system becomes homogenous again,
i.e., clustering takes place in all compartments.

C. Analogy with a granular fountain

These first results described in Sec. III present a lot
of similarities with what is found for a granular fountain
[17]. In a granular fountain, granular material is driven in
a compartmented cell under gravity. Each compartment can
communicate with its neighbors either through a slit at a
certain height h or by the means of another slit at the
bottom of the cell. Like our system, a granular fountain
exhibits several trapping modes and multistable regimes.
Moreover, the same discontinuous transition is observed on
their respective bifurcation diagrams when the first trap occurs.
Despite these intriguing analogies, several differences due to
the experimental conditions are noted. Indeed, gravity has an
impact on the symmetry of the system. The granular fountain
as well as our system present two openings per compartment.
However, the fluxes present in the fountain are influenced by
gravity and have unequal intensities while they are perfectly
symmetric in our cell. One can also note that fixed driving
parameters were used in the microgravity simulations and
that phase transitions are induced by the variation of the
number of particles N . Since higher filling fractions can
be obtained this way, additional features such as dynamical
clustering, crystallization, and overflowing compartments can
be generated.

IV. GRANULAR FLUXES

A. Mean flux function

The formation mechanisms of the traps and the complex
dynamics of the system are linked to the number of grains
that the different compartments exchange. In order to quantify
this particle flux, each time a compartment filled with n

grains is encountered, the number Xn of grains leaving it
for a neighboring compartment is recorded. For a fixed n,
the obtained distribution of outgoing grains follows roughly a
binomial law

Xn ∼ B (n,pn) , (6)

where pn denotes the probability that a grain leaves a
compartment filled with n particles. Indeed, this binomial
behavior can be interpreted as following: At each time step, the
binary-experience leave versus stay is repeated for each of the
n grains. Since the event leave has a probability pn, the random
variable Xn follows a binomial distribution. Accordingly, the
escape probability is given by the following relation:

pn = 〈Xn〉
n

, (7)

where the mean flux 〈Xn〉 is the average value of Xn.
Figure 6 represents with black dots the evolution of 〈Xn〉 for
an increasing number of grains. For low n, the agitation is
strong in the cell and the flux raises up to a maximum value.
After that peak, a cluster tends to form; accordingly, the flux
drops and becomes nearly constant once the critical value Nc

is reached. At that point, the trap becomes stable. The flux
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FIG. 6. (Color online) Top figure describes 〈Xn〉 in black dots
and its fit, the mean flux function F (n), in medium gray (blue)
for an increasing number of grains. F can be subdivided into three
invertible functions in each shaded zone. Moreover, a fixed flux ϕ

can correspond to three fillings as presented by the light gray (red)
horizontal line. Bottom figure shows the corresponding evolution of
the measured escape probability in black dots and the fitted pn with
a solid gray (green) line.

remains low until the compartment is abundantly filled. The
distance between cluster and borders of the compartment gets
then smaller and grains can more easily escape. Moreover, the
increase of the flux can also be linked to the natural evaporation
that is part of the formation mechanism of dynamical clusters.
Note that qualitatively similar fluxes are observed in analog
systems such as ratchets [18] and granular fountains [17].
However, the observed plateau is a particular feature of our
system. An analytical function approaching this mean flux can
be found using statistical arguments. For a low n, the escape
probability can be approached by the linear combination of
two exponential laws of base 0 < p < 1.

pn = C1p
γgn(σ/�2) + C2p

γcn(σ/�2), (8)

where σ/�2 is the dimensionless cross section of a particle
and the coefficients C1 and C2 are free fitting parameters. The
constants γc = 0.14 and γg = 0.86 model the density increase
in the central part of the system under the hypothesis of normal
distribution along the oscillation axis.

However, each compartment has a critical capacity, noted
Nm, above which the escape probability is expected to increase.
This can be modeled by a symmetrization of pn about Nm that
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is noted p∗
n. The mean flux function F is finally defined by

F (n) = np∗
n. (9)

Fitting F on the average 〈Xn〉 leads then to a critical filling
Nm = 2849 that corresponds to a packing fraction of 19%.
This critical value is represented by the right dashed line in
Fig. 5 and corresponds to a threshold beyond which a second
trap can form. The obtained function F is plotted in gray (blue)
in the top of Fig. 6 and is in good agreement with the data.
The bottom of Fig. 6 shows the corresponding evolution of
the measured escape probability in black dots and p∗

n in gray
(green).

B. Geometrical coefficients

The relative positions of the compartments also have an
impact on the grain exchanges. In order to determine the
direction of the outgoing flux, the flux coefficients cij have
to be introduced. They measure the fraction of the flux going
from the compartment i to j when i �= j and have the value
cij = {−1} for i = j . These coefficients are evaluated on each
simulation and then summarized in the following flux matrix:

C =

⎡
⎢⎣

−1 0.46 0.46 0.08
0.46 −1 0.08 0.46
0.46 0.08 −1 0.46
0.08 0.046 0.46 −1

⎤
⎥⎦ . (10)

The conservation of the total number of grains implies that
summing on a row of C yields 0. Moreover, one can note that
the exchange of particles is strong with direct neighbors and
weak with the diagonal neighbors. This asymmetry explains
why, in the case of a two-cluster system, both traps form in
diagonal neighboring compartments. Indeed, this particular
configuration minimizes the granular exchange between the
clusters and allows, thus, an higher stability of the regime.

V. ITERATIVE MODEL

In order to realize efficiently a great number of simulations,
a statistical model based on the mean particle flux has been
elaborated. Using F and the flux coefficients cij , the evolution
of the filling ni of each of the i compartments can be
determined according to the following equations:

∂ni

∂t
=

4∑
j=1

cjiF (nj ), (11)

with 1 � i � 4 and t being the number of time steps. To
take into account the statistical fluctuations and to avoid
unstable stationary solutions, a stochastic noise term must be
injected into Eq. (11). The fluctuations are represented through
random variables ζ following a standard normal distribution.
According to the Moivre-Laplace theorem, a global flux
function can be described by

Fζ (n) = F (n) + ζ
√

F (n) (1 − F (n)/n). (12)

The evolution of the number of grains in the different compart-
ments is then given by Eq. (11), where F (nj ) is replaced by
Fζ (nj ). For identical initial conditions, the results of this model
are in good agreement with of our MD simulations. Indeed,
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FIG. 7. Comparison between MD simulations described by black
triangles and iterative model in light gray based on a limit normal
assumption. Critical values Nc and Nm are represented by two dashed
vertical lines.

Fig. 4 shows a similar evolution of the iterative approach
in light gray and the MD data in black. Moreover, Fig. 7
displays the ratio ni/N of grains present in each compartment
i as a function of N after 1200 iterations. The molecular
dynamics simulations are represented by black triangles while
the iterative model is colored in light gray. Main branches of
the bifurcation diagram are obtained.

VI. THEORETICAL MODEL

A. Stationary solutions

In analogy to earlier works [4,19,20], an asymptotic
bifurcation diagram for a granular system in microgravity can
be realized. Obviously, the final values of n1,n2,n3, and n4 are
reached once the filling number of all compartments remains
constant in time. By writing Eq. (11) in its matrix form, this
condition becomes equivalent to

M( �F ) = C · �F = �0, (13)

where �F = [F (n1), . . . ,F (n4)]. Since each row of the flux
matrix sums up to zero, the kernel of M is the linear hull
of the vector �1 = (1,1,1,1). Accordingly, stationary solutions
are characterized by �F = ϕ�1, ϕ ∈ R, and the fixed-point
conditions become{

F (ni) = ϕ ∀i ∈ {1, · · · ,4}∑4
i=1 ni = N,

(14)

with ϕ being a constant particle flux. These conditions imply
the conservation of the total number of particles coupled with
an identical flux for all compartments.

B. Sum functions

Since the mean flux F (n) presents both a minimum and
a maximum, a same fixed value of ϕ can be obtain for up
to three different fillings as presented in light gray (red) in
Fig. 6. Indeed, F (n) can only be inverted piecewise around
the different extrema and for each section l ∈ {1,2,3} the
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respective inverse function is noted F−1
l . In order to find

the asymptotical compartment fillings for a fixed N , all
possible combinations implying the three inverse functions
and the four boxes have to be considered. For that purpose, the
sum functions Sij are introduced and defined by the following
relations:

Sij (ϕ) = iF−1
1 (ϕ) + jF−1

2 (ϕ) + kF−1
3 (ϕ), (15)

where k = (4 − i − j ) with 0 � i,j � 4. The coefficients
i,j,k give the effective of the corresponding filling number.
Indeed, let ϕ0 be a solution of Sij (ϕ) = N . If one defines
zl = F−1

l (ϕ0) for l ∈ {1,2,3}, the system is composed by i

compartments of z1 grains, j compartments of z2 grains, and
k compartments of z3 grains.

C. Stability

The stability of the obtained solutions can be determined
via the Jacobi matrix J relative to Eq. (11), which can be
calculated from

J = C · diag

[
∂F

∂n

∣∣∣∣
n=n1

, . . . ,
∂F

∂n

∣∣∣∣
n=n4

]
. (16)

A solution (n1, . . . ,n4) is stable if all the corresponding
eigenvalues of the Jacobi matrix are negative or equivalently
if

max
λ

{λ|det(J − Iλ) = 0} < 0. (17)

Figure 8 presents the stationary solutions of the system using
the theoretical approach. Stable branches are described by
thick dark gray and unstable by thin black lines. The MD
simulations are represented by black triangles. Moreover,
the stable solutions for a system of 4200 particles are also
represented by two dark gray lines in Fig. 4.

Nevertheless, some differences are noted between the
iterative and the theoretical model. This is due to the fact that
the theoretical model represents the asymptotic steady state.
By computing the iterative diagram for a large number of time
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FIG. 8. Comparison between MD simulations (black triangles)
and theoretical model. Stable branches are represented with thick
dark gray and unstable with thin black curves.
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FIG. 9. Comparison between the iterative model in light gray and
the theoretical model in dark gray. For a large enough number of
iterations, both models converge to the same final states.

steps (12 000) and all different initial conditions, both models
converge as shown in Fig. 9.

Moreover, in the multistable region (N > 6500), the
measured data seemed to prefer the four-cluster state. This
repartition is obviously triggered by the homogenous initial
conditions that were used in the MD simulations. Indeed, the
completed simulations presented in Fig. 9 recover the other
branches.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a particular cell geometry that
allows us to produce Maxwell’s demon in ESA’s SpaceGrains
project. Molecular dynamics simulations showed trapping in
the different compartments that is triggered by dynamical
clustering. Moreover, the presence of clustering and trapping
could be predicted thanks to earlier theoretical results [11].
Many analogies with classical systems, such as granular foun-
tains, granular clocks, and ratchets, have been observed and
qualitatively similar flux functions were obtained. However,
a nonnegligible, almost constant, residual flux was observed
for intermediate filling fraction, so that usual models could
not properly reproduce the dynamics. A bifurcation diagram
recovering the totality of our simulations was presented.

An iterative stochastic model reproducing the systems
evolution has been proposed and allowed a more efficient way
to simulate the dynamics present in Maxwell’s demon. Finally,
we describe a theoretical model that gives the asymptotic stable
states of the system. Mutlistable regions were expected, but
given our initial conditions, a homogenous repartition of the
particles is preferred. Note that for a high number of iterations
the stochastic model converges to the asymptotic solutions.

Our results are promising because ratchets and others’
transport mechanisms, providing ways to manipulate grains in
microgravity, can be envisaged in the SpaceGrains experiment.

In the future, larger lattices of 9 or 16 compartments on
could be realized. The major difference would be the presence
of different fluxes depending on the compartment of interest.
Indeed, the central compartments lose grains more easily than
the ones in the corners. This could be modeled by either several
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flux functions or by an adapted flux matrix. Other types of
compartment arrangements (linear or cylindric) could easily be
implemented and compared to our results. Moreover, the effect
of the shape of the compartment itself on the flux dynamics
could be studied. By using more complex aspherical particles,
the influence of the interlocking [21] on Maxwell’s demon
could be investigated.
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Chapter 6

Clustering and granular transport

In several industrial processes granular materials have to be transported from one fabrication
step to another. In general, this transport can be achieved by conveyor belts (see figure 6.1), or
vibrating screens. Obviously, in microgravity these techniques can’t be used. A granular pumping
seems to fit the need but the various security constraints linked to space experimentation render
this method quite complicated. Another efficient method has to be developed in order to transport
granular materials in microgravity.

Figure 6.1: (From XSM mining and construction) Photography of a gravel sand production line.
The granular material is transported by conveyor belts and vibrating screens through the different
production stages.

First of all, the grains have to be gathered which can be realized by a dynamical clustering
whose conditions of existence are controlled via our theory [92]. Given the driving parameters in
our previous studies, the granular agglomerate stabilizes always in the center (along the z axis)
of the system. However, by using different amplitudes and frequencies of oscillations for the top
and the bottom pistons, the position of the cluster may be modified. Accordingly, tuning these
parameters during a simulation or an experiment would lead to a displacement of the grains and
thus to a granular transport.

6.1 Motivations

In our two last studies we realized fundamental steps towards the handling of granular materi-
als. Indeed, the formation of a dynamical cluster could be understood and its localization via
a trapping mechanism has been realized. In the following article we propose an original way to
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transport granular materials in microgravity using the clustering effect. We investigate numeri-
cally the dynamics of an asymmetrically driven granular gas and show that the vertical position
of a dynamical cluster can be fully controlled via the amplitude ratio a. Moreover, we study the
natural oscillations of a cluster around its equilibrium position and propose a theoretical model
that captures the observed dynamics.

6.2 Numerical setup

The numerical setup is inspired by the cells of the SpaceGrains instruments. The container is
rectangular and two pistons, separated by a distance L, stir up the enclosed granular material.
The driving amplitudes of both pistons can by controlled separately and are noted Ah and Ac,
referring to a hot and a cold boundary condition. The side length l of the container is chosen
smaller than in previous studies in order to decrease the duration of the simulations. Indeed, in a
thinner geometry, less grains are required in order to form a dynamical cluster. A sketch of the
cell is given in figure 6.2. The positions of the top and the bottom pistons are noted zc(t) and
zh(t) and their respective distances to the cluster are noted ∆zc and ∆zh. The thickness of the
cluster is noted e.
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1 Introduction

Driven granular materials exhibit an intriguing collective
behavior commonly known as dynamical clustering. Parti-
cles collide and loose energy which leads to the formation
of slow and dense regions in the system [1, 2]. This par-
ticular behavior was studied experimentally in micrograv-
ity [3–7] and rationalized theorically and numerically [8–
14].

Dynamical clustering is due to the competition be-
tween a characteristic dissipation time, called Haff time,
and a characteristic time of energy propagation through
the system [14–16]. Gravity would induce another char-
acteristic time in the system and therefore affect dynam-
ical clustering [17]. Low gravity condition is needed for
the study of this phenomenon. This motivates the Eu-
ropean Space Agency’s (ESA) VIPGRAN project [18] in
which granular gas will be experimentally investigated un-
der various conditions on the International Space Station
(ISS). Numerical work is essential to prepare the VIP-
GRAN project and to fix the experimental parameters.

The behavior and the stability of a granular cluster
is poorly understood when the excitation parameters are
changed. The main motivation of this article is to address
the question of variable injection of energy in the system.
The first step is to study the case of an asymmetric driv-
ing and to study the position of the cluster in the system.
In the second step, the possible motion of the cluster will
be analyzed. We will see in this paper that it is possible
to control both position and motion of dynamical cluster,
opening ways to achieved a granular transport in micro-
gravity.
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Figure 1: Sketch of the VIPGRAN cell used in simula-
tions. Dimensions of this one are L = 50 mm and l = 15
mm. The oscillating plates have the following parameters:
a common frequency fixed at f = 5 Hz and tunable am-
plitudes, Ac and Ah. The length L is measured between
plate equilibrium positions. The relevant parameter is the
amplitude ratio a = Ac/Ah.

2 Numerical approach

Numerical simulations are performed using a Molecular
Dynamic (MD) algorithm, adapted to soft-matter physics
[19]. The model is based on Newtonian mechanics [14,
20, 21]. At each collision, normal and tangent forces are
evaluated respectively through particle deformations and
tangential velocities. Moreover, the dissipation coefficient
" modeling the velocity loss is taken into account. A com-

Figure 6.2: (Taken from [94]) Sketch of the simulated cell dedicated to the study of dynamical
clustering under asymmetrical driving conditions. The positions of the top and the bottom piston
are noted zc(t) and zh(t) in analogy to cold and hot boundary conditions. The length e denotes
the thickness of the cluster.

6.3 Main results

We realized various simulations for different values of Ac and Ah and a constant number of
particles. In each simulation a cluster is observed but its position depends on the amplitude
ratio a = Ac/Ah. This behavior can be explain through a simple model. We suppose the cluster
to be stabilized at a vertical position zcl. In order to stay at this height, the momentums coming
from the top and bottom pistons have to be equal and must reach the cluster simultaneously. If
one considers that the gas surrounding the cluster is very dilute, no collision occurs between the
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pistons and the cluster and the temporal criterion becomes

∆tc =
∆zc
Acω

=
∆zh
Ahω

= ∆th. (6.1)

Taking into account the size of the cluster in regards to the size of the entire system, the position
of stabilization can be determined by following relation,

zcl =
Lg
2

(
1− a
1 + a

)
, (6.2)

where Lg = L − e is the clearance of the system as define in [83]. However, the cluster doesn’t
remain static at this position. Its center of mass oscillates around zcl at a particular frequency
noted ωcl. In order to model these fluctuations we derive the total force that is applied to the
cluster from the momentum rates that it receives. If the system is out of equilibrium, the obtained
retraction force can be reduced to an harmonic oscillator with typical pulsation

ωcl =

(
Ac +Ah
Lg

)3/2(
2
N −Ncl
Ncl

)1/2

ω. (6.3)

where Ncl is the number of grains in the cluster. This pulsation depends only on the controllable
driving parameters Ac, Ah and ω and on the cluster’s dimension. Measuring ωcl provides thus an
interesting way to probe the size of a cluster.

6.4 Conclusion
Controlling the amplitude ratio of the piston’s movements in a SpaceGrains like cell allows to
modify the clustering position and thus the transport of granular material in this kind of geometry.
This method is certainly not the most efficient but represents a potential application of our study.
From a more theoretical point of view, our study allows us to determinate the natural pulsation
of a dynamical cluster and to link it to its mass mNcl and its size e. Reciprocally, the size of a
cluster can be estimated via the measurement of wcl without any manipulation of the granular
material that would put a stop to the phenomenon.
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Figure 1: Sketch of the VIPGRAN cell used in simula-
tions. Dimensions of this one are L = 50 mm and l = 15
mm. The oscillating plates have the following parameters:
a common frequency fixed at f = 5 Hz and tunable am-
plitudes, Ac and Ah. The length L is measured between
plate equilibrium positions. The relevant parameter is the
amplitude ratio a = Ac/Ah.

2 Numerical approach

Numerical simulations are performed using a Molecular
Dynamic (MD) algorithm, adapted to soft-matter physics
[19]. The model is based on Newtonian mechanics [14,
20, 21]. At each collision, normal and tangent forces are
evaluated respectively through particle deformations and
tangential velocities. Moreover, the dissipation coefficient
ε modeling the velocity loss is taken into account. A com-
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plete description of MD simulation is given by Taberlet
in [22] and was already used by the authors in [13, 14, 20,
21,23].

Based on the VIPGRAN concept, we designed a box of
width and depth equal to l = 15 mm. The length L(t) =
zh(t)−zc(t) is variable with the positions of the oscillating
plates given by the following equations of motion

{
zh(t) = z∗h +Ahsin(2πft)

zc(t) = z∗c +Acsin(2πft+ ϕ).
(1)

Opposite walls are oscillating with a fixed frequency f = 5
Hz and a phase shift ϕ = π as proposed in the VIPGRAN
project. The average distance between the plates at rest
is L = 50 mm. The number of particles in the cell is fixed
at N = 2000 to ensure clustering in the system [14]. The
grains have a restitution coefficient and a radius fixed at
ε = 0.9 and r = 0.5 mm respectively. The amplitudes
Ah and Ac, with which the amplitude ratio a = Ac/Ah
is defined, and the phase shift ϕ have been modified. We
choose to keep the frequency fixed at 5 Hz for both plates
in order to change the intensity of the injected energies
while keeping a constant time scale in the system from
one simulation to another. In addition, the residual vibra-
tion of the instrument is minimized if the frequencies are
the same for both walls. This fact is important in order
to reproduce the simulated experiment in the VIPGRAN
project. A sketch of the described cell is shown on fig. 1.
Four campaigns of simulations have been realized. In the
first three, we investigated the impact of the amplitude
shift when the fourth was devoted to the phase’s shift in-
fluence. We choose to fix the amplitude of the hot plate
(the bottom ones on fig. 1) at Ah = 5 mm, 7.5 mm and
10 mm in the first, second and third campaign, respec-
tively. The tunable parameter of the experiment was the
amplitude ratio a and was firstly varied in the interval
{0; 1

10 ;
1
9 ; . . . ; 1} and in the interval {0.2; . . . ; 0.8} in sec-

ond and third runs. In the last ones, the amplitudes of
both vibrating plates were set to Ah = Ac = 5 mm while
the phase shift ϕ was varied in the interval {0; π4 ; . . . ; 7π

4 }.
Table 1 gives a simplified view of the parameters used in
the four campaigns. Each run corresponds to 300 periods
of plates oscillation, requiring about 108 iterations of the
algorithm.

Table 1: View of the variable parameters of the four runs
of simulations.

Run Ah (mm) a ϕ Symbol

1 5 [0; 1] π •
2 7.5 [0.2; 0.8] π �
3 10 [0.2; 0.8] π N
4 5 1 [0; 2π] H

3 Results
Figure 2 presents the granular system in the cell for differ-
ent amplitude ratios a. We first observe, as expected, the

(a) (b) (c)

Figure 2: Three snapshots of the simulated experience for
amplitude ratios a = 0.25 (a), a = 0.5 (b) and a = 1 (c).
The cluster’s position is directed by the value of a. The
"hot" plate is always the bottom one.

formation of a dense region in the box where approxima-
tively 95% of the grains are close together [13]. This low
energetic region is separated from the plates by two dilute
gases of particles which seem to transmit energy between
the plates and the cluster. On fig. 2, one observes that
the position of the cluster is a function of the amplitude
ratio. Note that the more the amplitude ratio is small, the
more the cluster is situated near the "cold" plate (i.e. the
one with the smallest oscillation amplitude). A second ob-
servation we made is the oscillation of the cluster in the
box. The position of the agglomerated grains is indeed
not stable but makes a periodic motion with a pulsation
very different from the plate’s ones. These oscillations are
shown on fig. 3 for three different amplitude ratios, corre-
sponding to the cases (a), (b) and (c) of fig. 2.

The condensation behavior of the grains was already
studied [14] and the new feature of driven granular gas
investigated in this paper is the control of the cluster’s
position by amplitude tuning. This position, noted by zcl,
corresponds to the median of the particle’s vertical posi-
tions. We observed that this quantity corresponds in good
approximation to the densest region encountered in the
cluster. For convenience, the z-axis is calculated from the
center of the cell (z = 0) towards the cold plate.

Our simulations give evidence for an original behav-
ior of driven granular media submitted to asymmetrically
constraints in microgravity: a cluster is formed and is able
to move in the cell and oscillates about its equilibrium
position. Although the cluster is oscillating during long
simulations, an average position, noted z∗cl, can be calcu-
lated and linked to the amplitude ratio. Figure 4 gives this
normalized average position for the first three campaigns.
Note that the phase shift between both plates have no in-
fluence on the equilibrium position of the cluster and note
again that the smaller is the amplitude ratio and the closer
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Figure 3: Dimensionless time evolution of the median of
the distribution of the vertical position for amplitude ra-
tios a = 1 (red), a = 0.5 (green) and a = 0.25 (blue). The
median represents the cluster’s position and is noted zcl.
The cluster is oscillating around an equilibrium position
z∗cl with a pulsation ωcl. Both z∗cl and ωcl depend on the
amplitude ratio a.

the grains condense to the cold plate, as already seen on
fig. 2.

4 Cluster equilibrium position

To model the equilibrium position process in a simple
way, we consider the cluster like a dense and stable pile
of condensed grains receiving two momentum waves com-
ing from both hot and cold plates. The model is based on
two fundamental hypotheses: (i) the cluster has reached
equilibrium and does not move anymore and (ii) the mo-
mentums coming from both hot and cold plates are sent
after each period to the cluster, with the help of gaseous
grains. Two conditions coming out of these hypotheses are
also found. The momentums sent by the vibrating walls
have to be equal and the time needed for each momentum
wave to cross the cell have to be the same. Assuming that
the number of particles contained in the cluster is con-
stant (i. e. that the cluster captures as many grains as it
loses through evaporation after a period of oscillation), we
can model the cluster’s equilibrium position. Our model
considers that each grain coming from the plate i = {h, c}
has the typical velocity of the wall

vi = Aiω. (2)

As discussed above, the equilibrium is reached when the
time needed to attain the cluster is equal for both plates.
Considering a straight and uniform movement of the grains,
the time to cross the cell and to reach the cluster is di-
rectly linked to the plate-cluster distance by∆ti = ∆zi/vi.
Equaling ∆th and ∆tc, we find the following equilibrium
condition

∆zc
∆zh

=
Ac
Ah

. (3)
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Figure 4: Averaged and normalized equilibrium position
z∗cl of the cluster as a function of the amplitude ratio a. The
equilibrium position is always measured from the center of
the box to the coldest plate. Different symbols correspond
to the four runs of simulations. The model developed in
the main text is plotted using eq. (4) and is in excellent
agreement with numerical results.

Taking into account the cluster thickness e along the z-
axis, we can develop ∆zi in (3) in order to link it to the
cluster’s position zcl. These distances are illustrated on
the sketch of fig. 1. Using eq. (3) we find the cluster’s
equilibrium position

z∗cl =
L− e
2

(
1− a
1 + a

)
, (4)

where the dependence of the amplitude ratio a is obtained.
The next step consists in finding the cluster’s thickness
e. For this purpose, we used an algorithm that measures
the local density η around each sphere in the cell. Previ-
ous work [14] has shown that the cluster have approxima-
tively local density larger than 0.285. Using this criterion,
we defined the cluster’s thickness by the maximal vertical
distance that separates two particles with a local density
η ≥ 0.285. Measures were made on the entire simulation
and averaged to finally find e ≈ 10 mm, whatever the
value of a. This result is not surprising since the excita-
tion given by the oscillating plates is so intense that the
cluster cannot be more compressed, even for the first cam-
paign, making its size fairly constant. In fig. 4, we have
plotted eq. (4) with this fixed value of e. The model is
in excellent agreement with the results over the numerical
campaigns.

5 Cluster oscillations

As discussed before and illustrated in fig. 3, clusters sub-
mitted to asymmetrical constraints are able to oscillate in
the box around their equilibrium position z∗cl. Note that
the amplitude of these oscillations are significative in re-
gards to the value of the cluster thickness e. Cluster inertia
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Figure 5: Normalized pulsation ωcl of the cluster’s oscilla-
tion as a function of the amplitude ratio a. The measures
were performed with a Fast Fourier Transform (FFT) al-
gorithm. The model described in the main text given by
eq. (10) is in good agreement with the simulations. For
small amplitude ratios, the algorithm was not always able
to give relevant results because the oscillations of the clus-
ter were too weak.

is given by the total mass Mcl = Nclm, where Ncl is the
number of grains of mass m contained in the cluster. Ac-
cording to our observations, this number of particles is
roughly constant. In addition, we consider that the clus-
ter interacts with moving planes with the help of both hot
and cold gases that contain respectively Nh and Nc parti-
cles with Nh not necessary equal to Nc. These numbers of
particles are together linked by the total number of grains
injected in the box N = Ncl +Nc +Nh. However, within
the granular gas, only a part of the particles nh < Nh and
nc < Nc are colliding with the vibrating walls. They carry
momentum towards the cluster. One has

{
∆ph = nhmAhω

∆pc = ncmAcω.
(5)

Considering that the cluster’s position is perturbed by δ,
we can find an equation giving the momentum rate re-
ceived by the cluster as a function of δ. momentum rates
out of equilibrium can be decomposed into two parts cor-
responding to the oscillating plates:





∆ph
∆th

=
nh(z

∗
cl + δ)m(Ahω)

2

(L− e)/(1 + a) + δ

∆pc
∆tc

= − nc(z
∗
cl + δ)m(Acω)

2

(L− e)a/(1 + a)− δ .
(6)

In order to solve eq. (6), one has to evaluate the num-
ber of grains carrying momentums from the hot and the
cold plates. Assuming that both hot and cold gases are
uniformly distributed along the z-axis, nh(z∗cl + δ) and

nc(z
∗
cl + δ) are given by





nh(z
∗
cl + δ) =

NhAh
(L− e)/(1 + a) + δ

nc(z
∗
cl + δ) =

NcaAh
(L− e)a/(1 + a)− δ .

(7)

From eqs. (6) and (7), the total force that acts on the
cluster as a function of the perturbation δ is defined as

F (z∗cl + δ) =
NhA

3
hmω

2

((L− e)/(1 + a) + δ)
2

− NcA
3
cmω

2

((L− e)a/(1 + a)− δ)2
.

(8)

In order to find a theoretical value for the cluster’s oscil-
lation frequency, we linearized the force F (z∗cl + δ) around
the point z∗cl. This linearization leads finally to

F (z∗cl + δ) ≈ −2(1 + a)3A3
hm(Nh +Nc)ω

2

(L− e)3 δ. (9)

The equation giving the evolution of the perturbation δ
is then reduced to a harmonic oscillator with a typical
pulsation

ωcl =

(
Ac +Ah
L− e

)3/2(
2
N −Ncl

Ncl

)1/2

ω. (10)

This pulsation is only function of a single free parameter
which is the number of grains contained in the cluster. As
a consequence, eq. (10) gives the natural frequency of the
cluster even for symmetric energy injection. Moreover, the
mass of the cluster could be evaluated by measuring this
pulsation. Measures of ωcl for different amplitude ratios
were performed with a Fast Fourier Transform (FFT) al-
gorithm and plotted on fig. 5. The data are fitted with the
free fitting parameter Ncl using eq. (10) and are in good
agreement with the model except for small values of a for
which the oscillations of the cluster are too weak to be de-
tected by the algorithm. A remarkable feature is that the
fitting number of particles in the cluster was found to be
equal to Ncl ≈1860 for all campaigns. This result means
that the dilute gases are composed of approximatively 140
grains, as observed in many simulations.

As seen from eqs. (4) and (10), the phase shift between
the hot and cold plates should have neither influence on
the equilibrium position nor on the pulsation of the clus-
ter. These results are expected because the models are
both based on a momentum balance over one period of
oscillation. If the amplitudes and the frequencies of the
walls are unchanged, momentums coming from these ones
have do not differ with another phase shift. The fourth
campaign that was devoted to the phase shift influence
has confirmed this fact.

Finally, notice that such oscillations of granular ma-
terials have been recently reproduced numerically under
gravity by Rivas et al. [24]. The authors have performed
simulations of a vibrated granular media composed of par-
ticles confined in a quasi-one-dimensional system. In this
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case, low frequency oscillations of the media have been ob-
served. If the behaviors are similar, some differences have
to be highlighted. First, Rivas et al. have been able to de-
scribe theoretically their observations with a continuum
model. In our work, the granular gases observed are so
dilute that this way is not relevant. Secondly, the authors
have seen that when more energy is injected, the frequency
of cluster oscillations becomes smaller. We observed ex-
actly the inverse. The simplest explication is found in
the nature of the movements observed. In the gravita-
tional open environment of the authors, the energy given
to the cluster determines its parabolic flight, which in-
creases with initial energy of the body. The time of flight of
the cluster increases also with the initial energy injected.
It is not the case in our closed system under microgravity
where the cluster adopts a straight and uniform motion.
The time to cross a determined distance is then so small
that the kinetic energy of the moving cluster is intense.
Surprisingly, the existence of a periodic collective motion
is not only observed under gravity field but also in micro-
gravity environment, although the nature of these motions
are different.

6 Application to granular transport

The above results suggest that it is possible to create
and control grain displacements in microgravity. In or-
der to prove this concept, we propose a system inspired
by Maxwell’s demon [23,25] and granular ratchets [26–29]
for generating granular transport in low gravity environ-
ment. Several cells with independent pistons are placed in
a row. Specific apertures at different heights allow a gran-
ular exchange between neighboring cells. By controlling
the amplitude ratio of the independent pistons it is possi-
ble to drive the cluster in a selected cell. Figure 6 shows
a simulation of a directed grains experiment. Three boxes
are placed together and connected with two slits placed at
different heights. The simulation starts with all the grains
in the central cell (fig. 6 a). The amplitude condition in
the central cell drives the cluster in front of the first slit,
while in the first cell the amplitude ratio is inverted in
order to drive the incoming cluster at the bottom of the
cell. After a while, most of the grains are trapped at the
bottom of the first cell (fig. 6 b). Then, the amplitude ra-
tios are adjusted in all cells in order to drive the cluster
from the left to the right cell. Note that no intermediate
cluster is observed in the central cell (fig. 6 c) but that
the grains directly gather in the right cell (fig. 6 d). We
performed different simulations with different numbers of
cells and similar behaviors have been found. By inverting
the amplitude ratios, the granular transport is reversible.

7 Conclusion

In this paper, a study of the behavior of a dynamical clus-
ter of grains excited by an asymmetrically constraint was
performed with the help of Molecular Dynamics. A model

(a) t = 3.2 s (b) t = 48 s

(c) t = 96 s (d) t = 180 s

Figure 6: Snapshots of a directed grains simulation. The
simulation starts with all the grains in the central cell (a).
The amplitude condition in this one drives the cluster in
front of the first slit, while in the first cell the amplitude
ratio is inverted in order to drive the incoming cluster at
the bottom of the cell. After a while, most of the grains
are trapped at the bottom of the first cell (b). Then, the
amplitude ratios are inverted in all cells in order to drive
the cluster from the left to the right box. No intermediate
cluster is observed in the central cell (c) but the grains
directly gather in the right one (d).

was developed in order to link both cluster’s position and
cluster’s oscillations to the amplitude ratio. The natural
frequency of a dynamical cluster has been emphasized and
could be used to estimate the mass of the cluster. The
model provides a way to produce granular transport as
checked in our simulations.

This work has been supported by Prodex (Belspo, Brussels)
and the European Space Agency program TT VIPGRAN Space-
Grains. The authors thank the T-REX Morecar project (Feder,
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model.
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Chapter 7

Clustering and segregation

The handling and manipulation of granular materials can provoke the segregation of its different
components. Depending on the size, the mass or the form of the particles an organization takes
place within the granular media. A typical example of this behavior is the Brazil Nut Effect (BNE)
presented in the introduction. When a heterogeneous mixture of grains is vertically vibrated, the
large particle rise upward to the surface of the granular fluid. The latter phenomenon is linked to
several processes taking place in the granular pile. When a large grain takes off, because of the
driving acceleration, the hole that is left behind is filled by smaller grains which is not possible the
other way around. Moreover, the driving induces convection rolls in the system. An important
upward stream appears in the center of the cell and drags the large particles to the top of the
pile. If these particles are larger than the thin downward streams at the borders of the cell, they
remain at the surface. Recent studies [57] have shown that gravity has a great impact on the BNE
and on segregation phenomena in general. However, the subject is still relatively unexplored and
only few experimental data is available. Figure 7.1 presents a sketch of a driven mono disperse
granular system (gray particles) in which an intruder (red particle) has been placed. Convection
rolls are described by blue an red arrows.

Figure 7.1: Sketch summarizing the different processes that lead to the Brazil Nut Effect (BNE).
Differences between the sizes of the particles and convection rolls, lead to the rise of larger grains
to the surface of the system.

97
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7.1 Motivations

Given the lack of information concerning the segregation in granular media under microgravity
conditions, the study of poly-disperse granular gases in the SpaceGrains project seems of great
interest. In order to explore these kind of phenomena two different sizes of particles can be used
in the instrument. However, since both particle types are made of the same material (bronze),
changing the sizes of the particles will also change their masses. In the following article, two
series of simulations were performed. In a first one, we studied numerically the impact of both
mass and size of the particles separately. In a second one, we realized a deeper investigation of a
SpaceGrains like system using bronze particles.

7.2 Setup for SpaceGrains

The realization of an experiment concerning the segregation of bi-disperse granular material
doesn’t require any specific modification of the traditional granular gas cell. The latter is filled
with a number NS of small and NL of large particles. For this study the driving parameters as
well as the distance L can be fixed in a first attempt so that only the couple (NS , NL) can be
tuned in order to observe the phenomenon. Figure 7.2, taken from [95], represents a sketch of the
cell filled with both types of grains (large ones in blue and small ones in green).

L

30mm

6
0
m

m

30mm

z2 + A sin(2⇡ft + ⇡)

z1 + A sin(2⇡ft)

Figure 7.2: (Taken from [95]) Sketch describing the cell dedicated to granular gases in the Space-
Grains instrument filled with two different particles species.

7.3 Main results

In a first preliminary study, the impact of mass and size differences between both granular species
on the system’s dynamics has been investigated. For this purpose three typical setups were
simulated. For each setup the granular mixture was driven until a steady-state was reached and
the segregation was evaluated via the PDF of the particles’ positions. In setup A, where the grains
are of same size but of different mass, one observes a concentration of heavy particles in the center
of the cell. A cluster forms and is surrounded by a gas of light grains. In setup B, where the
grains have the same mass but different sizes, it is the small particles that gather in the center of
the cell while the large ones form the gaseous phase. Setup C corresponds to particles from the
SpaceGrains project, accordingly they differ in both, mass and size. This results in a combination
of the phenomena observed in A and B. Indeed, the heavy particles cluster rapidly in the center
of the cell. However, for high fillings, the size effects seem to become more important than the
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mass effects and the small particles migrate also toward the center of the system. At this point it
is important to note that clustering and segregation always appear together.

In a second series of simulations, the setup C has been deeply investigated in order to prepare
a possible experiment for SpaceGrains. An entire phase diagram (see figure 7.3) is obtained by
varying NS and NL. The transitions between the different cluster regimes are obtained via a
statistical test. One can note that the clustering of a pure system of large grains can never be
achieved. However, adding small grains to the mixture leads to a gathering of the large ones and
thus to segregation. Moreover, we adapted the theoretical model that predicted the apparition
of clusters in a mono-disperse system [92] to a bi-disperse one. Theory and collected data are in
excellent agreement.

G

CL

CB

CB

 0

 500

 1000

 1500

 2000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

N
L

NS

Figure 7.3: (Taken from [95]) Phase diagram summarizing the different observed clustering regimes
in the system: granular gas (G), cluster of large particles (CL), cluster of both particle species
(CB). Triangle symbols correspond to the measured transition points. Colored shadings are visual
guidelines.

7.4 Conclusion
We investigated numerically the possibility of segregation in bi-disperse granular materials within
the frame of the SpaceGrains instrument. The impact of the sizes and the masses of the particles
has been studied and different cluster-segregation regimes have been observed. We realized a com-
plex phase diagram depending on the filling numbers of both granular species. The corresponding
data can be used to fix parameters for the future experiment. Finally, our study proposes an inge-
nious way to sort out particles in microgravity which is not only of scientific but also of industrial
interest [96,97].
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Abstract In microgravity, the successive inelastic collisions in a granular gas can lead to a dynamical
clustering of the particles. This transition depends on the filling fraction of the system, the restitution
of the used materials and on the size of the particles. We report simulations of driven bi-disperse gas
made of small and large spheres. The size as well as the mass difference implies a strong modification in
the kinematic chain of collisions and therefore alters significantly the formation of a cluster. Moreover,
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diagram recovering the encountered regimes and developed a theoretical model predicting the possibility
of dynamical clustering in binary systems.
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1 Introduction

Granular materials present a large diversity of spectacular
phenomena [1, 2]. Compaction [3–5], arch formation [6–8]
and non-Newtonian behaviors [9,10] are only a few exam-
ples. When energy is continuously injected into the sys-
tem containing granular material, the latter is fluidized
and presents a gas like behavior that has been studied
intensively during the last decades [11–13] as well in two-
[14–17] as in three dimensional systems [18–20]. However,
the granular gas is different from a classical gas: velocities
do not follow a Maxwell-Boltzmann distribution [21–25]
and the usual thermodynamical gas models cannot be ap-
plied directly [26,27]. Being a paradigm of dissipative sys-
tems, driven granular media tends to dissipate the me-
chanically injected energy through multiple inelastic col-
lisions. Eventually, the system "cools down" locally and
dense regions of low mobility appear. These regions are
the result of the energetic equilibrium in the system and
are the signature of a stationary regime known as dynam-
ical clustering [28, 29]. The formation of such dynamical
clusters can be linked to three essential factors: the resti-
tution coefficient ε, the packing fraction φ and the par-
ticle radius R in regards to the typical length scale δ of
the system. Our previous work [30] presented a theoretical
model, based on these parameters, that gives an accurate
criterion for the upcoming of the phenomenon.

Since the size of the driven particles has a fundamental
impact on the dynamics of the system, it is of wide interest
to study the behavior of driven polydisperse granular ma-
terials. Indeed, the chains of collisions that typically occur
when the pistons inject energy into the system are dramat-

ically modified. A large grain could collide simultaneously
several smaller ones and so be slowed down considerably.
Moreover, the difference of mass between particles leads
to a more complex transfer of momentum than in the
monodisperse case. The geometric characteristics of the
particles could also lead to segregation phenomena. For in-
stance, shaking vertically a container filled with grains of
different sizes generates an uprise of the large bodies. This
demixing, commonly called the Brazil Nut Effect, has been
studied intensively [31–33] and recent research [34] has in-
vestigated the impact of gravity on the phenomenon. Note
that mass differences can also create similar effects [35].
In order to study this wide field of behaviors presented
by driven granular materials, the European Space Agency
(ESA) has programmed a series of experiments in com-
plete weightlessness, called SpaceGrains [36] that will take
place in a near future.

Given the fundamental interest and the need of predic-
tive results, we decided to explore numerically the com-
plex dynamics of driven bidisperse granular media in the
frame of a particular experimental cell. We analyze, the
impact of size and mass variations between particles on
the dynamics of the system. Dynamical clustering is ob-
served and the theoretical gas-cluster transition curve for
a monodisperse media [30] could be adapted. Finally, com-
plex segregation phenomena appear for divers sets of pa-
rameters. Our results are promising and contribute to a
deeper comprehension of the clustering. Moreover they
provide ways to manipulate the granular media and to
sort out particles within the frame of SpaceGrains or other
later space missions.
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2 Numerical approach

We choose to simulate an experimental setup of ESA’s
future SpaceGrains experiment that is dedicated to the
study of convection and segregation. For this purpose, a
binary mixture of spherical particles is enclosed in a cell
of dimensions 60×30×30 mm3, as represented in figure 1.
To ensure the driving of the granular material, two pistons

L

30mm

6
0
m

m

30mm

z2 + A sin(2⇡ft + ⇡)

z1 + A sin(2⇡ft)

Figure 1. (colors online) Sketch of ESA’s SpaceGrains cell.
Particles are enclosed in a 60×30×30mm3 box. Two pistons are
oscillating in phase opposition with an amplitude A = 5 mm
and a frequency f = 10 Hz around their respective positions z1
and z2. The average distance between the pistons L = |z2−z1|
is fixed to 40 mm.

are oscillating in phase opposition with an amplitude A
and a frequency f around their positions of equilibrium
z1 and z2. We define the origin of the z-axis at the center
of the cell, in the middel of |z1z2|. The distance L between
z1 and z2 can be tuned in order to modify the accessible
volume of the system but will be fixed to 40 mm in our
case. The width of the cell is noted l and is 30 mm.

Our simulations rely on a Molecular Dynamics (MD)
algorithm. This numerical model is broadly used in the
simulation of granular materials [37,38] and has been val-
idate through the two last decades. The normal forces are
evaluated via a linear spring-dashpot model. Dissipation
is taken into account by viscous forces that are function
of the normal velocity of the contact point and the resti-
tution coefficient ε. It is to note that we use the same
value of ε for both, grain-grain and grain-wall collisions.
The tangent forces are bounded according to Coulomb’s
law and depend on the relative tangent velocities as well
as the coefficient of friction µ between the colliding solids.
Further details are given in previous works [19, 30] and
a complete description of this MD approach is given by
Taberlet [39].

3 Mass and size effects

In the SpaceGrains experiment, the granular media is com-
posed by two types of bronze spheres with respective radii

of 0.5 and 1 mm. It is important to note that this difference
in size between the particles also induces a difference in
mass. Accordingly, the observed effects while driving the
mixture cannot be linked properly to either one of those
parameters. In order to study their individual influence
we work with three particular setups (A,B,C) involving
four different types of grains. Each type is described in
table 1 and will be referred in the latter by its correspond-
ing symbol or number. In order to observe and to detail
first phenomena, we investigated the system for fillings N
ranging in between 500 and 4000 grains. In each simula-
tion, the granular material is composed by two particle
types of equal concentration and is driven during 10 sec-
onds. Note that for all runs, we fixed the values of ε = 0.9
and µ = 0.7.

type r (mm) ρ (kg/dm3) Setup Symbol
1 0.5 2.5 A ◦
2 0.5 8 A,B,C •
3 1.0 1 B #
4 1.0 8 C  

Table 1. Parameters for the different simulated particle types.
Symbols are given according to the results presented in follow-
ing figures. The forth column describes in which study the
concerned species is implied.

The presence of dynamical clustering and segregation
in the system can be highlighted by the Probability Den-
sity Function (PDF) of the positions of the grains. On the
one hand, gas-like systems present distributions close to
uniform laws since the granular material is spread evenly
through the entire cell. On the other hand, the distribu-
tions of each particle type can be compared one to another
in order to detect a demixing of the system. A summary of
the encountered behaviors is given in figure 2 that presents
the results for the setups A, B and C for N ∈ [1000, 4000]
according to the symbols in table 1. Depending on the
components of the granular mixture and the number of
particles, different dynamical behaviors are reported:

3.1 Setup A: Grains of same sizes but different masses

When a mixture of granular types 1 and 2 is driven, several
dynamics can be encountered depending on the filling of
the system. Indeed, by analyzing the distributions of both
species, severe differences appear as one can note in the
top row of figure 2. For a diluted case, both distributions
are typical for a system in a gas regime since particles can
be found everywhere in the system with roughly the same
probability. In denser cases, one can assist to a migration
of the heavy grains towards the center of the cell. Accord-
ingly, their distribution is much more peaked about 0 than
for the light particles. A similar phenomenon is encoun-
tered in rotating drums where the denser particles travel
to the core of the system [35]. This behavior simply corre-
sponds to a minimization of the kinematic energy in the
systems. Please note that the segregation goes hand in
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Figure 2. Particle Density Function for the three presented driven mixture of granular material. Large dots stand for large
particles and filled dots for heavy ones. a) For grains of identical size, heavy particles gather in the central part of the cell and
form a cluster once the filling is high enough. b) If both particles types are of identical mass, increasing N leads to a cluster
of small grains. c) If mass and size are different, one can observe the gathering of the large particles as well as a particular
clustering of both species for large N .

hand with the formation of a dynamical cluster of heavy
particles that coexists with a granular gas of light ones.

3.2 Setup B: Grains of same masses but different sizes

By considering the difference of density between the par-
ticles of type 2 and 3, mass will play no more role in the
grain-grain interactions and only geometric parameters as
cross section and volume will influence the dynamics of
the system. Like in case A, the distribution of both par-
ticle types depend on N as presented in the central row
of figure 2. For low fillings, both curves are close one to
another. However, they are not as horizontal as expected
for a gas. This tendency to concentrate in the center of the
system is the signature of the dynamical clustering effect.
Indeed, since the granular type 3 has a radius that is twice
as large than the radius of type 2, the global packing frac-
tion of the system increases dramatically. Accordingly, for
the same total number of grains this setup corresponds to
a denser system than the first one. For larger fillings, the
distribution of the small grains presents a wide peak in
the central region while the large grains spread like in the
gaseous case. Both particle types have segregated and one
observes a dynamical cluster of small grains surrounded
by a gas of large one. Once again, this is the most favor-
able configuration in terms of kinematic energy. Indeed,

given their important cross section, the large particles are
slowed down more efficiently than small ones.

3.3 Setup C: Grains of different sizes and masses

Since the particles are made of the same material, both,
the mass and size effects can lead to segregation. It is in-
teresting to note that the effects presented in the setups
A and B will counteract in this third version since the
largest spheres are also the heaviest. We realized simula-
tions with a mixture of particles of type 2 and 4 and the
corresponding distributions are represented in the bottom
row of figure 2. In opposite to both previous cases, the
dilute system presents already a slight difference in the
distributions of the small and the large grains. At this
state one cannot speak properly of segregation. Neverthe-
less, it seems that the heavy particles are more likely to
be found in the central region of the cell. This behavior
can be explained with regards to the setup A. Indeed,
in a dilute system, the interaction between particles is low
and thus the mass effects overtake the size effects. Increas-
ing the number of particles leads to a more stressed dif-
ference between both distributions. Segregation and clus-
tering are observed simultaneously. However, above some
critical packing fraction, small particles are also likely to
be found in the center of the system. Indeed, in this region,
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the local density is high and accordingly the size effects be-
come important compared to the mass effects. As in setup
B, this configuration leads to a gathering of the small
grains in a central region. The system is finally composed
by a dense cluster of small and large grains surrounded
by a gas of small particles. Consequently, the system is no
longer segregated.

4 Phase diagram

From now on, we will focus on the setup designed for the
SpaceGrains project. The parameters of the system cor-
respond to what has been presented in the subsection C.
However, the number of small and large spheres, noted
respectively NS and NL can be tuned independently. We
realized 150 predictive simulations for couples (NS , NL)
ranging in the interval [0, 4500] × [0, 2100] in order to es-
tablish a phase diagram recovering the encountered dy-
namics. Each simulation starts with independent initial
conditions. Figure 3 gives an overview of the three typical
regimes that are observed. From left to right, one can see
a gas phase (G), a cluster of only large particles (CL) and
a cluster composed by both particle types (CB).

Figure 3. (Colors online) Overview of three typical regimes
that are observed. From left to right on can see a gas phase (G),
a cluster of only large particles (CL) and a cluster composed
by both particle types (CB). Couples of numbers correspond
respectively to NS and NL.

The detection of each regime can be realized via two
Kolmogorov-Smirnov (KS) tests [19], evaluating the uni-
formity of the distributions of small and large grains along
the z axis of the system. Both granular types are tested
separately starting with a null hypothesis H0 of unifor-
mity that correspond to the gas regime. If H0 is rejected,
what we note H1, the system can no longer be consid-
ered to be homogeneously distributed and is qualified as
clustered. In addition to this statistical criterion, we also
impose a minimum size of one granular layer to a cluster.
This last condition verified, the following table summa-
rizes any possible outcome of the tests:

Applying the above detection method to all our simula-
tions, allows us to define the frontiers between the encoun-
tered dynamical regimes and to place them on a (NS , NL)

Dynamical regime Small Large
(G) gas phase H0 H0

(CL) cluster of only large particles H0 H1

(CS) cluster of only small particles H1 H0

(CB) cluster of both particle types H1 H1

Table 2. Possible outcomes of the Kolmogorv-Smirnov test
comparing the particle distributions against a uniform law. H0:
the null hypothesis can’t be refuted, the corresponding distri-
bution is accepted as uniform. H1: the null hypothesis is not
valid, the concerned granular type presents a spatial inhomo-
geneity (i.e. clustering).

phase diagram. Figure 4 describes with small (resp. large)
triangles the detected transition points relative to the clus-
tering of the small (resp. large) particles. Dashed lines give
the minimum cluster sizes, hollow triangles correspond to
a KS test with a level of significance α = 0.05 and filled to
α = 0.01. Taking account of the dispersion of these points,
three transition zones can be obtained. Consequently, the
diagram is divided into four subsections corresponding to
the different regimes of the system. G is found in the lower
left corner of the diagram. CL is present for wide ranges in
the centre of the diagram. However, in our configuration,
it cannot exist in a pure system so that the presence of
small particles is necessary. On the contrary, CS is only
present in a pure small grains system for NS > 3250.
Finally, CB comes up even twice. The upper part corre-
sponds to a cluster of large particles surrounding a cluster
of small ones whereas the lower part consists in a clus-
ter of mainly small grains containing locally some large
ones. The grey (green) squares correspond to the simula-
tions presented in figure 3. A closer look on this diagram
highlights two intriguing transitions. Starting with a small
number of large particles and adding more and more small
ones into the cell will lead to a dynamical clustering of the
large grains. Accordingly, injecting gaseous, hot, granular
material into the system will cool it down. Starting with
a pure cluster of small particles and adding large ones has
the opposite effect. First, both granular types contribute
to the cluster but once enough large grains are present,
most of the small ones are forced into the surrounding gas
phase. In this configuration, adding cold granular material
in the system will warm it up.

As mentioned in the previous section, the formation of
CL leads to a demixing of the system. In order to validate
this assumption we measured the segregation intensity Is
proposed by Windows-Yule et al. [40] in the constrain free
zone of our system. As expected, the highest values are
obtained in the region corresponding to a cluster of large
particles. Considering the latest interest of international
space agencies and private companies in a possible mining
of asteroid and other near-Earth objects [41, 42], the un-
derstanding as well as the control of segregation in micro-
gravity is of broad interest. Note that, in opposite to tradi-
tional methods as sieving or sedimentation, we achieve to
separate different grain species without the help of gravity
or buoyancy.
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Figure 4. (Colors online) Phase diagram describing the dif-
ferent dynamical regimes of the system. Shaded frontiers zones
recover the transition points that are detected according to our
statistical and geometrical criteria. Dashed lines give the min-
imum cluster sizes. Simulations corresponding to figure 3 are
represented by grey (green) squares.

All the transition lines presented in figure 4 are guide-
lines for the eyes. Nevertheless, in the following section we
develop an integrative model allowing us to describe the
gas-cluster transition.

5 Modeling the transition

According to our previous work [30], the formation of a dy-
namical cluster is strongly linked to the balance between
the energy propagation and the energy dissipation during
a period of excitation. The energy injected by the pistons,
stirs up the granular material and therefore fluidizes the
system. On the contrary, the successive collisions between
particles lead to a loss of energy and a collapse of the
granular gas. Depending on which behavior is dominant,
the system is rather in a gas or a cluster regime. In order
to determine the impact of these different mechanics, we
compared the two typical timescales of the system i.e. the
Haff time τH , which characterizes the cooling of the sys-
tem [43] and the energy propagation time τP . Given the
poly-dispersity of the granular media, it was not possible
for us to obtain an analytical expression for τP . Neverthe-
less, we could evaluate the edge between the gas and the
cluster regime by numerical integration.

A grain that travels from one side of the cell to the
other realizes on average a displacement δ. The number of
collisions n that this grain will encounter can be derived
from the filling of the system,

n =
NS

N
(γSSηS + γSLηL) +

NL

N
(γLSηS + γLLηL) , (1)

where ηS (reps. ηL) is the number density of the small
(reps. large) particles and γij = πδ(Ri +Rj)

2 is the effec-
tive collisional volume for a grain i colliding with a grain
j. The energetic transfer through the system can then be

seen as a dissipative chain reaction between n + 1 grains
and the Haff time can be defined by

τH =
2δ

v0(1− ε2)n
, (2)

where v0 = 2πAf is the typical velocity of the grains. Me-
chanical energy coming from the pistons is also injected
into the granular material via those collisions. If the ener-
getic impulses have enough time to travel across the gran-
ular whole media and to fluidize it, the system remains in a
gas like state. In order to estimate this propagation time,
we generate a random chain of n + 1 particles in which
the proportion NS/NL is roughly the same as in the en-
tire system. The first particle of the chain takes off with a
starting velocity v0. Then, each collision will modify the
velocity of the carried impulse by taking into account the
coefficient of dissipation ε and the masses mi and mi−1 of
the two successive impacting grains. The following relation
is obtained,

τP =

n∑

i=0

`i − cri
vi

, (3)

where
vi = v0

m0

mi
εi. (4)

The corrective term cri, with c = 1.654, takes account of
the finite size of the system in regards to the radius ri of
the particles [30]. The distance `i is the mean free path
between the ith and the (i + 1)th collisions and can be
defined as following,

`i = riδ




n∑

j=0

rj




−1

. (5)

Note that for a mono-disperse case `i = δ/n for all i.
Using the latter method a thousand times for each

couple (NS , NL), the average timescales τ̄P and τ̄H are
obtained and the transition is possible once their ratio
τ = τ̄P /τ̄H > 1. Indeed, in this configuration the systems
cools down faster than the granular media is fluidized and
consequently a cluster is formed. The transition curve can
be visualized on figure 5 by plotting iso-τ curves on the
(NS , NL) phase diagram. The red region corresponding to
τ ∈ [1, 3] is in good agreement with our previous measures
concerning the gas-cluster transition. Indeed, the transi-
tion points between the G regime and any cluster state,
which represented by square symbols, lay all in the pre-
dicted region. Once again hollow symbols (�) correspond
to a KS test with a level of significance α = 0.05 and filled
(�) to α = 0.01. The small differences and the width of
the transition zone can be explained by the fact that τ = 1
is a minimum criterion based on a mean field theory mean-
while only one MD simulation was realized per (NS , NL)
couple. Nevertheless, one can note that the model recovers
the fact that CL cannot be observed in a pure system of
large particles.
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Figure 5. (Colors online) Theoretical phase diagram describ-
ing the evolution of the ratio τ using a linear color scale. The
curve corresponding to τ = 1 − 3 is in good agreement with
our measures concerning the G-CL transition.

6 Conclusion

We investigated numerically the dynamics of a driven bi-
nary granular gas within the frame of ESA’s SpaceGrains
experiment. The respective effects of mass and size dif-
ferences between both granular species’ have been high-
lighted through molecular dynamics simulations and could
be explained by simple energetic arguments. In the case
of a mixture of bronze particles, for which both effects are
present, a gaseous regime as well as two different clustered
states can be encountered. We realized a complex phase
diagram as a function of the filling numbers NS and NL

in which the transitions are detected via statistical unifor-
mity tests of the particle distributions along the vertical
axis. For filling parameters corresponding to the central
zone, a clustering of mainly large particles can be trig-
gered. This phenomenon leads to a demixing of the gran-
ular media and could be used in order to sort out particles
in microgravity. Finally, an iterative model based on the
balance between the typical times of energy propagation
τP and energy dissipation τH provides a theoretical fron-
tier between gaseous and clustered systems of any kind.

This work has been supported by Prodex (Belspo, Brussels)
and the European Space Agency program TT SpaceGrains.
We also thank the T-REX Morecar project (Feder, Wallonia)
for supporting the development of our numerical model.
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7.5 Parabolic flight campaign in Bordeaux
First experiments concerning the presented segregation have been realized by Garrabos and
coworkers during a parabolic flight campaign of the Centre National d’Études Spatiales (CNES).
In their study, particles of two different sizes were enclosed in a rectangular cell as presented in
figure 7.4. Another quasi-2d cell was filled with some disks in order to control the g-jitter during
the parabola. When the system is driven the large beads gather in the center of the cell exactly
as in our simulations [95].
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L’étude des fortes densités de billes reste donc encore à 
faire. Toutefois, les différents tests effectués en vols 
paraboliques ont déjà permis d’identifier les difficultés des 
expériences sur les comportements de type « amas 
granulaires » dans un environnement de microgravité 
fluctuante et/ou dans un environnement de bonne 
microgravité mais où les conditions initiales et les 
conditions aux limites pourraient « fluctuer ». Nous en 
avons donné les illustrations les plus remarquables dans 
le point v) qui suit, avec les observations dans deux 
directions perpendiculaires d’une cellule granulaire 
biphasique. Nous avons alors utilisé la cellule « MAXUS 
7 », vibrée en position « couchée ». Pour anticiper la 
description des images qui suivent, nous avons montré ci-
contre une photographie de cette cellule en position 
« debout » sur son dispositif de montage sur le piston du 
vibreur du rack de vibration.    

 
v) Le rôle des variations de la gravité résiduelle sur une assemblée de billes vibrées dans 

l’Airbus A300-ZéroG ; 
 
Cette étude est un corollaire inévitable lorsque l’augmentation du nombre de billes réduit leur vitesse 
moyenne en amplifiant les inhomogénéités spatiale de la densité locale de billes. Dans ce cas, les 
comportements collectifs comme les mouvements individuels des billes vont pouvoir être modifiés de 
manière sensible par les fluctuations de microgravité crées par les conditions d’un vol parabolique 
imparfait. Nous avons effectivement montré que ces fluctuations de gravité ne pouvaient plus être 
ignorée dès que nc≥1. 

 
L’idée de base était donc d’exploiter conjointement, d’une part, les « attendus » d’un système 
diphasique constitué d’un mélange de « grosses » et de « petites » billes et, d’autre part, les 
fluctuations de gravité pour tenter de « différencier » des comportements de type « amas 
granulaires » de ceux d’un gaz granulaire « homogène » que nous maîtrisons maintenant très bien. 
De plus, pour observer ce gaz granulaire homogène de « référence », nous avons créé en parallèle 
un gaz granulaire homogène 2d (~1 ligne de « grosses » billes) dans l’autre compartiment 2d de la 
cellule MAXUS 7. Enfin, pour être en mesure d’observer des « amas » en 3d, nous avons donc 
additionnés quatre paramètres « favorables » : 
 

a)  une observation optique adéquate (dans deux directions perpendiculaires) d’un volume 
3d fournie par la cellule MAXUS 7. 

 
b) une position « couchée » de cette cellule donnant un rapport d’aspect d’environ 1/3, 

rendant donc observable toute inhomogénéité spatiale qui se formerait dans la direction 
« horizontale », c’est-à-dire perpendiculaire à la direction de vibration. Elle serait donc 
différente des inhomogénéités selon z obtenues dans d’un gaz granulaire vibré dans une 
cellule remplie de plusieurs couches de « petites » billes. 

 
c) Utiliser la possibilité de bi-composition des systèmes granulaires pour espérer 

« agréger » le comportement dynamique des petites billes à celui des grosses billes et donc 
créer des inhomogénéités dont nous serions certains qu’elles seraient « visibles » dans la 
direction perpendiculaire à la direction de vibration (ceci relève du problème complexe de la 
ségrégation des compositions dont nous avons ici qu’une vision intuitive d’expérimentateur). 
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En effet, des expériences préliminaires 
avaient montré le bien fondé de cette 
méthodologie expérimentale qui, dans 
des cellules avec des rapports 
d’aspects supérieurs à 1, nous avait 
permis de visualiser des « paquets » 
de petites billes autour des grosses 
billes en microgravité. Ainsi, nous 
avions pu modifier un gaz granulaire 
« homogène » à très faible nombre fixé 
de grosses billes, en additionnant 
progressivement de plus en plus de 
petites billes dans la cellule.   
L’image ci-dessus (direction de l’axe z des vibrations bas � haut) montre que les 
mouvements des grosses billes et des inhomogénéités « dense » des petites billes étaient 
de plus en plus concentrés dans une zone d’extension limitée autour de la côte z=L/2. 

 
d) Utiliser les fluctuations de microgravité des « mauvaises » paraboles pour différencier la 

dynamique des « amas granulaires convectifs » de celle de nos « amas granulaires 
attendus » dans un système constitué par un mélange de 2 types (diamètre et matière) 
différents de billes. 

 
Les images de la Figure 1 correspondent à cette cellule MAXUS 7 vibrée en position couchée dans 
deux paraboles différentes. Elles sont une illustration remarquable de cette problématique posée par 
le rôle des fluctuations de microgravité sur les milieux granulaires fluidisés par vibration et des 
difficultés d’interprétation des comportements d’amas 3d en microgravité (surtout dans la direction 
perpendiculaire à l’axe z des vibrations).  

 

 
P8. 80Hz, 90ms

-2
 (vp ≈ 0.2 m/s). 

 
P29. 130Hz, 30ms

-2
 (vp ≈ 0.04 m/s). 

Fig.1. Cellule Maxus 7 (dimension caractéristique L ≈ 9 mm, rapport d’aspect ≈ 1/3) en position 
horizontale, vibrée verticalement avec les conditions opératoires indiquées ci-dessus au cours d’une 
« bonne » parabole n°8 et d’une « mauvaise » parabole n°29 de la campagne VP 72 (oct. 2008). Les 
images (direction de l’axe z des vibrations bas↔haut) supérieures correspondent à l’observation en 
transmission d’un  gaz granulaire 2d (épaisseur de la cellule ≈ 15L/2 ~ d = 1,2 mm, ~ 1 ligne de billes 
au repos). Les doubles images inférieures correspondent à l’observation en transmission directe 
(partie supérieure) et en transmission à 90° (partie inférieure) d’un système granulaire diphasique 3d 
(épaisseur de la cellule ≈ L) .Le système diphasique correspond au même nombre de grosses (d = 1,2 
mm) billes que celui de la cellule 2d et à environ 3 couches au repos de petites (d ≈ 0,2 mm) billes. Les 
différences d’homogénéité « spatiale » entre les images de gauche et droite s’expliquent par la 
sensibilité des mouvements collectifs et des mouvements individuels des billes aux fluctuations de 
microgravité, notamment lorsque les accélérations des vibrations sont inférieures à 5g (ici réduction 
d’un facteur 3 entre 9g et 3g), et/ou lorsque la vitesse maximale de la paroi vibrée diminue (ici 
réduction correspondante d’un facteur ~5) .                                                                    

Figure 7.4: (Taken from CNES report by P. Evesque) Snapshots of the experimental cell used for
the parabolic flights. Segregation occurs in the bi-disperse system. The right cell is used in order
to control the g-jitter.

After a topical team meeting concerning the SpaceGrains project in Noordwijk, we started
a collaboration with the group of Garrabos in Bordeaux. A project concerning an experimental
adaptation of the setup presented in our article is in preparation and will probably take place in
a future parabolic flight campaign of the CNES or ESA.
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Chapter 8

Conclusion and perspectives

In this work we studied numerically and theoretically the gathering and the handling of granular
materials in microgravity. Our simulations were realized with a home made software based on a
molecular dynamics (MD) algorithm and will be used in order to prepare a series of experiments
programmed for the SpaceGrains (SG) project of the European Space Agency (ESA).

Our first study concerned the validation of our numerical model. We reproduced the pioneer
experiment of Falcon and his coworkers in which a three dimensional dynamical cluster was ob-
served for the first time in microgravity [52]. Excellent qualitative agreement was found between
the snapshots of their experiment and the output of our simulations. We then realized additional
simulations, based on the same cell geometry but for different filling numbers and grain sizes. In
addition to the granular gas and the cluster, two new dynamical regimes were observed. One of
them is the partial cluster regime, which corresponds to a phase coexistence of a cluster and a gas.
The other one is the bouncing aggregate regime, also called the collect-and-collide regime, which
can be seen as a solid phase of the granular media. A granular phase diagram could be realized and
a theoretical frontier between the gas and the bouncing aggregate has been proposed. Following
the publication of our study [79], the solid regime has been investigated experimentally during
parabolic flights [81–83]. The results confirm all of our numerical and theoretical predictions.

The numerical model being validated, we proceeded to predictive simulations concerning the
clustering phenomenon in SpaceGrains [92]. We investigated numerically the formation of a cluster
within the frame of the SpaceGrains instrument and analyzed the impact of parameters such as the
packing fraction, the accessible volume, and the driving amplitude on the phenomenon. We showed
that the energy transfer from the pistons towards the center of the cell is the controlling process for
the apparition of clustering in the system and developed a theory predicting the transition from a
granular gas to a dynamical cluster. The presented model is valid for any rectangular cell geometry
since it also successfully predicts the transitions of our first study based on Falcon’s experimental
cell. From a practical point of view, our study is of great interest for the SpaceGrains project since
the acquired theoretical knowledge simplifies the creation of an experimental protocol. Moreover,
our theory suggests that the oscillation frequency plays no role in the clustering phenomenon. An
intense driving that could transmit vibrations to the space station will thus not be mandatory.

Once the clustering mechanism was rationalized we started to investigate the handling of
granular aggregates. A first manipulation consisted in the local trapping of a cluster [93]. Inspired
by the work of Dorbolo and his coworkers [65], we designed a particular cell geometry which allows
the apparition of Maxwell’s demon in microgravity. Our numerical simulations showed that, five
different trapping regimes can be encountered depending on the filling fraction of the system. The
transition from a granular gas to a single trapped cluster is captured by our theoretical model. An
overview of all the different dynamical regimes was given by a bifurcation diagram. Moreover, we
proposed an iterative stochastic model reproducing the evolution of the system in a more efficient
way than our MD simulations. Finally, we described a theoretical model that gives the asymptotic
stable states of the system. Mutli-stable regions were expected but could not be observed given
our homogenous initial conditions.
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In parallel to the work concerning Maxwell’s demon, we investigated the behavior of a clus-
ter which is exposed to an asymmetrical driving [94]. We showed that the cluster’s position of
equilibrium along the driving axis is fully controlled via the ratio of both driving amplitudes.
By placing several cells one to another and connecting them with small apertures it is possible
to create ratchet effects in the system and thus to transport granular materials. Moreover, we
discussed the natural oscillation of the cluster around its position of equilibrium and could link it
to the driving frequency and the cluster’s mass. Accordingly, the latter relation provides a non
invasive method in order to measure the amount of particles composing the aggregate.

In our last study [95], we investigated the behavior of driven bi-disperse granular gas. The
impact of the sizes and the masses of both granular types has been studied independently via
numerical simulations. We showed that for mixtures with identical sizes, heavy grains tend to
gather in the center of the system while the light ones remain in a gaseous regime near the pistons.
For mixtures with identical masses, small particles are more likely to be found in the center of
the cell then large ones. Both phenomena seem to correspond to a minimization of the energy.
It is interesting to note that in the case of SpaceGrains, where both size and mass are coupled
through the density of the particles, size and mass effects are in competition. Indeed, for low
fillings the mass effects seem to be dominant and the heavy grains gather the first. However, for
higher fillings, contacts between the particles become more frequent and the size effects overtake
the mass effects. Accordingly small grains start also to gather and both granular species can be
found in the cluster. We realized a phase diagram recovering all the encounters dynamics and
proposed an extension of our previous cluster theory to a bi-disperse system. Once again, our
simulations were in excellent agreement with the theory.

Table 8.1 gives a brief overview of the different studies that have been realized during my
thesis. For each investigated phenomenon, a snapshot of the corresponding cell, a list of the
relevant parameters and the main results are given.

***

In a near future, the breadboard tests of SpaceGrains’ prototype will be realized during an
ESA parabolic flights campaign. Although these tests are mainly realized in order to check the
kinematic chain of the device, some small experiments will be run. Our work can help to prepare
this campaign and to set up a list of important parameters to test. Microgravity experiments
concerning the segregation will be realized in collaboration with the ICMCB, University of Bor-
deaux I during a parabolic flight campaign. This study will provide a good way to evaluate the
validity of our segregation model and also help to prepare SG. In order to study the impact of
the form of the particles on the systems dynamics, the reproduction of drop tower experiments
will be realized in collaboration with the group of nonlinear physics from the Otto-von-Guericke
University in Magdeburg. In a further future, the SpaceGrains instrument will be sent onto the
International SpaceStation (in 2018). In combination with the results from the breadboard test-
ings, our simulation and theoretical predictions will help to prepare the experimental protocol for
the project.
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