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INTRODUCTION RESULTS

To monitor a subject’s sleep/wake cycles over several days, actigraphic data are Presentation of actigraphic data
routinely recorded with the help of an “acti-watch” placed the subject’s wrist. One subject over several days, with sleep/wake transitions: standard daily presentation (left) and
These data are scored manually to extract key parameters, e.g. sleep and wake continuous spiralling time line (right).
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M ETH O DS Validation of the method

Comparison between the “automatic scoring” and “manual scoring” (considered as the “gold
standard”): score (‘sleep’ or ‘wake’) at each time bin of the actigraphic data & sleep and wake time.

Data:
* 25 vyoung healthy subjects, following regular sleep/wake cycles (for a specific study)

Assumptions

Data are acquired:
* on healthy subjects, with normal sleep/wake cycle

* recording of actigraphic data over more than a week
 over several days, e.g. 1 week.

* manual scoring by an expert over the last 7 days of recording

Overall organization Criteria
* error rate, i.e. disagreement in scoring

Proceed in 3 three successive steps : o T . Mean min / max

* Pre-processing: importing and cleaning the actigraphic data * sensitivity/specificity of ‘wake’ detection ] ] ]

* Pre-scoring: 15t approximation of the sleep/wake transitions * Cohen’s Kappa [3] (interrater reliability) ST 2.31% 1.20% /5.01%
* Final scoring: refining the transitions with a machine learning approach  difference in median sleep & wake time Specificity 96.26%  88.43% / 99.35%

(over 7 days)

1. Pre-processing Sensitivity | 98.43%  93.81% /99.51%

, , , _ . Mean values (with mininum and maximum)
Importing and cleaning of raw actigraphic data, mainly:

. . o o . for the 25 subjects. 0 0 0

* Reading in the raw actigraphic signal, and beginning date & time of the J Kappa 94.83% 89.01% /97.30%
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2. Pre-scoring (similar to the 1% part of Crespo algorithm) §
Raw data

Apply classic signal processing to estimate the sleep/wake period: N AR
* padding begin/end with high signal = VAN VR Ve < !’ i b A

* filtering with a median operator " v

* applying a rank-order threshold (33% as about 8h of sleep over 24h) - ; i . Estimated sleep-wake

* morphological filtering, closing followed by opening (e.g. here under) {4 l“m-m
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3. Final scoring
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over the partial actigraphic plot here under)
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* split signal and build local features, i.e. median, interquartile range, mean, CONCLUSION

standard deviation, max, min, mode & #zeros, in 15min windows
* train the NN on these features with their ‘wake’ or ‘sleep’ label The automatic method is automatic and faster than manual scoring. Results are
e split the signal in 15min windows around the transitions and build local reproducible and similar to those obtained by a trained expert

features he code is available here: http://Cyct h ithub.io/Actigraph
+ apply the trained NN on these features and derive new labels, ‘sleep’ or The code is available here: http://CyclotronResearchCentre.github.io/Actigraphy

‘wake’, for each time bin. “To do” list:

 more validation by comparing with (and between) multiple human raters,

Output

* derivation of other sleep/wake parameters of interest

* binary Sleep/Wake time series (same resolution as the actigraphic data) » refining/improving the algorithm for all types of data
 other parameters: daily wake and sleep times
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