

Dynamic modeling and control strategy analysis of a micro-scale CSP plant coupled with a thermocline system Thermo

for power generation

Introduction

Concentrated solar power systems are characterized by strong transients and require proper control guidelines to operate efficiently. In this context, a dynamic model of a 5 kW_e solar ORC system is developed in the *Modelica* language to investigate the possible advantages of coupling a concentrating solar power system with a thermocline packed-bed storage. A first regulation strategy is proposed and results of a three-day simulation using real meteorological data are analyzed. Models developed in this work are based on the open-source ThermoCycle library which is dedicated to the modeling of thermal power systems and in development at the University of Liège. Thermo-physical properties of the fluids are computed with the open-source CoolProp library.

System description

Solar Field:

- 25 PTC in series
- $A_{tot} = 60 \text{ m}^2 \text{ (SM = 1,5)}$
- HTF: Therminol 66

Thermal Energy Storage:

- Thermocline packed-bed tank
- Filler : Quartzite (ε =0.22)
- Tank volume: 8 m^3 $3.3 \text{ h} @ \dot{W}_{\text{nom}}$

Power unit:

- Non-recuperative ORC
- $\eta_{exp,is} = 70\%$; $\eta_{pp,is} = 50\%$
- $\eta_{orc} = 10\%$
- Pev adjusted to keep pinchev close to 30°C

Nominal operating conditions

- T_{b,nom} = 175 °C
- T_{e,nom} = 140 °C
- $Q_{ev,max} = 46 \text{ kW}$
- $\dot{W}_{net,nom} = 5 \text{ kW}$

Plant control

Control variables:

- Heat exchanged in the evaporator (Q_{ev})
- Solar loop pump speed (XSF)
- Power loop pump speed (X_{PW})

Control strategy:

Keep the temperatures Tb and Te as close as possible to their nominal values T_{b,nom} and T_{e,nom} → Avoid any thermocline degradation in the tank in case of unpredicted charge or discharge of the TES

Conclusions

- Stability of T_d increased by coupling a thermocline TES with the solar field
- Degradation of the thermocline avoided by keeping T_b and T_e close to nominal values
- Discharge of the TES should be controlled by a threshold on Q_{ev} instead that on T_b

Acknowledgements

profile inside the TES tank at t = 5800 seconds

