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Vehicle allocation problem with uncertain transportation requests
over a multi-period rolling horizon

Y. Crama, T. L. A. Pironet

ABSTRACT

This work investigates optimization techniques for a
multi-period vehicle allocation problemwith uncertain
transportation requests revealed sequentially over a
rolling horizon. Policies derived from deterministic
scenarios are compared: they are generated either by
simple heuristics, or by more complex approaches, such
as consensus and restricted expectation algorithms,
or by network flow formulations over subtrees of
scenarios. Myopic and a posteriori deterministic
optimization models are used to compute bounds
allowing for performance evaluation and for estimating
the value of information. The economic benefit of the
stochastic model is highlighted: our results show
that the information about future, uncertain orders
contained in the stochastic part of the horizon can be
used to generate improved profits. Robustness against
misspecified probability distributions is examined.
Subtree formulations produce the best results, are
robust and can be solved efficiently, which makes them
appropriate for industrial implementations.
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1 INTRODUCTION

In this paper, we investigate a Dynamic Vehicle
Allocation problem (DVAP) faced by forwarding
companies active inroad transportation.We assume that
a company owning a limited fleet of vehicles attempts
to maximize its operational profit over an infinite
horizon divided into equal periods (typically, days). A
decision leading to a set of actions is made at every
period and is based on the dispatcher’s informationover
a restricted rolling horizon (typically, one week) as the
dispatcher cannot foresee the transportation requests in
the tail of the horizon. The profit stems from revenues
collectedwhen transporting full truckloads (FTL), after
taking into account all costs incurred when waiting
idle (during dwell time) or when moving unladen. The
data revealed over time by the clients relate to their
prospective orders, or transportation requests: locations
of pick-up and destination cities, and a unique pick-up
period for each order. Moreover, the dispatcher can
rely on data regarding travel times between cities,
current location and status (unladen or loaded) of each
truck. This information is known with full certainty
and represents the deterministic part of the problem.
The stochastic component of the problem arises from

the uncertainty on the transportation requests. More
precisely, for order forecasts in the remote part of
the rolling horizon, the dispatcher only knows the
order confirmation probability. The availability of each
transportation order is either confirmed, or denied by
the clients, a few periods ahead of the loading period.
When a client confirms an order, the carrier may still
decide to fulfill it with its own fleet or to subcontract it.
Therefore, the decision problem faced by the

dispatcher in each period is either to select or to
outsource confirmed orders for this period, then to
allocate the selected orders to its trucks, taking into
account the availability and current location of the
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more abstract resource allocationmodels.Most of these
approachesare basedon solvingasequenceofmultistage
(typically, two-stage)problems with recourse,where the
recourse accounts for all future periods after the first
one(s). As observed by [7], the resulting models are
increasingly complex. A main difficulty lies clearly
in the determination of appropriate recourse value
functions. In the applications considered by Powell et
al., both the number of clients to be served in each
node of the transportation network and the number
of trucks are very large. This makes it possible to
rely on concepts like “the marginal value of serving a
request”, or “the marginal value of relocating a truck
in a node”. As observed in [32], the models developed
in this line of research actually pay little attention
to the construction of continuous truckload routes,
but rather concentrate on the availability of trucks in
nodes where demand is likely to be expressed. Our
focus, on the other hand, is on applications where a
medium-size carrier faces demand that may be scarce
and geographically scattered. In such settings, tour
feasibility for individual trucks becomes a crucial
feature, and purely combinatorial algorithms appear
to be much better suited for this type of situations.
This is the approach adopted, in particular, in [28],
[32], and in our work. In this framework,we pay special
attention to the evaluation of the relative performance
of the heuristics, and to the estimation of the value of
information, as suggested for instance in the literature
review by [32]. Indeed, evaluating the performance of
multi-period or stochastic optimization algorithms is
difficult, since the value of the optimal policy is usually
not known. Therefore, researchers frequently rely
on comparisons with (estimates of) lower bounds
derived from myopic strategies, as in [2] or [31], or on
a posteriori (optimistic) upper bounds, as in [15], [25]
or [27]. It is not common to find both myopic and a
posteriori bounds in the same article; an example for the
deterministic multi-period setting can be found in [28].
In [4], the authors observe that, presently, there exists no
standardperformance analysis framework for dynamic
stochastic problems (such as computing time or number
of iterations for static and deterministic problems), and
they stress the need to compute meaningful bounds.

With respect to the literature reviewed above, our
contributions can be outlined as follows. First, in
Section 4, we add a stochastic dimension to the multi-
period, rolling-horizon settings of [28] and [32], so as
to model the uncertainty regarding surrounding future
transportation requests. In Section5,we propose several
heuristic procedures for the solution of the resulting
stochastic decision problem. These heuristics are
based on the solution of sub-problems associated with
deterministic scenarios. They are customizations of
generic strategies described, for instance, in [5], [13],
or [30], and are tailored to the specific problem at
hand. Our work also contributes to the evaluation of the
relative performance of the heuristics: in Section 7.2,

fleet as well as prospective and confirmed orders for
future periods of the rolling horizon. Subcontracting is
assumed to take place at no cost while bringing no
profit (meaning that the contract is simply transferred
to the subcontractor).
The main objective of our research is to provide

generic, practical, yet effective algorithmic strategies
to tackle thismulti-period stochastic vehicle allocation
problem over a rolling horizon. The problem is
computationally difficult due to the large number
of possible realizations of the random variables and
to the combinatorial nature of the decision space.
Our methodology is based on optimizing decisions
for deterministic scenarios, so as to alleviate the
stochastic aspect of the problem. By solving the
allocation problem for a sample of scenarios, by mixing
solutions, or by evaluating them through a look-ahead
procedure, we aim at selecting actions which generate
profit in the long run. The nature of our contributions
will be described in more detail in the next section,
after a short literature review.

2 LITERATURE REVIEW
AND CONTRIBUTIONS

In its simplest deterministic version where the horizon
is finite and where all orders are known with certainty,
the Dynamic Vehicle Allocation problem has been
studied for several decades, in particular in connection
with the problem of repositioning empty vehicles
(mostly, rail cars) in a transportation network; see, e.g.,
the surveys ([7], [8]). Several authorshaveobservedthat
this version of the problemcan be formulated as a min-
cost network flow problem and hence, can be solved in
polynomial time (see Section 4 hereunder).
Papers [28] and [32] have used and solved such

formulations in a deterministic rolling-horizon
framework which follows the generic description
provided in [26]. Their main objective was to examine
the influence of the length of the rolling horizon, the
order density, the trip length and the fleet size on the
quality of the solutions obtained.
The deterministic model can also be viewed as

a special case of the generic pick-up and delivery
problems (PDP) discussed in [23], with a profit
maximization objective as in [20] or [24]. Our
formulation only considers full truckloads, whereas the
PDP literature usually allows less-than-full truckloads.
Moreover, our DVAP does not include sideconstraints
such as driver regulations, mandatory return to the
depot, or time windows.
In its dynamic and stochastic version, the DVAP

has been almost exclusively studied by Powell and his
coauthors in a series of papers: [11], [16], [17], [18], [19],
[27], [29]. Crainic in [7] provides a nice survey of these
contributions. These papers propose several approaches,
such as Approximate Dynamic Programming (ADP),
for the solution of the DVAP and of its extensions to
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by the client: order jmust be loaded at the beginning of
the pick-up period aj ∈ {1,2,…,WH }, and unloaded at
the end of the deliveryperiod b j ≥aj. (Thismay reflecta
JITenvironment, wherepick-upanddeliverydatesmust
be strictly respected.)
Origins and destinations of orders are located in a

restricted set C of nodes (say, cities) of a network. The
pick-up and destination cities of order j are αj and βj,
respectively. The trip duration for load j is equal to
the number of periods needed to travel from αj to βj.
The distance between each pair of cities is expressed as
an integer number of periods. So, the trip duration dj is
equal to the distance between αj and βj,also denoted as
d j = d(αj, βj). We assume that a j + dj − 1 = bj, reflecting
the fact that the load is delivered without delay.
The uncertainty of the forecast regarding the

availability of a specific transportation order j is
modeled by a Bernoulli distribution:

P(q j = x) =

�
p j i f x = 1
1− p j i f x = 0

(1)

where qj is a random variable which takes value 1 if
order j is released (i.e., if the transportation order is
confirmed by the client), and pj is a parameter in [0,
1]. The choice made by the company either to transport
with its own trucks or to outsource an order in period
t can be influenced by information pertaining to the
stochastic part of the horizon, which might not be
confirmed a posteriori.We now turn to a more accurate
description of this rolling horizon setting and of the
timing of the information.

3.2 Single rolling horizon
Consider a rolling horizon {t ,…, t + H }. At decision
period t, truck i is located at node γi(t) of the network.
Some trucks are unladen (available to be loaded) and
some are already loaded (transporting an order). Loaded
trucks are unavailable for a new order allocation, and
will only become available in a subsequent period
after having delivered their current order. The orders
for which aj = t are available for loading. If the decision
is made to load order j, then the order is allocated to an
unladen truck i which must be present and available at
location αj at time t,so if γi(t) = αj.
We denote by RH the number of upcoming

periods that contain deterministic information about
the availability of orders. So, the information included
in periods {t ,…, t + RH } is fully revealed. (In other
words, the confirmation or cancellation of an order
j with release date aj = t +RH is revealed in period t
.) All transportation orders j such that aj ∈ {t + RH +
1,…, t +H } are projections, or forecasts, meaning that
the dispatcher can anticipate their features (release
date, delivery date, etc.), but is not sure whether the
orders will be confirmed by the clients, or not. All
decisions regarding orders (i.e. to transport or to
outsource) with aj in {t +1,…, t +H } might be revised

we describe and compute various bounds, which are
then used to evaluate and to compare the performance
of our algorithms. The analysis of the computational
results is performed in a statistical setting which allows
us to validate the conclusions in a meaningful way
(Section 7.3). As a by-product of these contributions,
we also underline in Section 8 the managerial benefits
that can be drawn by explicitly taking into account
the multi-period and stochastic nature of the problem:
namely, we provide illustrative numerical estimations
for the expected values of the perfect information
(EVPI), of the expected value solution (EEVS), and
of the stochastic solution (EVSS). Finally, we analyze
the robustness of our algorithms with respect to
the accuracy of the estimation of the probability
distributions.

3 PROBLEM STATEMENT

3.1 Complete horizon
A long-haul transportation company attempts to
maximize its profit by delivering transportation
requests, referred to as loads or orders, which it
can assign to its own fleet or outsource to partner
companies. The set of potential orders is denoted as L.
Each order is transported individually by a truck (Full-
Truck-Load, or FTL). The fleet is homogeneous and
limited: it consists of I identical trucks.
The set of decision periods {1, 2,…,WH } stands for

the horizon of the company. Typically each period
represents a day, and the number of periods in the
horizon is very large, essentially endless in practice.
We assume that the complete problem over these WH
periods is handled by solving a sequence of sub-
problems, where each sub-problem is defined by data
regarding the transportation orders over a rolling
horizon of length H + 1 (for instance, over a week).
No information is available about future transportation
requests in remote periods beyond the rolling horizon
of lengthH+1. (Depending on the respective values of
WH and H,these assumptions allow us to model the
information about demand over a part of the horizon
only, or over the complete horizon. But typically, we
think of H as being much smaller than WH,and we do
not formulate any strong hypothesis, like stationarity,
about the order generating process beyond period
H +1.) In [28], the authors refer to this setting, where
the carrier relies on advance information obtained,
for example, from clients or from market places, as
dispatching with look-ahead. Hence, the periods taken
into account in each sub-problem are of the form
{t ,…, t + H } where t ∈ {1,… ,WH − H } stands for
the current decision period. (The last decision period
to be considered in the rolling horizon process is period
WH −H.)
Each order j ∈ L transported by the company must

be loaded and unloaded on fixed dates, predetermined
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available fleet is sufficient, since the alternative
option would consist in moving unladen or in waiting
on site, and since revenues are preferred to costs. In
the multi-period model, however, this conclusion
does not necessary hold: it may be more profitable to
wait or to move unladen in order to pick up a future
order, rather than to load an available order. In such
cases, comparisons have to be made between various
combinations of loading actions, waiting times and
unladen trips. The combinatorial aspect of the decision
problem comes from this blend of feasible actions.
Let us conclude this subsection with a few

comments regarding the parameters and assumptions
of the model for a single rolling horizon.
Remark 1. Sometimes, the decision for a truck i in

the current decision period t may be to move from its
current location γi(t) towards a different city αj,with a
view to loading order j in a future period a j = t + k. This
might imply for the truck to move unladen, but also to
spend some timewaiting at destinationor along the way,
in case the travel time to αj is shorter than k. In such a
case, we assume that the truck always prefers to wait
at γi(t) rather than to move, so as to avoid potentially
useless unladen trips (e.g., if the initial decision is
modified after period t,the truck might have to go back
to its initial position). The reverse option would lead
to a repositioning strategy which is not in the scope
of this research.
Moreover, still in order to avoid useless moves, we

define a parameter D ≤ RH such that unladen trips
of length larger than D are not allowed. This avoids
useless trips if a projected order j does not become
available. Both restrictions on useless trips might hurt
the expected profit, but they are derived from practice,
as drivers do not appreciate to drive to a place where
an expected transportation order may eventually be
canceled (see [19]).
Remark 2. Each unladen trip between two cities

(departure city γi (t), arrival city αj) consists of a
sequence of cities along a path. This path is taken to
be the shortest one (ties are arbitrarily broken). In fact,
in a rolling horizon framework, what matters is only
the location of the unladen truck on this path after
one period, as this location is updated at the end of
the decision period and a new decision is made in the
next period for the truck. Without loss of generality,
by adding enough (fictitious) cities or locations in the
model, we can assume that the truck is always located
in a city at the end of each period.

3.3 Sequence of rolling horizons
At each decision period t,the rolling procedure includes
information about order j if the pick-up period aj is
included in the rollinghorizon{t,…, t+H}. This implies
that the subset of orders under consideration keeps
changing from decision period to decision period. This
subset is labeled J0 (the index t is omitted for short):
J0 = { j ∈ L : t ≤ aj ≤ t +H }. The availability of order

until aj becomes the decision period (see [28] and [32]
for similar settings). Also, waiting and unladen moves
decisions are reevaluated at each successive decision
period.
In summary, at time t, the dispatcher must decide

for each unladen truck i positioned at node γi(t):
(a) either to load on truck i any order j such that aj = t

and γi(t) = αj ; then, truck i starts moving towards
node βj,where it will arrive at time bj; truck i will
be available again for loading at the start of period
bj +1;

(b) or to get truck i moving (unladen) towards another
node c ∈C;

(c) or to keep truck i waiting at its current location:
γi(t) = γi(t +1) (this can also be viewed as a special
case of the previous decision).

The total profit to be maximized results from profits
earned whendeliveringorders and fromcosts generated
by unladen trips or by waiting on site. Related
parameters are:
– gj : profit per period for transporting order j (equal

for all trucks),
– e: cost per period of an unladen trip (equal for

all trucks),
– f: waiting cost per period (equal for all trucks in

all locations).
We assume that g j > 0 and e > f > 0.
As there is a selection process, those orders with

aj = t that are not allocated to a truck of the company
in period t are subcontracted, and bring neither
revenues, nor penalties. Since the objective of our
model is profit maximization, this simply means that
the cost of subcontracting an order is the foregone
revenue. A similar assumption is made, for instance,
in [31] and [32]. As in [20] or [24], one can assume that
another trailer company, working as a subcontractor
or in the framework of a broader collaborative
agreement, can be activated for any single order during
the decision period t at no cost for the carrier. This
assumption implies that all plans are feasible and that
no penalty costs are incurred due to past decisions.
The transportation industry frequently features large
excess capacity (small average vehicle loads and empty
return trips), as confirmed in [10]. The authors of [32]
also mention that “last minute call for transportation
services is very common in the industry”. Electronic
exchange platforms actually facilitate this type of calls
to the spotmarket. When the assumption regarding the
outsourcing of orders is considered to be too flexible,
the model could be easily modified either to assume
that decisions are frozen over a subhorizon of the
deterministic horizon {t ,…, t + RH } including more
than one period, or to include a penalty term in the
objective function when an order is outsourced on short
notice, but we did not implement these modifications
in our models.
Note that, in a myopic setting (say, with H = 0), no

available order would ever be discarded when the
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(a) if truck i ∈ I0, either to load some order j ∈ J0;
then, vj := i, order j is placed in J1, and truck i
is placed in I1;

(b) or if truck i ∈ I0, to move unladen towards αj,
the loading city of an order j ∈ J0; then, at the
end of period t,truck i is repositioned in the first
city c1 on the path from γi(t) to αj;

(c) or if truck i ∈ I0, to wait in city γi(t);
(d) or if truck i ∈ I1, to carry on if bj > t or to

unload order j ∈ J1 if bj = t as a consequence of
a previous decision, where vj = i; recall that the
destination βj is reached at the end of the period
and the truck is unloaded in the same period; so,
before the start of the next period, the allocation
parameter vj is reset to 0, order j is removed
from J1,and truck i is placed in I0.

The expected profit µπ per period for a decision policy
π over the entire horizon {1,…,WH } (where we think
ofWH as being much larger than H, or WH → ∞) is
defined as

µπ =
1

WH −H
E[

WH−H

∑
t=1

C(St ,Aπ(St))], (2)

where St denotes the state of the system at time
t (defined by the collection of orders available for
shipment at time t, deterministic and stochastic
information over the horizon {t + 1,…, t +H }, the

j (i.e., the value of qj) is fixed as soon as aj enters the
“revealed horizon”, that is, in the period t =aj −RH.In
subsequent periods, qj remains fixed at the same value.
Previous allocations of trucks must be taken into

account at every time. A truck-order allocation is
represented by a parameter vj: if truck i is allocated to
order j, then vj = i.
At the beginning of decision period t, the subset of

orders which have been previously loaded and which
are currently being transported is: J1 = { j ∈ L : aj < t,
bj ≥ t,vj ≠ 0}. The subset of loaded trucks at time t is
denoted by I1.
When vj = i, the truck i is allocated to order j

temporarily, from loading to unloading.After unloading
order j, the allocationparameter is reset (vj=0), truck i is
“free for loading” and belongs to the subset of unladen
trucks I0 ⊆ {1, .., I }. Obviously, |I0| + |I1| = I and |J1
| =|I1|.

At each period t, the state of the system evolves as
follows:
1. New orders j such that aj = t +H enter the rolling

horizon and consequently enter the set J0.
2. Orders j such that aj = t + RH enter the fully

revealed horizon, meaning that the value of q j
is fixed permanently; if q j =0, then order j can be
removed from J0.

3. Orders j such that aj < t can be removed from J0.
4. For each truck i, an action is taken, which can be:

Parameters Explanations
WH Number of periods in the complete horizon

H Number of upcoming periods in the rolling horizon
RH Number of upcoming periods in the revealed (deterministic) rolling horizon

t Current decision period
I Fleet size
I0 Set of unladen trucks at the start of period t
I1 Set of loaded trucks at the start of period t

γi(t) Location of truck i at the start of period t
J0 Set of confirmed and projected orders with pick-up period in the rolling horizon
Js

0 Set of orders confirmed in scenario s with pick-up period in the rolling horizon
J1 Set of orders initially loaded on trucks at the start of period t
a j Pick-up period of order j
b j Delivery period of order j
α j Pick-up city of order j
β j Delivery city of order j

d(x,y) Distance from city x to city y
d j Trip duration for order j: d j = d(α j,β j) = b j −a j +1
p j Probability of confirmation of order j
g j Profit per period for transporting order j
e Cost per period when moving empty
f Cost per period when staying idle

v j Truck allocated to order j (v j = 0 if j is not loaded)
c1 First city on a path from γi(t) to α j
D Maximum number of periods for an empty move

Table 1: Model parameters
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Fig.1: Graph G = (V, E ):3 trucks (1 loaded)
and 2 potential orders

Vertices: The set V contains a vertex Pi for each
unladen truck i ∈ I0, a vertex Uj for each available
order j ∈ J s0, a vertex Vj for each order j∈ J s0 ∪ J1,and
a vertex T.We can think of the vertices in the following
terms:
– Pi is associated with (the initial location of)

unladen truck i ∈ I0 at time t, Pi = (γi (t), t),
– Uj is associated with the pick-up city and period

of order j∈ J s0, Uj = (αj,aj),
– Vj is associatedwith the delivery city and period

of order j ∈ J s0 ∪ J1,Vj = (βj,bj),
– T is a sink vertex associated with the end of the

rolling horizon, T = t +H.
Note that the vertices in V should not be confused with
cities: they should rather be viewed as abstract entities
associated with combinations of trucks, orders, cities
and periods. In the network flowmodel, {Pi : i∈ I0} and
{Vj : j∈ J1} act as supply vertices. The demand or total
flow at T is I =|I0|+ |I1|.

Arcs: Before we define the arc set E, let us introduce
two families of binary parameters that describe the
feasibility of certain truck moves, as in [28]. They are
respectively denoted by TL (for Truck to Load) and LL
(for Load to Load). For i∈ I0 and j∈ J s0, we set TL(i, j)
= 1 if city αj can be reached from the current location
of truck i, namely γi (t), before the loading period aj.
For j ∈ J s0 ∪ J1, k∈ J s0, j ≠ k, we set LL( j,k) = 1 if city
αk can be reached (by any truck) before period ak after
having unloaded order j at city βj. More precisely,

T L(i, j) = 1 if d(γi(t),α j)≤ min(a j − t,D)

= 0 otherwise,
(4)

LL( j,k) = 1 if d(β j,αk)≤ min(ak −b j −1,D)

= 0 otherwise.
(5)

These parameters provide information on feasible
connections and can be used to reduce the arc set, and
hence, the decision space. Now, the arcs in E can be
divided into five categories.
– Pick-up arcs: (Pi ,Uj) for i ∈ I0 and j ∈ J s0

such that TL(i, j) = 1.

truck locations and their status – loaded or not), Aπ (St)
denotes the actions taken in state St according to policy
π, and C (St, Aπ (St)) is the associated profit collected
in period t (profits minus costs incurred at t). The
objective is to maximize µπ over all feasible policies π .

4 FORMULATION

In this section, we present integer programming
formulations of various deterministic versions of our
vehicle allocation problem. These formulations will
prove useful when solving the general stochastic
version of the DVAP. The main parameters of the
models are displayed in Table 1.

4.1 Scenario-based deterministic models
The information regarding the availability of a
transportation order j ∈ J0 is deterministic when
aj ∈ {t ,…, t +RH }; it is stochastic and modeled by the
Bernoulli variable qj when aj∈ {t +RH +1,…, t +H }.
A scenario s is defined by fixing a deterministic value
qsj∈ {0, 1} of the random variable qj for each order j
with aj∈ {t +RH +1,…, t +H }. So, the probability Ws
of occurrence of scenario s is

Ws= ∏
a j ∈ {t+RH+1,..., t+H}

�
p jqs

j +(1− p j)(1−qs
j)
�
. (3)

In each scenario s, the set of orders under
consideration, say J s0, contains order j∈ J0 if and only
if qsj = 1. In particular, each set J s0 includes the same
set of orders in the deterministic part {t ,…, t + RH }
of the horizon. The set of previously loaded orders
remains fixed and equal to J1 for all scenarios. Each
scenario yields a corresponding deterministic model.
A deterministic equivalent representation of

DVAP could be obtained by a complete scenario tree
including all possible scenarios that might arise in the
rolling horizon, as explained in Section 4.4. Since
the number of scenarios is huge, we propose and test
hereunder several reduced, i.e., approximate, models
solved to optimality. This leads to heuristic algorithms
based on single or multiple scenarios, whichmay either
be viewed as independent of each other or as forming a
subtree representation of the problem.

4.2 Formulation for a mono-scenariomodel
In this section, we provide a formulation for a mono-
scenario model, or equivalently, for a deterministic
model over the horizon {t,…, t +H } (see, e.g., [28] for
a similar formulation, which also includes costs for
late delivery and subcontracting). The representation is
based on a time-space graph associating locations and
periods with trucks and orders.
For a set of trucks I0 ∪ I1 and a subset of orders

J s0 ∪ J1 in the deterministic scenario, the time-space
directed graph G = (V, E) is defined as follows.
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– Connection arcs: (Vj ,Uk) for j ∈ J s0 ∪ J1 and
k∈ J s0, j ≠ k, such that LL( j,k) = 1.

– Transportation arcs: (Uj,Vj) for j ∈ J s0.
– End of horizon arcs: (Vj, T ) for j ∈ J s0 ∪ J1.
– Standstill arcs: (Pi,T ) for i ∈ I0.

Figure 1 provides an illustration of the structure of the
graph G = (V, E).

Flowvariables:Eacharc inE is associatedwitha single
decision variable which represents the decision for a
truck either to travel from a city to another one (unladen
or loaded), or to wait. All decision variables are
binary, reflecting the fact that each order is transported
individually (FTL) or that the variables translate go-
no go decision. They are named according to the
corresponding category of arcs: PUi j, UVj, VUjk, VTj,
and PTi.
– PUi j represents the decision for truck i ∈ I0 to

move from its initial location to αj so as to pick-
up order j ∈ J s0 (this might mean to load order
j in the present truck location if γi(t) = αj, or to
move unladen in order to pick up order j in city
αj if γi(t) ≠αj and aj > t; in both cases, the truck
may have to wait at γi(t) for a few periods if
t +d(γi(t), αj) < aj) (cf. Remark 1 in Section 3.2);

– VUjk represents the decision for a truck to
travel from the destination city of order j ∈ J s0
∪ J1 to the pick-up city of order k ∈ J s0 ;

– UVj represents the decision to transport order
j ∈ J s0 ;

– VTj represents the decision for a truck to wait
at βj until the end of the horizon after delivering
j ∈ J s0 ∪ J1;

– PTi represents the decision for a truck i ∈ I0 to
stay idle in city γi(t) until the end of the horizon.

Beforewe turn to the definition of the cost coefficients
in the profit function (Equation (6)), let us first define a
few additional parameters.

Waiting times parameters: Since a decision for
a truck might be to wait in its present location for at
least one period, some nonnegative parameters related
to waiting times can be introduced, based on truck and
order information: see Table 2.

Arc costs values: The cost of each arc is denoted
according to the corresponding categories: CPUi j,CVUjk,
CUVj, CVTj, and CPTi. At the initial time t,some trucks i
∈ I1 are busy transporting an order. Such loaded trucks
continue their trip during the current decision period
and we assume that their cost has already been taken
into account. Thus, we solely include in Equation (6)
the costs and profits generated by the decisions made
at the current period t.
Let us now turn to a definition of the cost associated

with each arc as follows:

– (Pick-up arcs)CPUij, the cost of arc (Pi,Uj), is the
cost of moving unladen and/or waiting before
picking up order j, starting from the initial
location of truck i:
CPUij = −(d(γi(t), αj)∗e+ f ∗w0

i j) for i∈ I0 and for
j ∈ J s0, if TL(i, j) = 1.

– (Connection arcs) CVUjk, the cost of arc (Vj ,Uk),
is the cost of moving unladen and/or waiting
beforepickingup order k, starting from location
βj:
CVU jk = − (d (βj, αk ) ∗ e + f ∗wjk) for j ∈ J s0 ∪ J1,
k ∈ J s0 , j ≠k, if LL( j, k) = 1.

– (Transportationarcs)CVUj, the cost of arc (Uj,Vj),
is the profit generated by transporting order j
from αj to βj:
CUVj = +d(αj, βj) ∗gj for j∈ J0.

– (End of horizon arcs)CVTj, the cost of arc (Vj,T ),
is the cost of waiting at βj until the end of the
horizon after delivering order j:
CVTj = − f ∗wH

j for j ∈ J0∪ J1.
– (Standstill arcs) CPTi, the cost of arc (Pi,T ), is

the cost of remaining idle at γi(t) throughout the
horizon:
CPTi = − f ∗ (H +1) for i ∈ I0.

At this point, we are ready to present a network flow
formulation for the mono-scenario vehicle allocation
problem. Note that, since all variables are associated
with arcs in E,we implicitly assume in the formulation
that PUi j =0 when TL(i, j) = 0, and that VUjk = 0 when
LL( j,k) = 0. In fact, removing in this way all arcs and
decision variables associated with infeasible links
allows us to switch from a “multi-period” to a “timeless”
model, as all temporal constraints are automatically
satisfied (see [9]).

Objective function:

max Z = ∑
j∈Js

0∪J1

�
CV Tj ∗V Tj + ∑

k∈Js
0, k �= j

(CVU jk ∗VU jk)

�

+ ∑
j∈Js

0

�
CUV j ∗UVj + ∑

i∈I0

(CPUi j ∗PUi j)

�
+ ∑

i∈I0

CPTi ∗PTi.

(6)

The maximization of Z is subject to the following
constraints.

Flow conservation constraints

Node Pi : ∑
j∈J0

PUi j +PTi = 1 for i ∈ I0, (7)

Node U j : ∑
i∈I0

PUi j + ∑
k∈Js

0∪J1, k �= j
VUk j =UVj for j ∈ Js

0, (8)

Node V j : UVj =V Tj + ∑
k∈Js

0; k �= j
VU jk for j ∈ Js

0, (9)

Node V j : V Tj + ∑
k∈Js

0

VU jk = 1 for j ∈ J1. (10)



8

directly depend on the number of periods and cities.
In particular, the difficulty of the formulation is not
affected by the discretization of time into small or
large periods, although different discretization steps
may lead to different time-space graphs, to different
information updates, and hence, to different policies
over the planning horizon.

4.4 Formulation for a deterministic
subtree model

From the previous single-scenario formulation, it is
easy to develop a formulation associated with a finite
set, or subtree of ST scenarios over the horizon {t ,…,
t +H }.
To generate a subtree formulation, the deterministic

formulation of Section 4.2 is replicated ST times with
scenarios indexed by s ∈ {1,…, ST }.
In order to simplify the presentation, we momentarily

assume that the set of orders under consideration, i.e.,
J0, includes all orders in the rolling horizon. So, the
graph and the variables introduced in Section 4.2 are
replicated ST times except for the sink node T which
remains unique.

Subtree variables: for s =1,…, ST ,
– PU s

i j ∈ {0, 1} for i ∈ I0 and j ∈ J0, if T L(i, j)
= 1;

– VU s
jk ∈ {0,1} for j ∈ J0 ∪ J1 and k ∈ J0, j ≠

k, if LL( j, k) = 1;
– UV s

j ∈ {0,1} for j ∈ J0;
– VT s

j ∈ {0,1} for j ∈ J0∪ J1;
– PT s

i ∈ {0,1} for i ∈ I0.

The subtree formulation is now (compare with the
single-scenario formulation (6)–(11)):

Objective function:

max Z =

∑
s=1,...,ST

�
∑

j∈J0∪J1

�
CV Tj ∗V T s

j + ∑
k∈J0; k �= j

(CVU jk ∗VU s
jk)

�
+ ∑

j∈J0

�
CUV j ∗UV s

j + ∑
i∈I0

(CPUi j ∗PU s
i j)

�
+ ∑

i∈I0

CPTi ∗PT s
i

�
(12)

Required flow constraint

Node T : ∑
j∈Js

0∪J1

V Tj + ∑
i∈I0

PTi = I. (11)

Constraints (7) express that each unladen truck
i ∈ I0 either moves to pick up an order or stays idle.
Constraints (8) ensure that if an order j is selected to
be transported by the company, it must be reached by
a truck which was initially idle or which has unloaded
another order k. Constraints (9) impose that if order j
is transported by the company, then, after unloading
j, the truck either moves to pick up another order k or
stops. Moreover, if order j is outsourced, then none of
these actions can take place. Constraints (10) have the
same interpretation as constraints (9) for those orders
j which were initially loaded (i.e., j ∈ J1). Finally,
constraint (11) imposes that I trucks reach the sink
node T, i.e., the total flow is equal to the number of
trucks originally loaded |I1| or unladen |I0|.
Since all decision variables are binary, each arc

necessarily carries a 0-1 flow and there is no need
for additional capacity constraints in the formulation
(6)–(11).

4.3 Complexity for a single scenario
formulation

The network flow formulation (6)–(11) has the
integrality property and hence, is polynomially
solvable (see [1]) (in our experiments, we simply rely
on a commercial LP solver to obtain an optimal integer
solution in a few seconds). It may be worth noting that
polynomial solvability is due to some implicit restrictive
assumptions of our model. Namely, the ending point at
the end of the horizon is not imposed to any truck;
no intermediate city has to be mandatorily visited (e.g.,
for refueling); no specific order has to be mandatorily
transported; no waiting periods are imposed to comply
with driving regulations; and so forth. Adding such
constraints could make the problem theoretically
harder to solve (NP-hard), as mentioned in [12].
It is also interesting to observe that the network

flow formulation does not involve any time index
nor city labels. Therefore, the size of the model is
determined by the numbers of trucks I and orders J s0
taken into account in the rolling horizon, and does not

Explanations Formula

w0
i j

Waiting time for truck i ∈ I0 w0
i j = a j −d(γi(t),α j)− t if T L(i, j) = 1

to reach order j at period a j (undefined otherwise)

w jk
Waiting time between unloading order j w jk = ak −b j −d(β j,αk)−1 if LL( j,k) = 1
and loading order k (undefined otherwise)

wH
j

Waiting time after delivering order j wH
j = max(0, t +H −b j)

until the end of the horizon

Table 2: Waiting time parameters
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Now, for any scenario s, in the current period
t, each truck i ∈ I1 is on the move, and will just keep
moving on until (at least) the next period. Each truck
i ∈ I0 is located at γi (t) (associated with node P s

i ),
and all relevant, or “interesting” decisions at period
t pertain to such trucks. The decisions can be of one
of four types: for truck i ∈ I0 (recall that I0 contains
all empty trucks as well as trucks unloaded at the end
of the previous period), one can decide
(a) either to load an item j ∈ J0 such that α j= γi(t) and

to start moving toward βj, in which case PU s
i j = 1

(and UV s
j =1 follows as a consequence of Equation

(14));
(b) or to start moving unladen toward α j such that

t + d(γi (t), αj) = aj and TL(i, j) = 1, in which case
PU s

i j = 1;
(c) or to wait for at least one period before moving

unladen toward α j such that TL(i, j) = 1 and t +d(γi
(t), α j) > aj, in which case PU s

i j =1 (cf. Remark 1 in
Section 3.2);

(d) or to wait at location γi (t) until the end of the
horizon, in which case PT s

i =1.
All other variables (VU s

jk, UV s
j, VT s

j ) are associated
with actions to be implemented in subsequent periods.
So, in order to ensure consistent decisions, we only

have to force the replicated variables PU s
i j to be equal

in all scenarios when the travel time is exactly equal
to aj − t,as in cases (a) or (b) above; in all other cases,
truck i ∈ I0 has to wait anyway and there is no need to
distinguish among those different cases. In summary,
the subset of non-anticipativity constraints that we
include in the model (and which bear on the decisions
taken in period t) are expressed by conditions (23)
hereunder.

Non-anticipativity constraints for an unladen truck
i in period t:

PU1
i j = PU s

i j for i ∈ I0, j ∈ J0, for s = 2, . . . ,ST

and if t +d(γi(t),α j) = a j and a j ≤ t +D.
(23)

After solving the optimization model (12)–(23) over
the rolling horizon, actions for the current period t can
be extracted to generate the value of the policy for
this decision period. Given that loading operations,
unladen movements and waiting decisions are
consistent in period t,analyzing one single scenario’s
variables (e.g., for s =1) is enough to recover the profit
of the policy during this decision period. Practically,
analyzing for each unloaded truck i whether PU 1

i j, or
PT 1

i = 1 is enough to deduce the cost or profit due to
truck i during period t.Consequently, at each decision
step, the policy evaluation is similar to what is done for
the single scenario representation.

4.5 Complexity for a subtree of scenarios
We mentioned in Section 4.3 that the DVAP is
polynomially solvable for a single scenario. On the
other hand, we do not know the exact complexity of the

subject to the following constraints

Flow conservation constraints

Node Ps
i : ∑

j∈J0

PU s
i j +PT s

i = 1

for s = 1, . . . ,ST and for i ∈ I0, (13)

Node U s
j : ∑

i∈I0

PU s
i j + ∑

k∈J0∪J1; k �= j
VU s

k j =UV s
j

for s = 1, . . . ,ST and for j ∈ J0, (14)

Node V s
j : UV s

j =V T s
j + ∑

k∈J0; k �= j
VU s

jk

for s = 1, . . . ,ST and for j ∈ J0, (15)

Node V s
j : V T s

j + ∑
k∈J0

VU s
jk = 1

for s = 1, . . . ,ST and for j ∈ J1. (16)

Required flow constraints

Node T: ∑
j∈J0∪J1

V T s
j + ∑

i∈I0

PT s
i = I for s= 1, . . . ,ST. (17)

In view of the value assumed by the randomvariables
in each scenario, some decision variables can be
removed from the model, namely: for all s = 1,…, ST
and for all j∈ J0 such that qs = 0,

PU s
i j = 0 for i ∈ I0, (18)

UV s
j = 0, (19)

VU s
jk = 0 for k ∈ J0 and k �= j, (20)

VU s
k j = 0 for k ∈ J0 ∪ J1 and k �= j, (21)

V T s
j = 0. (22)

As a unique set of actions is to be performed, non-
anticipativity constraints must be added to ensure
the consistency of the solutions over the different
scenarios. Since we implement our model in a rolling
horizon framework, we have chosen to express only
those non-anticipativity constraints that ensure the
consistency of actions taken at the current decision
period t. Indeed, over the next decision step in period
t + 1, new actions will be taken and all previous
decisions will be reoptimized. Hence, fixing common
actions within scenarios for periods {t +1,…, t+H} is
not mandatory to ensure consistency at period t,and
omitting such constraints simplifies the model. (Note
that under these simplifications, even a complete tree
containing all possible scenarios would only give rise
to an approximate model of themulti-periodstochastic
problem, rather than an exact deterministic equivalent
model.) Let us now explain this point in more detail.
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subtree formulation. Because of the non-anticipativity
constraints (23), this formulation can be viewed as
an equal flow problem, and such problems are known
to be generally NP-hard, except in specific cases (see
[14]). In practice, however, we observed thatwe always
obtain an optimal integer solution when solving the
linear relaxation of the formulation (12)–(23), even for
large instances (see Table 10). For the instances that
we handled, the computing time remained within a
few seconds (see Section 8.1), which is practically
convenient. This is an important feature of our model
since for other stochastic transportation problems,
subtree formulations including integer variables
may turn out to be computationally intractable (see,
e.g., [3]). Therefore, we did not develop a specific
algorithm to solve the subtree formulation.

5 ALGORITHMS

In a rolling horizon framework, the sequence of
decisions implemented in successive periods results
from solving a sequence of optimization models
using deterministic and stochastic information over a
sequence of restricted horizons of length H +1. In this
section, we describe several heuristic algorithms, based
on the exact solution of approximate models, that can
be used to compute (hopefully good) policies.

5.1 Mono-scenario algorithms
As suggested in Section 4.2, any scenario over {t ,…,
t+H } yields a computationally efficient heuristic. We
next detail some specific choices of scenarios.

5.1.1 Optimistic scenario algorithm: Opt
In this scenario, all orders j ∈ J0 are supposed to
become available for transportation, i.e., qj is considered
equal to 1 for all aj∈ {t +RH +1,…, t +H }. The policy
issued from this scenario is called Optimistic.

5.1.2 Modal value scenario algorithm: Mod
This scenario generates a policy based on the modal
value of the probability distribution: if pj ≥ 0.5, the
scenario includes j (qj = 1), otherwise, order j is not
included in the scenario (qj =0). This scenario, like the
optimistic one, may lead to extreme situations, i.e.,
discarding or keeping orders even if their probability
of occurrence is close to 50%. Moreover, the expected
profit of each order is not taken into account, but only
its availability probability.

5.1.3 Expected Value Scenario algorithm: EG
To avoid the drawbacks of the previous scenarios,
a policy can be derived from a heuristic based on a
modification of the optimistic scenario. This “pseudo-
scenario” includes all orders j ∈ J0, as in Opt,but the
profit per period is set equal to its expectation g'j =
g j ∗ pj instead of g j for each order j with aj∈ {t +

RH + 1,…, t + H }. Strictly speaking, the resulting
deterministic instance is not really derived from a
scenario in the sense of Section 4.1 (since the profits
have been modified). Nevertheless, for the sake of
simplicity, we refer to it as the expected value scenario.
The value of the optimal policy for this scenario is called
the “Expectation of the Expected Value Solution”, or
EEVS (see [5]).

5.2 Multiple-scenario algorithms
To find a single scenario leading to a good policy
requires some luck. Another strategy might be to
consider K random independent scenarios, called
calibration scenarios, and to select or to generate a
policy derived from theK corresponding solutions.
Two particular optimization methods based

on multiple scenarios are described hereunder: a
Consensus algorithm Cs and a Restricted Expectation
algorithm RE∗. These methods rely on generic
strategies for algorithmic design which, however, must
be significantly tailored to the problem at hand (see
[30] for a description of the generic principles, and
[3] for an application). In each case, we assume
that K calibration scenarios have been generated by
Monte Carlo simulations based on the probability
distributions of the availability variables qj, for all
orders j with aj∈ {t +RH +1, .., t +H }.

5.2.1 Consensus algorithm: Cs
The deterministic models (6)-(11) associated with
K calibration scenarios are solved independently, and
the actions (load, move unladen, wait) for the current
period t are recorded as θk for k = 1,…, K. The aim
of the consensus algorithm Cs is to generate a new
“compromise” solution based on the most frequent
decisions taken among the solutions θk. At first sight,
a common decision means that corresponding variable
values have to be the same in different solutions. Yet,
identical decisions can also be derived from various
variables in models associatedwith different scenarios.
For instance, in a solution θk', the decision for a
truck to wait in city c can be issued from a variable
representing a complete standstill decision over the
rolling horizon while in another solution θk, k ≠ k', the
decision for this truck to wait might be issued from the
plan to load in city c in the next period. Conversely,
seemingly different, but globally equivalent decisions
can be taken within two solutions θk' and θk. Consider
for instance, two idle trucks located at the same time
in the same city. In solution θk', truck A waits, truck
B loads, and conversely in solution θk.These decisions
are equivalent, even if the replicated variables are not
indexed in the same way. So, there is a need for an
aggregation phase of variables representing identical
or equivalent decisions. These equivalent decisions can
then be used to build a consensus solution. This gives
rise to two distinct phases in our consensus algorithm.



Vehicle allocation problem with uncertain transportation requests over a multi-period rolling horizon 11

First, in the aggregation phase, we generate several
counters for each city c ∈ C for each kind of
decision, namely, loading, moving unladen, or waiting.
At the current period t,the counters are:
– CL(c,j), number of solutions θ1 ,…, θK such that

order j ∈ J0 is loaded in city c ∈C in period t;
– CE(c,c1), total number of trucks planned to

move unladen from city c to city c1 in period t
over all solutions θ1,…, θK ;

– CWc, total number of trucks planned to wait in
city c∈C in period t over all solutions θ1,…,θK.

Next, all loading operations and all unladen moves
are aggregated per city c, so that the most frequent
decisions among loading, moving unladen or waiting
can be ranked per city. The resulting counters are
divided by K and rounded to the nearest integer to
get the number of decisions of each type per city
regardless of parameterK. These integer values provide
the number of similar decisions to be allocated to trucks
located in each city, namely:

– NLc = [ 1
K ∑

j∈J0

CL(c, j)] number of trucks that
should load in city c,

– NEc = [ 1
K ∑

c1∈C
CE(c,c1)] number of trucks that

should move unladen
out of city c,

– NWc = [ 1
K CW(c)] number of trucks that

should wait in city c.
This ends the aggregation phase of decisions.

The allocation phase consists of two parts. First, for
each city c and for each idle truck currently located
in c, we allocate an operation according to an iterative
procedure considering the countersNLc, NEc orNWc in
non-increasing order. For instance, if NLc ≥ NEc and
NLc ≥ NWc , then the first truck should load an order.
Each time an action is allocated to a truck, the value
of the current indicator NLc, NEc or NWc is reduced
by one. Therefore, for the next truck another kind of
decision might be allocated. This first phase of the
allocation procedure is repeated iteratively for each
truck in each city.
The second phase of the allocation procedure

aims at defining which order j should be loaded when
a loading decision has been allocated to a truck and
which destination city c1 should be selected when an
unladen move has been allocated. To select the order j
to be loaded, loading counters from city c are ranked
by non-increasing values of CL(c,j) and each order is
allocated once subsequently. Similarly, unladen moves
are specified according to non-increasing values of
CE(c,c1).The current largest counter value is reduced by
one after each allocation and counters are resorted
accordingly.
In case of ties among NLcor NEcor NWc,preference

is given first to loading, then to unladen moves.
Finally, if some trucks remain unallocated after all
counter values (NLc,NEc,NWc) are reduced to zero, the
action allocated to these trucks is to wait.

At first sight, it seems promising to consider K
scenarios rather than a single one in order to generate
a decision that is more resilient to the variability of
future realizations. Yet, the consensus procedure has
its own drawbacks. In fact, the final plan is created
according to an aggregate-disaggregate method. This
process might destroy the structure or consistency of
the solutions that are optimal for different scenarios
k = 1, . . . , K. Therefore, the consensus solution might
not produce a better combination of decisions than any
single scenario-based one, i.e., θ1,…, θK.

5.2.2 Restricted Expectation algorithm: RE*
In order to avoid the drawback of Cs, the Restricted
Expectation algorithm RE∗ is based on the selection
of one single solution θk associated with a calibration
scenario k∈ {1,…,K }. As for the consensus algorithm,
we denote by θk the optimal values of the decision
variables for the current period t and we denote by vk
the objective function value over the rolling horizon
{t,…, t +H }, for each calibration scenario k = 1,…, K.
In order to evaluate its quality, each decision θk is
applied in period t for every remaining scenario
k' = 1,…, K, k' ≠ k. (This is always feasible as all
scenarios coincide in period t .) Then, we solve again
model (6)-(11) for theH-period scenario constrained by
the actions θk at t,and which coincides with scenario k'
over {t +1,…, t+H }. This yields an optimal value v(k,k' ),
for all k' ≠k. So,we get the cumulatedobjectivevalueΘk

of action θk in the cross-evaluation procedure:

Θk = vk +
K

∑
k�=1, k� �=k

v(k,k�). (24)

Finally, the solution θk with the highest cumulated
valueΘk =Θ∗

k is selected and actions θkare implemented
in period t.
The cross-evaluation procedure is an attempt to

evaluate the expected value of each solution, if it
should be effectively applied. The qualifier “Restricted”
reminds us that the number of calibrating scenarios K
is much lower than the number of possible scenarios.
When K increases, our confidence in the assumption
that the cross-evaluation procedure provides a good
estimate of the expected value of any solution θk
increases. Note that, whereas Cs requires solving K
optimization sub-problems at every decision period,
RE∗ requires solving K2 such problems. This might
become prohibitive in practice when K is large, even if
each single optimization sub-problem is polynomially
solvable.

5.3 Subtree algorithm: TR
Finally, in order to avoid the drawbacks ofCs (solution
deconstruction) and RE∗ (selection of a solution
associated with a single scenario), we can use the
problem formulation presented in Section 4.4 to
compute a best-compromise solution over a subset of
ST randomly generated scenarios. We refer to this
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Spatial data: In our experiments, cities are positioned
on three grids of sizes 10, 20, 25; see Figure 3.
They represent a permanent network of logistical
platforms aggregating the local clients’ orders. All
edges are of length 1 and the driving speed is fixed so
that it takes one period to cross an edge. The maximal
distance between cities is 4. In the literature, it is
usual to avoid uniform spatial distributions of clients
(see Solomon or Li-Lim instances at http://www.
sintef.no/Projectweb/TOP). Our tests were accordingly
performedwith complete graphswhere each node of the
grids is a city, but also with subgraphs where either 15
or 20 randomly selected nodes of the 25-city grid are
designated as cities. So, in total, tests were performed
with 9 types of graphs, namely, three complete grids
of 10, 20 or 25 cities, three subgraphs (A, B or C) of
15 cities, and three subgraphs (A, B or C) of 20 cities.
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Fig. 3: Grids of 10, 20 and 25 cities

Orders: The data describing the orders are generated
in two different ways. For a first set of instances
(orders linked to duration), we assume that each set
of cities is homogeneous. So, each order is randomly
and uniformly assigned a pick-up city αj, a destination
βj, and a pick-up date aj ∈ {1,…,WH }. The probability
pj that order j becomes available for transportation is
assumed to depend on the trip duration. Namely, four
probability distributions are considered, as displayed
in Table 3. For example, according to distribution 2,
the probability to become available is pj = 0.5 for an
order which has a trip duration equal to 3. The choice
of these distributions is derived from the gravity model
transposed in Reilly’s law of retail gravitation (see
[21]). Notice that pj may be equal to 1, meaning that
some deterministic information may be included in
{t +RH +1,…, t +H }.
For each combination of a graph and a probability

distribution, we generate an instance including 150
(potential) orders with pick-up dates in the horizon
{1,…,WH}, and another one including 200 (potential)

method as a subtree algorithm. Under the assumption
that each scenario s is independently and identically
generated with probability Ws (see Equation (3)), the
objective function in Equation (12) provides a so-called
Monte Carlo estimator of the expected profit due to the
decisions made at the current period t (up to a constant
factor ST ). Monte Carlo estimators are commonly
used in sampling-based optimization methods such
as the generic Sample Average Approximation (SAA)
approach; see, e.g., the discussion in [13].
Non-anticipativity constraints perform a similar

role as the cross-evaluation procedure from RE∗,
which fixes θk for the current period while allowing
different decisions in the remaining part of the rolling
horizon according to each scenario (see [22]). Whereas
these constraints cannot ensure that the best decision
has been taken for any single scenario, a compromise
solution based on the highest average profit over the
subtree can be selected. The influence of parameter
ST for the numerical performance of the subtree is
analyzed in Section 8.1 and Section 8.3.

6 INSTANCES

Temporal data: In our experiments, similarly to [28],
the rolling horizon parameter H is set to 4 periods.
In practice, these 4 periods, together with the current
decision period t,may represent 5 days of information
available for planning over the weekly horizon {t ,…,
t+4}. The deterministically revealedpart of thehorizon
RH contains 1 period beyond the current period t, so
H − RH = 3 periods contain stochastic forecasts. The
whole horizon WH involves 20 periods with pick-
up periods aj ∈ {1,…, 20}, allowing deliveries outside
the horizon. (This is consistent with the network flow
formulation.) The rolling horizon process generates 16
effective decision steps, from period 1 to period 16, so
that the length of the rolling horizon for the last decision
isH =4, as for all the other decision periods. An initial
period “0” is added so as to start with a fleet of unladen
trucks that might be initially moving or waiting. These
starting conditions are similar for all algorithms and
only slightly modify the expected profit value per
period. Finally, the maximum unladen distanceD is set
to 1. Thus, no shortest path problems need to be solved
in a preliminary phase (see Section 3).

0

a

1

b

...

Decision periods

16

c

17

d

18 19

e

20

Fig. 2: Planning horizon (a: repositioning period
for unladen fleet; b: first decision period; c: last

decision period; c and d: deterministically revealed
information periods for the last rolling horizon;

e: stochastic information periods for the last rolling
horizon)
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Economic data: The profit per period for load
j, that is, g j, is set randomly and uniformly in the
interval [80, 120] (monetary units: MU); the unladen
trip cost per period, e, is set to 100 MU; the waiting
cost per period, f, is set to 75 MU, as fuel cost usually
represents approximately 25% of the total cost e. The
difference between f and e (25 MU) is smaller than
gj, so that moving unladen towards an order is more
profitable than staying at standstill.

Trucks: Each instance involves 10 trucks randomly and
uniformly allocated to any city γi(0) ∈ C in the initial
period t =0, for i =1, . . . , 10.

7 INTERPRETATION OF RESULTS

7.1 Bounds
In general, the policy selected by any algorithm suffers
from two drawbacks when compared to the optimal
solution π∗ that could be computed if we had complete
deterministic knowledge of the complete scenario
over a fully revealed horizon of length WH. Firstly,
it results from a sequential process implementing, at
each decision period, actions issued from solutions
over rolling subhorizons of limited length; but such a
sequence of optimal or suboptimal short-term solutions
does not build the optimal long-term one. Secondly,
each rolling horizon solution is based on stochastic
information and not on the fully revealed deterministic
information over the rolling horizon. So, the policy
might not be optimal even in a short-term perspective.
We denote by O∗ the value of the (a posteriori,

omniscient) optimal solution over the fully revealed
complete horizon of length WH. This value can
be computed by the deterministic network flow
formulation of Section 4.2. It provides an upper
bound for the best possible attainable value: µπ∗ ≤ O∗.
We can easily compute this value over the relatively
short horizon ofWH =20 periods.

Further, we denote by O∗(H), the value of the
solution obtained by solving optimally (a posteriori) a
sequence of deterministic problems over fully revealed
rolling subhorizons of length H.This value provides a
very optimistic estimate of the value of policy π∗: that
is, we cannot be sure that µπ∗ ≤ O∗(H), always, but in
practice, we can expect the inequality to hold, except
for some pathological instances (as in [6]). Note that
the difference O∗ −O∗(H) provides an estimate of the
foregone profit due to the limited size H of the rolling
horizon imposed by the order booking process and by
the forecasting possibilities (see Section 7.2).
Finally, we denote by O∗(RH) the value of the myopic

policy derived by solving a sequence of deterministic
problems over sub-horizons of size RH (which contain
fully revealed information, by definition). In a sense,
this policy is opposite to the optimistic policy where

orders. Thus, we obtain 72 instances in the class
‘orders linked to duration’ (9 graphs, 4 probability
distributions, 2 densities of orders).

Table 3: Probability pj of order availability
according to the trip duration dj: distributions 1 to 4

Duration 1 2 3 4
Distribution 1 1 0.5 0.33 0.25
Distribution 2 0.25 0.33 0.5 1
Distribution 3 0.75 0.5 0.33 0.25
Distribution 4 0.5 0.5 0.5 0.5

For a second set of instances (orders linked to city
range), the size of each city is assumed to fall in one
of three ranges, namely, large, medium, or small. The
medium cities are most abundant in instances of type
A, all city sizes are equally frequent in type B, and the
small cities are most abundant in type C, as shown in
Table 4. For example in the subgraph 15-25 A, there
are 4 large cities, 6 medium cities, and 5 small cities.
(Note that we did not include the complete grids in this
set of instances.)

Table 4: Number of cities per range in each subgraph
City range Large Medium Small

Subgraph 15-25 A: cities per range 6
5
4
8
7
5

5
5
9
7
7
12

Subgraph 15-25 B: cities per range
Subgraph 15-25 C: cities per range
Subgraph 20-25 A: cities per range
Subgraph 20-25 B: cities per range
Subgraph 20-25 C: cities per range

4
5
2
5
6
3

Then, αj and βj are randomly generated with
probability proportional to 4, 3, and 2 for large,
medium, and small cities, respectively. (This is again
inspired from [21].) So, the larger the city, the more
orders are picked up from or delivered to it. The pick-up
datesaj are uniformlydrawn in the horizon {1,. . . ,WH }.
For the probabilities pj, we consider again 4 possible
distributions which depend on the range of the pick-up
city aj as shown in Table 5. For example, according to
distribution 5, for an order which must be picked in a
large city, the probability to become available is pj =
0.75.
Each instance includes 150 (potential) orders. So,

there are 24 instances in the class ‘orders linked to
city range’ (6 graphs, 4 probability distributions, 150
orders).

Table 5: Probability pj of order availability according
to the range of the pick-up city αj: distributions 5 to 8

City range Large Medium Small
Distribution 5 0.75 0.5 0.33
Distribution 6 1 0.5 0.25
Distribution 7 0.25 0.33 0.75
Distribution 8 0.5 0.5 0.5
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– Expected value of the multi-period model:
EVMPM =O∗(H) −O∗(RH) (26)

When EVMPM is significant, the best policy value
returned by any of our algorithms provides an estimate
of µπ ∗ and we can compute the following values (EVSS
should not be confused with EEVS, which has been
defined in Section 5.1.3).

– Expected value of the stochastic solution:
EVSS =µπ∗ − EEVS (27)

– Expected value of the perfect information:
EVPI =O∗ − µπ∗ (28)

These metrics are classical in stochastic optimization
(see, e.g., [5]). Since we use them here in a multi-
period framework, we sometimes find it instructive
to complement them with additional metrics which
split the value of the perfect information (EVPI) into
two sub-values, namely: the value of the short-term
accessible information, or EVAI, and the value of the
long-term information pertaining to the tail, or EVTI,
as introduced in [3]:

– Expected value of the accessible information:
EVAI =O∗(H) −µπ∗ (29)

– Expected value of the tail information:
EVTI =O∗ −O∗(H) (30)

It follows immediately that EVPI = EVAI + EVTI.
See Figure 4) for an illustration of the relation between
the different metrics. If some of the above values are
statistically significant and economically relevant, it
might be interesting for the transportation company to
modify the information it collects by:
1) investing in its information system or changing its

processes so as to collect more deterministic data
over a longer horizon RH;

2) changing the booking process or forecasting tool
in order to increaseH.

Of course, beside improving the data collection, another
option may also consist in developing optimization
techniques leading to a better policy π∗.

7.3 Statistical validation of policy performance
Evaluating the expected value µπ of a policy π
theoretically requires to consider all potential
realizations of the stochastic parameters, i.e., all
potential scenarios. Since the number of scenarios
is huge, µπ can only be approximated on a restricted
subset of scenarios. In our computational experiments,
we evaluate µπ by generating a random sample F of test
scenarios. An estimate µ̂π of µπ is then given by:

µ̂π =
1
|F | ∑

s∈F
C(π,s), (31)

where C(π, s) is the value of the solution generated
by π over scenario s. (Note that the test scenarios
are conceptually and numerically distinct from the

all qj are considered equal to 1 for aj ∈ {t + RH +
1,…, t +H }. The value O∗(RH) provides an empirical
lower bound on the best policy value µπ∗. Indeed, π∗
takes into account the same deterministic information
as the myopic policy, as well as additional stochastic
information over the rolling horizon. If µπ∗ ≤O∗(RH),
this means that we draw no profit from the algorithm
developed to deal with this additional information
available to π∗.
In summary, the objective of our algorithms is to

compute a best policy π∗, and we can expect that:

O∗(RH)≤ µπ∗ ≤ O∗(H) ≤ O∗. (25)

Note again that O∗(H) and O∗ are not derived from
policies, since their computation relies on information
that it not available at time t. Note also that O∗ is
always an upper bound on the other values in (25), but
for any particular instance, it may happen thatO∗(H) <
O∗(RH), and µπmay turnout tobe smaller thanO∗(RH)
even for a policy π which takes stochastic information
into account. Such “reversals of inequalities” are even
more likely to be observed when we compare the
values obtained by several algorithms on a particular
scenario, or subset of scenarios. (see, for instance, the
results in Table 11).

7.2 Value of the stochastic information
If O∗(RH) is approximately equal to O∗(H), i.e., if
O∗(RH) is not significantly smaller than O∗(H) (see
Section 7.3), it means that any reasonable algorithm
should generate a profit µπ which is close to both the
lower bound and the upper bound. When this happens,
the stochastic information contained in the horizon
{t +RH +1,…, t +H } appears to be useless, and the
optimization process can be basedon the deterministic
information contained in the horizon {t ,…, t + RH }.
Therefore, a preliminary check in our research
framework is to analyze whether the gap between the
boundsO∗(RH) andO∗(H) is economically significant.
We accordingly define the metric EVMPM as:

O∗
RH

EEVS

µπ∗

O∗
H

O∗

EVTI

EVAI

EVMPMEVSS

EVPI

Fig.4: Bounds and values of information
with expected value scenario
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computationally affordable. However, for the purpose
of statistical validation and due to the rolling horizon
process, we had to tackle 16 decision periods per test
scenario and |F| =30 test scenarios per instance.This
leads to 480 single-period network flow computations
per instance for each of the three bounds O∗(RH),
O∗(H) and O∗, and for each algorithm Opt,Mod and
EG.
After preliminary testing, the algorithmic parameter

K representing the number of calibrating scenarios for
the consensus algorithm Cs was set to 10. Indeed,
initial analysis showed that most of the decisions
over the K calibrating scenarios are similar. This leads
to identical decisions for loading, moving unladen or
waiting over most of the calibration scenarios, and
decision frequencies expressed as percentages lie
either between 0 and 10%, or between 90 and 100%
when considering all calibrating scenarios. Therefore,
increasing K has little influence, as also demonstrated
by a sensitivity analysis on this algorithmic parameter.
With K = 10, Cs requires solving 480 ∗ K = 4800
network flows models per instance in order to test
and to validate the performance of the algorithm (but
only K =10 flow models to make a decision in any time
period).
For the restricted expectation algorithm RE∗, the

running speed becomes an issue as K2 optimization
subproblems have to be solved at each period.
Sensitivity analysis also showed that increasing K
beyond 10 calibrating scenarios does not statistically
improve the values obtained. This results in 480∗K2 =
48000 network flow computations per instance for RE∗
(and again, only K2 = 100 flow models at any single
decision period).
For the subtree algorithm TR, the number of

calibrating scenarios ST was set either to 10 or 30,
leading to subtree models labeled T R10 and T R30. In
our experiments, the running time increased almost
proportionally to the number of calibration scenarios
(about 1 second per decision period for TR10,and about
3 seconds for TR30). So, even if the data management
time was larger due to the model size, the total running
time for the subtree algorithm TR was smaller than for
the multiple-scenario algorithms RE∗.

8.2 Result tables
Results and statistical comparisons of policy
performances are provided in Tables 6 to 8, where
instances are referenced in the form “Distribution-
Graph”; so, for example, instance 1-20-25C is
associated with the probability distribution 1 from
Table 3 and with the subgraph 20-25C from Table 4.
The left half of Tables 6, 7, 8 displays the value of
the objective function produced by various algorithms
for three sets of instances (average value over 30 test
scenarios, for each instance). More precisely, the
(average) value of O∗(RH) = O∗1 and of O∗(H) =
O∗4 is displayed for each instance. The difference
EVMPM = O∗4 − O∗1 is the expected value of the

calibration scenarios introduced in Section 5.2: the test
scenarios are used to simulate the realization of random
client requests, and to test ex post the performance
of the algorithm in this simulated setting, whereas
the calibration scenarios are gimmicks used by the
algorithms in order to evaluate ex ante the impact of
potential decisions.)
The bounds presented in Section 7.1 can be similarly

approximated, leading to estimates Ô∗(RH), Ô∗(H)
and Ô∗. Analogously to (25), we expect to find:

Ô∗(RH) ≤ µ̂π∗ ≤ Ô∗(H) ≤ Ô∗, (32)

For the sake of simplicity, we use the same notations
for the estimates and for the true bounds in the rest of
the document, i.e., O∗ represents its estimate Ô∗, and
so forth.
As small differences between the estimated values

µπ(1) and µπ (2) obtained for two distinct policies π
(1) and π (2) might be due to random effects, their
statistical significance must be assessed. For each
fixed instance, we use the same set of test scenarios
F in order to reduce the variance of the observed
differences between policies. After checking normality
of the distribution of results (using a Shapiro-Wilk non-
normality test), we can apply a paired-sample Z-test to
compare the values µπ(1) and µπ(2). One-sided tests are
used in the discussions of our results.

H0 : µπ(1) = µπ(2) vs. H1 : µπ(1) > µπ(2). (33)

As the objective function is profit maximization, we
say for short that policy π(1) outclasses policy π(2) on a
given instance if we can rejectH0 vs. H1 at a predefined
confidence level. In our experiments, the number of test
scenarios used to evaluate µπ, for every policy π and
for every instance, is |F| =30 (meaning that 16×30 =
480 single-period decisions are actually generated by
each algorithm for each instance), and the confidence
level is fixed at 95%; that is, policy π (1) outclasses
policy π(2) if the Z statistic is larger than 1.65.

8 EXPERIMENTALRESULTS

8.1 Implementation and algorithmic
parameters

All algorithms have been implemented in Java. The
experiments have been performed on a personal laptop
computer (Core 2 Duo 2GHz, 2GB of RAM,Windows).
The integer linear programming problems were solved
using IBM ILOG CPLEX 12 with default settings. The
running time per decision period for a single scenario
was around 0.1 sec, but the data management operations
(inputs-outputs) linked to the rolling horizon lead to a
few seconds of computing time per decision period. So,
clearly, solving a single period problem, as required
on a daily basis in a real-world environment, is



16
Po

lic
y

pe
rf

or
m

an
ce

in
pe

rc
en

ta
ge

Z
-s

ta
tis

tic
va

lu
e

In
fo

L
B

E
E

V
S

U
B

O
∗ 4

O
∗ 1

6
O
∗ 4

O
∗ 4

T
R

30
O
∗ 4

T
R

30
T

R
30

A
lg

.
O
∗ 1

6
O
∗ 1

O
pt

M
od

E
G

C
s

R
E
∗

T
R

10
T

R
30

O
∗ 4

>
>

>
>

>
>

>
>

In
st

.
0%

10
0%

O
∗ 1

O
∗ 4

E
G

T
R

10
T

R
10

T
R

30
E

G
π∗

1-
10

12
0.

4
34

13
22

.8
17

.3
37

.3
31

.2
12

.4
48

.6
58

.2
41

51
9.

48
4.

39
9.

71
5.

74
1.

63
5.

55
3.

52
1-

15
-2

5A
15

3.
0

19
62

12
.9

38
.8

38
.4

51
.4

43
.1

65
.7

70
.2

29
98

9.
52

7.
91

8.
48

3.
88

0.
64

3.
92

4.
12

1-
15

-2
5B

15
3.

8
18

78
13

.7
44

.7
49

.2
45

.5
26

.7
66

.5
75

.5
25

98
9.

24
8.

36
4.

52
3.

21
1.

71
2.

50
3.

10
1-

15
-2

5C
17

6.
0

19
77

32
.8

43
.5

67
.1

45
.2

36
.9

72
.8

85
.2

27
12

6.
12

8.
15

2.
80

2.
16

1.
04

1.
23

1.
64

1-
20

13
5.

0
19

48
14

.8
41

.3
52

.5
38

.9
46

.5
69

.8
71

.0
27

64
9.

64
7.

13
7.

96
6.

40
0.

17
5.

16
1.

98
1-

20
-2

5A
16

7.
8

10
96

6.
8

32
.5

62
.4

21
.3

44
.9

73
.1

78
.1

18
38

9.
99

7.
82

3.
39

3.
71

4.
13

3.
35

1.
71

1-
20

-2
5B

14
9.

6
16

8
23

.3
41

.0
46

.2
42

.0
31

.8
70

.6
60

.0
12

75
7.

46
5.

49
6.

39
3.

38
-1

.5
4

4.
48

1.
43

-1
.5

4
(T

R
10
)

1-
20

-2
5C

19
9.

8
14

89
-2

2.
1

30
.1

24
.1

27
.0

-2
4.

7
61

.5
67

.9
21

02
7.

07
6.

05
5.

43
2.

29
0.

78
1.

99
4.

25
1-

25
16

4.
9

15
58

-8
3.

6
6.

5
7.

9
12

.6
-3

2.
1

54
.9

50
.6

21
45

5.
89

5.
70

7.
47

3.
84

-0
.5

0
4.

59
4.

88
-0

.5
0
(T

R
10
)

2-
10

16
3.

7
-5

41
18

.4
38

.9
44

.7
37

.7
26

.8
67

.4
74

.3
-9

6
6.

33
8.

89
4.

87
3.

17
0.

78
2.

26
2.

16
2-

15
-2

5A
22

1.
3

27
92

69
.2

70
.2

65
.8

70
.9

63
.7

77
.2

76
.4

43
36

9.
39

12
.5

2
3.

53
2.

69
-0

.2
0

2.
42

1.
56

-0
.2

0
(T

R
10
)

2-
15

-2
5B

18
6.

1
25

38
65

.1
66

.3
70

.3
51

.0
62

.4
83

.2
87

.4
32

50
5.

35
6.

21
1.

94
1.

86
0.

37
1.

08
1.

27
2-

15
-2

5C
13

6.
6

18
89

36
.7

60
.4

67
.5

73
.1

42
.5

78
.3

82
.4

27
70

9.
49

4.
90

5.
85

4.
91

0.
72

3.
12

2.
50

2-
20

20
4.

6
18

50
59

.6
74

.5
57

.7
53

.0
39

.3
71

.6
70

.1
26

48
6.

16
8.

60
2.

72
2.

76
-0

.1
6

2.
69

0.
99

-0
.3

6
(M

od
)

2-
20

-2
5A

19
0.

1
19

17
51

.6
71

.1
81

.1
69

.4
60

.2
82

.7
83

.3
29

14
8.

41
9.

02
2.

10
2.

40
0.

10
2.

40
0.

24
2-

20
-2

5B
15

0.
9

43
20

30
.4

40
.0

54
.5

57
.4

53
.2

77
.5

74
.2

52
69

7.
86

8.
36

4.
92

3.
46

-0
.6

5
3.

72
1.

86
-0

.6
5
(T

R
10
)

2-
20

-2
5C

18
0.

9
15

45
65

.2
86

.5
87

.1
79

.6
62

.0
86

.3
89

.2
23

41
6.

59
6.

94
1.

31
1.

46
0.

43
1.

26
0.

25
2-

25
16

7.
3

49
50

11
.4

50
.0

65
.0

64
.2

42
.6

69
.8

61
.0

56
64

7.
36

5.
86

3.
54

2.
37

-0
.9

2
3.

43
-0

.4
5

-0
.9

2
(T

R
10
)

3-
10

14
2.

1
30

74
-7

.5
47

.5
32

.1
37

.9
20

.7
62

.9
63

.9
36

01
9.

01
7.

46
5.

30
3.

76
0.

09
3.

21
2.

35
3-

15
-2

5A
19

8.
2

26
6

-8
.4

50
.7

33
.3

57
.1

29
.3

68
.0

83
.0

91
7

8.
23

8.
56

5.
60

2.
59

1.
60

1.
30

3.
71

3-
15

-2
5B

24
9.

2
17

8
27

.9
28

.7
39

.5
30

.8
-1

3.
2

91
.8

92
.6

56
5

3.
60

6.
49

2.
59

0.
35

0.
06

0.
39

2.
99

3-
15

-2
5C

15
5.

4
-9

8
-5

.3
17

.3
24

.8
31

.2
6.

6
51

.1
61

.6
62

4
8.

52
6.

01
6.

17
4.

21
1.

24
4.

18
3.

04
3-

20
15

4.
1

23
6

9.
0

31
.5

33
.1

38
.9

32
.7

56
.0

60
.6

85
5

7.
89

5.
61

3.
95

3.
37

0.
59

3.
25

2.
47

3-
20

-2
5A

18
0.

7
12

36
-3

7.
6

11
.2

25
.8

11
.8

-2
2.

6
39

.0
41

.7
19

13
7.

96
6.

88
6.

04
5.

95
0.

23
4.

98
1.

41
3-

20
-2

5B
19

9.
2

12
00

-3
3.

2
-9

.5
26

.7
16

.8
2.

9
54

.8
69

.1
17

59
6.

15
10

.8
5

4.
79

2.
87

1.
38

2.
07

2.
22

3-
20

-2
5C

16
4.

1
93

20
.4

54
.4

40
.2

37
.1

42
.3

61
.8

53
.0

11
66

9.
56

8.
62

6.
84

5.
01

-1
.2

4
5.

75
1.

35
-1

.2
4
(T

R
10
)

3-
25

17
7.

4
-5

72
-1

.3
43

.7
22

.8
28

.7
15

.7
61

.5
63

.4
18

4
7.

76
8.

96
5.

72
3.

28
0.

20
4.

00
4.

06
4-

10
12

1.
5

33
59

51
.4

51
.4

60
.4

68
.0

45
.5

64
.8

63
.9

43
13

8.
54

5.
67

7.
06

6.
97

-0
.1

9
5.

32
0.

60
-0

.6
0
(C

s)
4-

15
-2

5A
20

1.
6

23
95

24
.2

24
.2

49
.1

38
.0

26
.7

60
.1

79
.1

28
89

5.
19

6.
28

3.
71

2.
65

2.
08

1.
54

2.
34

4-
15

-2
5B

15
5.

8
36

38
25

.5
25

.5
48

.5
53

.3
25

.5
64

.2
69

.0
46

83
8.

43
7.

70
5.

39
4.

87
0.

55
3.

39
2.

56
4-

15
-2

5C
16

2.
2

31
36

-1
9.

0
-1

9.
0

27
.8

28
.7

-9
.4

52
.1

55
.1

38
40

7.
72

6.
67

6.
24

5.
18

0.
32

5.
11

2.
54

4-
20

16
5.

0
24

83
-1

4.
5

-1
4.

5
27

.6
30

.2
7.

2
55

.6
63

.1
32

75
7.

67
7.

68
9.

98
4.

26
0.

79
4.

65
4.

42
4-

20
-2

5A
14

5.
1

25
90

10
.0

10
.0

34
.8

41
.0

12
.9

56
.6

66
.0

35
36

6.
81

6.
27

7.
72

4.
41

1.
45

3.
88

3.
64

4-
20

-2
5B

14
2.

8
22

89
53

.9
53

.9
52

.0
62

.7
42

.3
68

.7
72

.4
34

91
10

.7
5

6.
98

6.
39

3.
49

0.
82

3.
73

3.
38

4-
20

-2
5C

17
7.

8
23

44
7.

6
7.

6
69

.5
48

.6
14

.5
65

.4
70

.1
31

85
6.

89
8.

32
3.

07
3.

66
0.

54
3.

15
0.

06
4-

25
14

8.
0

30
27

15
.1

15
.1

36
.3

23
.1

10
.0

48
.6

52
.1

39
85

9.
19

6.
99

6.
83

6.
41

0.
48

5.
13

1.
85

Av
er

ag
e

16
8.

4
18

77
15

.2
35

.6
46

.2
43

.2
25

.8
65

.6
69

.3
26

79

Table 6: 150 orders and availability linked to duration



Vehicle allocation problem with uncertain transportation requests over a multi-period rolling horizon 17

Table 9 displays the performance metrics for
the results in Tables 6 to 8 and also for the larger
instance results in Table 10. The EVMPM is provided
in absolute value and µπ∗ is displayed, so that their
economic significance can be checked and information
values compared to them.

8.3 Results for 150-order instances with
availability linked to duration

Let us first consider the results in Table 6. Before we
discuss the relative performance of the algorithms, we
can note that the average value of O∗4 is roughly 1.43
(= 2679/1877) times higher than the average O∗1,
meaning that the expected value of the multi-period
model, EVMPM, is economically significant (see Table
9). Hence, there is value to be gained by taking the
stochastic information into account.
Next, we observe that neither the probability

distribution, nor the graph type or range appear to be
discriminating parameters for this class of instances.
The subtree algorithm with 30 calibrating scenarios
TR30 is best on 28 instances out of 36. The subtree

multi-periodmodel. In view of Eq. (32), algorithms that
make effective use of the stochastic information should
perform somewhere between the boundsO∗1 and O∗4:
accordingly, in Tables 6, 7, 8, the performance of
each policy is expressed as the percentage of EVMPM
closed by the policy. In otherwords, for policy π∗,Tables
6, 7, 8 report the value

µπ∗ −O∗(1)
O∗(4)−O∗(1)

=
µπ∗ −O∗(1)

EV MPM
,

expressed in percentage points. (Note that O∗16
approximates the optimal value O∗ obtained when
perfect information is revealed over the whole horizon,
and hence O∗16 is usually larger than 100%).
This presentation allows us to measure how each

policy fills the gap between myopic optimization
and the policy that would benefit from deterministic
information over each rolling horizon. The right
half of Tables 6, 7, 8 displays the value of the Z-test
statistic which allows us to check the pairwise relative
performance of algorithms.

Policy performance in percentage Z-statistic value
Info LB EEVS UB O∗4 O∗16 O∗4 O∗4 T R30 T R30
Alg. O∗16 O∗1 EG Cs T R30 O∗4 > > > > > >
Inst. 0% 100% O∗1 O∗4 EG T R30 EG π∗

1-10 119.1 4938 46.5 55.1 69.8 5974 15.47 6.47 10.25 6.23 3.86
1-15-25A 164.2 3859 47.0 41.7 63.1 5017 7.12 9.09 5.24 5.04 1.91
1-15-25B 149.9 4295 29.6 23.1 47.5 5128 8.70 5.53 7.51 3.75 1.18
1-15-25C 156.5 4417 26.7 31.2 56.5 5186 8.07 9.39 6.92 4.13 2.83

1-20 165.4 4655 29.6 56.1 79.2 5294 6.13 8.73 5.68 1.98 3.95
1-20-25A 138.4 3186 33.1 28.0 53.8 4311 11.05 8.62 7.83 8.11 2.57
1-20-25B 147.8 4220 17.3 18.2 50.1 5178 7.89 8.15 7.77 5.16 3.09
1-20-25C 139.5 4074 42.6 24.2 54.8 4903 6.32 7.45 4.87 4.50 1.23

1-25 162.1 3444 34.7 29.3 62.3 4148 5.88 7.06 3.79 4.32 1.89
2-10 136.4 4945 46.0 44.5 70.7 5638 7.06 4.88 4.86 3.24 2.78

2-15-25A 197.1 5803 54.1 87.8 79.9 7217 7.78 10.85 4.55 2.62 2.61 -1.06 (Cs)
2-15-25B 174.7 5712 65.0 47.1 68.5 6660 11.13 11.95 2.92 3.10 0.37
2-15-25C 190.3 6152 48.3 44.5 68.0 6898 6.54 8.78 3.71 2.42 2.01

2-20 145.7 3851 70.7 83.1 90.0 4973 9.04 5.95 3.69 1.35 3.39
2-20-25A 165.6 6611 43.3 40.4 62.5 7435 6.65 7.14 5.61 3.12 2.08
2-20-25B 188.1 6569 53.0 70.9 84.3 7558 8.17 9.00 4.31 2.34 4.10
2-20-25C 204.9 5190 69.3 64.1 86.8 6001 7.03 10.72 3.17 1.26 1.64

2-25 164.4 4538 36.1 36.7 48.6 5334 7.04 7.43 6.97 5.37 1.50
3-10 140.5 5369 48.6 43.8 66.4 6045 9.11 7.63 4.98 4.23 1.81

3-15-25A 164.1 2862 32.5 50.3 73.9 3694 7.06 6.22 5.87 3.73 3.64
3-15-25B 160.6 3048 53.2 55.6 68.9 4315 8.47 9.17 5.28 3.61 2.13
3-15-25C 172.1 3904 43.0 10.8 59.0 4657 8.17 7.58 5.57 4.66 1.61

3-20 127.9 3076 30.4 26.4 52.2 4000 8.89 4.59 6.59 7.26 2.34
3-20-25A 157.9 3906 21.1 26.9 43.4 4876 8.60 6.26 9.18 5.94 1.90
3-20-25B 153.7 2810 29.9 36.9 52.7 3711 9.21 6.44 7.87 5.24 1.89
3-20-25C 172.5 1599 64.8 68.1 82.6 2711 7.99 6.10 3.24 2.03 2.32

3-25 167.8 3107 25.4 16.8 47.3 3986 6.01 7.08 7.09 5.43 2.11
4-10 135.4 5669 61.6 67.1 79.0 6571 8.95 5.58 4.05 2.34 2.54

4-15-25A 204.3 6352 3.9 -10.4 29.6 6866 4.82 6.84 5.10 3.76 1.88
4-15-25B 204.6 3618 57.5 68.5 65.8 4738 10.93 9.58 4.93 3.35 0.98 -0.30 (Cs)
4-15-25C 136.5 4723 43.9 55.7 63.3 5817 9.94 6.37 6.53 4.21 2.38

4-20 193.6 4334 54.3 52.8 71.1 5206 6.86 9.76 3.45 2.91 1.46
4-20-25A 175.7 5185 46.8 50.0 70.3 6030 8.03 8.61 4.62 3.16 2.54
4-20-25B 171.7 5876 43.3 43.6 78.2 6806 8.68 6.62 5.89 2.27 3.48
4-20-25C 180.3 3569 36.8 5.6 62.4 4193 6.17 7.62 4.43 3.24 1.70

4-25 220.1 5514 59.9 11.9 51.4 6079 3.64 11.19 2.30 3.02 -0.73 -0.73(EG)
Average 165.3 4472 43.0 41.8 64.3 5365

Table 7: 200 orders and availability linked to duration
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meaning that using the stochastic information and a
dedicated algorithm is relevant both theoretically and
economically, as the profit increase represents 23.1%
of a significant EVMPM.
The consensus algorithm Cs is the third best policy,

but far behind TRST. Algorithms Opt,Mod and RE∗
usually yield poor results and sometimes even under-
perform when compared with the myopic bound
O∗1. The weak performance of RE∗, in particular,
was confirmed on other test instances (not reported
here); it is quite disappointing in view of the relative
sophistication of this algorithm which was shown to
deliver very good results in other problem settings (see,
e.g., [3], [30]).
From Table 9, one can notice that the expected

value of perfect information over all instances is
high: EVPI = O∗16 − µπ∗ = 97.8% on average. O∗16 is
always significantly larger than O∗4, and the expected
value of the tail information is high: EVTI=O∗16−O∗4
=68.4% on average leading on average to a value of the
accessible information (EVAI) of 29.4%.

8.4 Results for 200-order instances with
availability linked to duration

Based on the previous observations, we decided to
restrict our subsequent tests to TRST, EG and Cs.
From Table 7, one can observe that the EVMPM
is still large (20% of O∗1). Here again, neither
the probability distribution, nor the graph type or
range appear to be discriminating parameters for the
instances with 200 orders and availability linked to

algorithm with 10 calibrating scenarios TR10 is best 6
times out of 36, and is often close to TR30.On average,
TR30 closes 69.3% of the EVMPM (and in view of the
overall good performance of TR30, µπ∗ is only slightly
better: it closes 70.6% of the EVMPM gap). In fact, the
Z-values in Table 6 indicate that the subtree algorithm
TR30 is never outclassed by any algorithm, not even by
the best policy π∗ found for any instance.
TR30 outclasses TR10 three times (Z > 1.65 in bold

in the sixth column), but it is never outclassed by TR10.
A deeper performance analysis on the algorithmic

parameter ST was also performed by setting ST = 50.
This allowed us to conclude that the larger the subtree,
the better TRST numerically performs on average
while reducing the standard deviation. Yet, as TR30

is never statistically outclassed by TR50, numerical
experiments were eventually restricted to ST = 30
calibrating scenarios to reduce running time for the
validation phase. Note that in a real-world setting, as
each optimization step is performed only daily, TR50

might be used for each decision period.
The expected value scenario algorithm EG, which

gives the expected value of the expected value solution
(EEVS), yields on average the second best policy
after TRST (it closes 46.2% of the EVMPM). Yet, its
performance varies a lot. The expected value of the
stochastic solution, i.e., EVSS = µπ∗-EEVS, is 24.4% of
the EVMPM, where µπ∗ is estimated as the best value
obtained by any algorithm and is displayed in bold for
each instance. Table 6 shows that TR30 outclasses EG
24 times (Z > 1.65 in bold in the penultimate column),

Policy performance in percentage Z-statistic value
Info LB EEVS UB O∗4 O∗16 O∗4 O∗4 T R30 T R30
Alg. O∗16 O∗1 EG Cs T R30 O∗4 > > > > > >
Inst. 0% 100% O∗1 O∗4 EG T R30 EG π∗

5-15-25 A 222.0 760 73.6 80.0 79.2 2486 8.91 12.72 3.14 2.40 0.78 -0.10 (Cs)
6-15-25 A 156.1 2348 78.6 90.8 89.7 4725 9.29 9.65 3.98 1.87 2.41 -0.27 (Cs)
7-15-25 A 171.0 350 57.2 68.0 70.7 930 6.00 5.25 3.61 3.09 1.39
8-15-25 A 187.3 2120 54.3 13.8 53.4 2720 4.57 5.02 3.01 3.79 -0.08 -0.08 (EG)
5-15-25 B 153.1 3511 57.7 61.2 81.6 4410 10.06 5.54 4.40 2.15 3.74
6-15-25 B 165.7 5957 55.8 42.8 60.3 6797 6.78 7.34 5.00 3.96 0.50
7-15-25 B 194.7 -242 56.5 60.4 61.0 402 6.25 7.70 3.77 3.18 0.49
8-15-25 B 201.4 820 86.7 60.8 100.0 1553 8.37 9.84 1.15 0.00 1.81
5-15-25 C 192.4 599 64.1 53.8 78.8 1231 7.87 7.37 3.58 1.65 1.39
6-15-25 C 125.9 3196 62.7 78.3 88.0 5027 10.18 7.16 6.40 3.80 4.26
7-15-25 C 179.2 2852 63.9 49.6 70.4 3524 6.95 9.22 3.98 2.97 0.73
8-15-25 C 192.0 4395 47.0 20.0 63.5 5156 5.99 9.12 4.27 3.59 1.44
5-20-25 A 195.1 3139 63.9 45.2 65.9 4052 7.69 10.11 3.87 3.30 0.22
6-20-25 A 153.8 4126 52.1 54.4 74.3 5658 10.46 8.99 4.33 3.32 2.77
7-20-25 A 253.9 298 38.6 32.1 44.5 760 4.47 6.82 3.61 3.11 0.48
8-20-25 A 225.7 3292 7.3 -36.5 21.9 3742 4.00 5.74 4.46 3.57 0.62
5-20-25 B 141.9 2573 62.9 33.2 68.4 3395 6.39 4.27 3.13 2.78 0.75
6-20-25 B 147.4 4226 62.7 53.4 74.2 4952 8.12 7.11 5.54 3.05 1.43
7-20-25 B 176.7 1859 52.1 52.7 66.1 2752 7.98 9.37 4.64 3.16 1.32
8-20-25 B 165.1 2597 49.8 25.6 54.2 3575 9.60 8.88 5.90 5.42 0.51
5-20-25 C 171.7 1278 51.4 61.2 67.7 2084 7.00 7.68 4.92 4.10 1.99
6-20-25 C 215.3 -52 39.1 23.6 56.1 582 7.53 9.85 5.67 3.52 1.66
7-20-25 C 142.9 2543 53.6 54.0 61.3 3447 5.80 5.13 3.72 3.51 0.97
8-20-25 C 150.3 1088 67.3 41.7 71.3 2024 7.91 7.64 4.42 4.04 0.59
Average 178.4 2235 56.6 46.7 67.6 3166

Table 8: 150 orders and availability linked to city range
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an industrial implementation of the method, only this
computing time is relevant, since only one subtree
model will be solved on a daily basis.
The same instances with a rolling horizon of length

15 and larger subtrees (algorithm T R50) have also
been tested successfully, with similar conclusions
regarding the tractability of the optimization models
at every period. Finally, very large instances of T R30
including100 trucks and, respectively, 100 or 120 loads
(on average) per period have been tested. The running
time for solving each model is, on average, 55 seconds
or 143 seconds, respectively, which remains again very
short for practical purposes.

Table 10:
350 orders and availability linked to duration

Policy performance in percentage
Info LB EEVS UB
Inst. O∗16 O∗1 EG Cs T R30 O∗4
Alg. 0% 100%
1-25 129.9 9712 49.1 44.4 78.0 11696
2-25 145.5 15366 74.5 70.2 81.9 17857
3-25 133.8 8350 35.2 20.7 76.7 9961
4-25 135.0 11902 42.0 25.5 71.0 13604

Average 136.1 11332 50.2 40.2 76.9 13279

8.7 Performance analysis
From the previous results, we can conclude that
TR30, the subtree algorithm including 30 calibrating
scenarios,usually performs best among our algorithms.
It outclasses all other algorithms (Opt,Mod,Cs, RE∗),
whereasit isnotoutclassed itself on any of the instances
that we tested. The EVMPM is economically relevant
for all instance classes, and TR30 closes approximately
two-thirds of this gap, or even three-fourthson average
for larger instances. Other tests also show that TR30

always outclassesO∗1, proving the interest of using the
information from the rolling horizon.Unfortunately, the
value provided by TR30 is almost always significantly
smaller than the upper bound O∗4. This means
that the stochastic information is useful but that we
are not able to use it to equal the performance of an
a posteriori solution. So, the expected value of the
accessible information (EVAI) remains significant.
Similarly, by observing the gap between algorithms
based either on fully revealed information over the
rolling horizon (O∗4), or on fully revealed information

duration. The subtree algorithm TR30 is still the best
policy, it closes the EVMPM gap by 64.3% on average
as compared to µπ∗ which closes 64.8% of EVMPM
(see Table 9).This confirms that the expected value of
the accessible information (EVAI) is relatively high, at
35.2% on average. The expectedvalueof the perfect and
tail information (EVPI = 100.5%, EVTI = 65.3%) and
the expected value of the stochastic solution (EVSS =
21.8%) are similar to those observed in Section 8.3 and
remain high on average. The subtree algorithm TR30

is beaten by the consensus algorithm Cs twice and by
the expected value scenario algorithm EGonce, but it
is never statistically outclassed. On the other hand,
TR30 outclasses EG 27 times out of 36, meaning that
developing a stochastic policy pays off in most cases.

8.5 Results for 150-order instances with
availability linked to the pick-up city range

The results are quite similar for this class of instances.
Looking at Table 8, one can notice that the EVMPM is
still large, at 41.7% of O∗1. Neither the probability
distribution, nor the graph type or range appear to be
discriminating parameters for these instances. The
subtree algorithm TR30 provides the best value except
for three instances where it is marginally beaten byCs
(twice) or by EG (once). On average, TR30 closes about
67.6% of the gap (as compared to 67.7% for µπ∗ ). From
Table 9, we confirm that the expected valueof theperfect
information (EVPI), of the accessible information
(EVAI) and of the tail information (EVTI) remain high
on average, at 110.6%, 32.3% and 78.4%, respectively.
The expected value scenario algorithm EG performs
better than previously, only 11% behind TR30 and so,
the expected value of the stochastic solution (EVSS)
decreases (11.1%). However, the subtree algorithm
TR30 is never outclassed, but outclasses 7 times EG.

8.6 Larger instances
To validate the computational efficiency of the
algorithms (see Section 4.5), larger instances involving
25 trucks and 350 orders transported over a grid
of 25 cities were also tested, with 4 probability
distributions linked to trip duration. Results obtained
for these instances are shown in Table 10. In all cases,
the optimal integer solution of the subtree model is
directly obtained by solving its linear relaxation, so
that computation times remain within a few seconds
(9 seconds on average) for the solution of the model
at every period t. It is important to remember that in

EVMPM µπ∗ −O∗1 EEVS−O∗1 EVSS EVPI EVAI EVTI
150 orders and availability linked to duration 801 70.6% 46.2% 24.4% 97.8% 29.4% 64.8%
200 orders and availability linked to duration 894 64.8% 43.0% 21.8% 100.5% 35.2% 65.3%

150 orders and availability linked to city range 931 67.7% 56.6% 11.1% 110.6% 32.3% 78.4%
350 orders and availability linked to duration 1947 76.9% 50.2% 26.7% 59.2% 23.1% 36.1%

Table 9: Performance metrics for Tables 6, 7, 8 and 10
(columns 3 – 8 are expressed as percentages of the EVMPM)
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subgraphs, namely, either 15-25A or 20-25A.The suffix
s indicateswhether the pick-up cities αj and destination
cities βj are generated uniformly (s = u) or depending
on the city range (s = r) (see Section 6). The prefix p
indicates the real probability distribution used for the
test scenarios: pj = p for all j, where p takes one of
the values 0.2, 0.5, or 0.8. The notation EG0.5 refers to
the expected value scenario algorithmcalibratedwith a
distribution where p'j = 0.5 for all j. The notation TRX

30
refers to the subtree algorithm T R30 calibrated with
p'j = X,where X is either 0.2, 0.5, or 0.8, but can be
(very) different from p. Results are shown in Table 11.
Numerically, no calibration of TRX

30 is robust against
severe miscalibrations of the distributions, but any
TRX

30 still provides better results than a myopic policy
in most cases. As one should expect, the general
trend is that better solutions are obtained when
the calibration parameter X gets closer to the “real”
parameter p. In particular, TR 0.5

30 is reasonably robust
against underestimation ( p = 0.8) or overestimation
(p = 0.2) of the availability of orders. (This is to be
contrasted with EG 0.5 which always performs poorly.)
When the probability p increases in the test scenarios,
the performance of TRX

30 improves and may approach
the upper bound O∗4 when X is sufficiently close to
p (in particular, when p = 0.8). Generally speaking,
however, the value returned by TR X

30 remains low
(close to the lower bound O∗1) when p is very small,
suggesting that these instances may be hard to solve.
So, the expected value of the accessible information
(EVAI) tends to increase when p decreases.
The statistical comparison of policy performance

in Table 11 confirms that TR 0.5
30 is never outclassed.

Moreover, TR 0.5
30 often outclasses TR 0.2

30 and TR 0.8
30 when

p = 0.5. Logically, TR 0.2
30 or TR 0.8

30 are often outclassed
when the real distribution is opposite to the distribution
that they use for calibration.
As a conclusion, when accurate information is

lacking, it may be recommended in practice to
approximate the real probability distribution by
assuming that pj =0.5.

over the whole horizon (O∗16), we see that the tail
information (EVTI) is quite high, but decreases
when instances become larger. One can conclude that
increasing the rolling horizon length might be useful.
But in practice, this length may be constrained by the
order-booking process and may not be increased on
demand. The expected value scenario algorithm EG
performs well. Nevertheless,EG is often outclassed by
the subtree algorithm TR. So, the expected value of the
stochastic solution (EVSS) is high, meaning that using
the stochastic information based on the probability
distribution is profitable. Finally, the results show that
the expected value of the perfect information (EVPI=
O∗16−µπ∗) is high. Thus, there may be some room for
improvement of the algorithms, as the value of the best
policy we obtain for the stochastic problem appears to
be significantly smaller than the value of the optimal
solution for the fully revealed deterministic problem.

8.8 Robustness analysis
Except Opt,which radically sets all random variables
q j to 1 (meaning that O pt does not depend on the
probabilitydistributions at all), all other algorithms are
based on a presupposed knowledge of the distribution
parameters pj, i.e., on the exact availability probability
of each order. This is a strong assumption. In practice,
it may be hard to determine pj, as its value can only be
derived from the aggregation of historical data or from
expert opinions. Therefore, it is important to analyze
the sensitivity of the results to the exact valuation of
the distributions. We call this process “robustness
analysis” in the present framework.
In order to carry out this analysis, tests were

performed when the probabilities pj used to generate the
test scenarios (which simulate the “real” observations)
are different from the probabilities p'j used to generate
the calibration scenarios or the subtrees (which model
the presupposed distributions). The instances under
consideration involve 150 orders. They are named in
the format “p-Graph-s”. “Graph” denotes one of two

Policy performance in percentage Z-statistic value
Info EEVS O∗4 O∗16 O∗4 O∗4 O∗4 O∗4 T R0.2

30 T R0.2
30 T R0.5

30
Alg. O∗16 EG0.5 T R0.2

30 T R0.5
30 T R0.8

30 > > > > > > > > >
Inst. O∗1 O∗4 EG0.5 T R0.2

30 T R0.5
30 T R0.8

30 T R0.5
30 T R0.8

30 T R0.8
30

0.2-15-25 A-u 361.4 25.2 61.9 65.0 38.2 3.87 4.40 2.17 1.31 1.09 1.60 -0.12 0.6 0.80
0.2-15-25 A-r 283.7 34.5 87.2 72.5 -0.1 4.34 6.20 3.94 1.07 2.10 5.60 1.26 5.14 3.82
0.2-20-25 A-u 229.0 31.9 70.5 45.3 35.6 5.68 5.49 4.26 2.28 3.40 3.89 1.64 1.97 0.68
0.2-20-25 A-r 298.4 3.7 -7.0 9.7 6.7 3.57 5.57 3.23 4.32 3.20 3.89 -0.59 -0.55 0.10

Average: p = 0.2 293.1 23.8 53.2 48.1 20.1
0.5-15-25 A-u 201.6 49.1 48.0 79.1 59.2 5.19 6.28 3.71 3.26 1.54 2.71 -2.36 -0.80 1.90
0.5-15-25 A-r 187.3 54.3 21.9 53.4 35.8 4.57 5.02 3.01 5.16 3.79 4.34 -2.31 -0.74 1.34
0.5-20-25 A-u 145.1 34.8 47.5 66.0 43.3 6.81 6.27 7.72 5.65 3.88 5.13 -2.50 0.43 2.94
0.5-20-25 A-r 225.7 7.3 10.3 21.9 -17.6 4.00 5.74 4.46 3.71 3.57 6.28 -0.62 1.07 1.93

Average: p = 0.5 189.9 36.4 31.9 55.1 30.2
0.8-15-25 A-u 152.6 91.0 71.4 111.2 106.1 11.62 9.03 1.03 3.83 -1.25 -0.97 -6.65 -5.06 0.78
0.8-15-25 A-r 217.0 44.4 43.1 87.1 87.4 4.80 8.58 3.28 3.46 0.87 1.04 -2.68 -2.91 -0.02
0.8-20-25 A-u 129.7 85.3 47.5 96.1 99.3 14.44 6.06 2.59 8.73 1.04 0.15 -8.92 -8.01 -0.86
0.8-20-25 A-r 184.4 20.8 39.2 45.4 47.2 5.64 9.25 4.51 4.69 3.45 4.70 -0.42 -0.55 -0.14

Average: p = 0.8 170.9 60.4 50.3 84.9 85.0

Table 11: Robustness with respect to probability distribution
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the full gap is unrealistic, due to the presence of
uncertain orders in the subhorizon {RH +1,…,H },
we conclude again that the performance of the
algorithms is attractive from the practitioners’
point of view.

– For the stochastic version of our DAVP model,
an integer programming formulation based on
subtrees of scenarios turns out to produce the best
results. In our experiments, including a rather
small number of scenarios in the subtree already
allows us to compute solutions which, in the
rolling horizon setting, significantly outperform
alternative policies derived from a single scenario,
or from combinatorial heuristics based on multiple
scenarios (consensus or restricted expectation
algorithms).

– The integer programming formulation of the
subtree model is computationally tractable and
can be solved in a few seconds by a commercial
solver, which makes it potentially attractive for
industrial implementations. Moreover, when the
probability distribution of the availability of orders
is difficult to estimate (which is likely to be the
case in practice, especially when the number of
orders is very large), even a rough model of the
stochastic component (e.g., setting pj =0.5 for all
j) proves sufficiently robust to provide significant
improvements over the myopic approach which
does not take forecasts into account.
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9 CONCLUSIONS

Even though they have been investigated for a
long time, multi-period stochastic planning problems
remainextremely hard to solve. In managerial practice,
therefore, such problems are often reduced to a sequence
of mono-period deterministic problems, so as to avoid
the difficulties linked to the formulation of complex
models and the implementation of sophisticated
solutionmethods.Suchpragmaticapproaches, however,
frequently lead to strongly suboptimal decisions.
In this paper, we have discussed a multi-period

stochastic vehicle allocation problem arising in
transportation planning. We have proposed several
heuristics to deal with this problem in a rolling-horizon
setting where information is gradually revealed to
the decision maker. A main objective of our research
was to establish that (relatively) simple algorithms
can deliver significant improvements over myopic
approaches. The most successful algorithms explicitly
take into account the multi-period framework, by
modeling the (deterministic or stochastic) information
which is available within a rolling horizon of
limited length. Since the estimation of probability
distributions may prove excessively difficult and may
act as a deterrent to implementation in some industrial
settings,wehave tested the robustnessof our algorithms
against misspecification of the distributions. Specific
conclusions drawn from our experiments are as follows:

– For the instances that we have tested, the expected
value of the multi-period model appears to be
quite large: EVMPM lies roughly between 20%
and 40% of O∗1 meaning that it is potentially
profitable to model the (stochastic) information
contained in the rolling horizon {1,…,H }, rather
than restricting the attention to the (fully revealed,
deterministic) information in the shorter horizon
{1,…, RH }. This is in line with the observations
of [28], but the conclusions extend here to the
stochastic version of the problem.

– In fact, the best value produced by our algorithms
(denoted µπ∗) closes about two thirds of the
EVMPM and outclasses, in particular, the value
EEVS produced by a simple deterministic
approximation (based on the expected value
scenario). This translates into an economically
attractive expected value of the stochastic solution
(EVSS = EEVS − µπ∗) ranging roughly from
11% to 27% (see Table 9). Since hoping to close
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22. Ruszczyński A, Shapiro A (2003) Handbooks in
Operations Research and Management Science,
vol 10, Elsevier Science B.V., chap 1, pp 1–64

23. Savelsbergh MWP, Sol M (1995) The general
pickup and delivery problem. Transportation
Science 29(1):17–29

24. Schönberger J (2005) Operational Freight Carrier
Planning. Springer, Berlin Heidelberg

25. Secomandi N (2000) A rollout policy for
the vehicle routing problem with stochastic
demands. Operations Research 49(5):706–802

26. Sethi S, Sorger G (1991) A theory of rolling
horizon decision making. Annals of Operations
Research 29:387–416

27. Spivey MZ, Powell WB (2004) The dynamic
assignment problem. Transportation Science
38(4):399–419

28. Tjokroamidjojo D, Kutanoglu E, Taylor GD
(2006) Quantifying the value of advance load
information in truckload trucking. Transportation
Research Part E: Logistics and Transportation
Review 42(4):340–357

29. Topaloglu H, Powell WB (2007) Sensitivity
analysis of a dynamic fleet management model
using approximate dynamic programming.
Operations Research 55(2):319–331

30. Van Hentenryck P, Bent RW (2006) Online
Stochastic Combinatorial Optimization. MIT
Press, Cambridge, Massachussets

31. Yang J, Jaillet P, Mahmassani HS (2004) Real-
time multivehicle truckload pickup and delivery
problems. Transportation Science 38(2):135–148

32. ZolfaghariniaH,HaughtonM(2014)Thebenefitof
advance load information for truckload carriers.
Transportation Research Part E: Logistics and
Transportation Review 70:34–54

REFERENCES

1. AhujaRK,Magnanti TL,Orlin JB (1993)Network
Flows: Theory, Algorithms and Applications,
Prentice-Hall, Upper Saddle River, NJ

2. Angelelli E, Bianchessi N, Mansini R, Speranza
MG (2009) Short term strategies for a dynamic
multiperiod routing problem. Transportation
Research Part C: Emerging Technologies
17(2):106–119

3. Arda Y, Crama Y, Kronus D, Pironet T, Van
Hentenryck P (2014)Multi-period vehicle loading
with stochastic release dates. EURO Journal on
Transportation and Logistics 3:93–119

4. Berbeglia G, Cordeau JF, Laporte G (2010)
Dynamicpickup anddeliveryproblems.European
Journal of Operational Research 202(1):8–15

5. Birge JR, Louveaux F (1997) Introduction to
Stochastic Programming. Springer, Berlin

6. Blackburn JD, Millen RA (1980) Heuristic
lot-sizing performance in a rolling-schedule
environment. Decision Sciences 11(4):691–701

7. Crainic TG (2003) Long-haul freight
transportation, Kluwer Academic Publishers,
Boston, MA, pp 451–516. International Series in
Operations Research and Management Science

8. Dejax P, Crainic T (1987) Survey paper – a review
of empty flows and fleet management models in
freight transportation. Transportation Science
21(4):227–248

9. Desrosiers J, Dumas Y, Solomon MM, SoumisF
(1995) Handbooks in Operations Research and
Management Science, vol 8, Elsevier Science
B.V., chap 2, pp 35–139

10. Eurostat (2018) Road freight transport by
journey characteristics. URL http://ec.europa.
eu /eu ros t a t /s t a t i s t i c s - expla i ned / i ndex .
php?titel=Road_freight_transport_by_journey_
characteristics§oldid=377506

11. Frantzeskakis L, Powell W (1990) A successive
linear approximation procedure for stochastic
dynamic vehicle allocation problems.
Transportation Science 24(1):40–57

12. Keskinocak P, Tayur S (1998) Scheduling of
timeshared jet aircraft. Transportation Science
32(3):277–294

13. Homem-de Mello T, Bayraksan G (2014) Monte
Carlo sampling-based methods for stochastic
optimization. Surveys in Operations Research
and Management Science 19(1):56 – 85

14. Meyers CA, Schulz AS (2009) Integer equal
flows. Operations Research Letters 37(4):245–
249

15. Mitrovic̀ Minic̀ S, Krishnamurti R, Laporte
G (2004) Double-horizon based heuristics for
the dynamic pickup and delivery problem with
time windows. Transportation Research Part B:
Methodological 38(8):669–685


