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Abstract

Positioning is a fundamental issue for mobile robots. Therefore, a performance analysis is
suitable to determine the behavior of a system, and to optimize its working. Unfortunately,
some systems are only evaluated experimentally, which makes the performance analysis and
design decisions very unclear.

In [4], we have proposed a new angle measurement system, named BeAMS, that is the key
element of an algorithm for mobile robot positioning. BeAMS introduces a new mechanism
to measure angles: it detects a beacon when it enters and leaves an angular window. A
theoretical framework for a thorough performance analysis of BeAMS has been provided to
establish the upper bound of the variance, and to validate this bound through experiments
and simulations. It has been shown that the estimator derived from the center of this angular
window provides an unbiased estimate of the beacon angle.

This document complements our paper by going into further details related to the code
statistics of modulated signals in general, with an emphasis on BeAMS. In particular, the
probability density function of the measured angle has been previously established with the
assumption that there is no correlation between the times a beacon enters the angular win-
dow or leaves it. This assumption is questionable and, in this document, we reconsider this
assumption and establish the exact probability density function of the angle estimated by
BeAMS (without this assumption).

The conclusion of this study is that the real variance of the estimator provided by BeAMS
was slightly underestimated in our previous work. In addition to this speci�c result, we also
provide a new and extensive theoretical approach that can be used to analyze the statistics
of any angle measurement method with beacons whose signal has been modulated.

To summarize, this technical document has four purposes:
(1) to establish the exact probability density function of the angle estimator of BeAMS,
(2) to calculate a practical upper bound of the variance of this estimator, which is of practical
interest for calibration and tracking (see Table 1, on page 13, for a summary),
(3) to present a new theoretical approach to evaluate the performance of systems that use
modulated (coded) signals, and
(4) to show how the variance evolves exactly as a function of the angular window (while re-
maining below the upper bound).

Keywords: angle, angle measurement, positioning, mobile robot, infrared signal, code
statistics, estimator, variance, probability density function
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1 Introduction

In [2, 4], we have presented BeAMS, a new beacon based angle measurement system used for
mobile robot positioning. This report elaborates on the errors committed on the measured angles,
due to the codes. In other words, we focus on the artificial noise due to the code. We provide
further and detailed results on the random variables representing these measured angles.

How to read this technical document? The reader not familiar with the BeAMS system
may read Section 3 of [4] as an introduction, in order to have detailed explanations about the
hardware and the functioning of the system. However, a brief summary of our system is presented
in Section 1.1. The reader familiar with our system may jump directly to Section 3.1. The reader
interested in the computation of the upper bound of the variance may read Section 3.3 only.

1.1 Principle of the system (summary)

BeAMS is composed of a sensor located on the robot, and several active beacons emitting infrared
light in the horizontal plane and located at know locations. This configuration is drawn in Figure
1.

φ1

φ2

φ3

R

B1

B3

B2θ

Figure 1: Schematic top view representation of the system. The system is composed of: (1) several
active beacons Bi emitting infrared light in the horizontal plane, and (2) a sensor located on the
robot R. The aim of the sensor is to measure the azimuthal angles Φi of the beacons in the robot
referential determined by θ.

As illustrated in this figure, the aim of the sensor and processing unit is to determine the identifier
of each beacon i, as well as their azimuthal angle Φi, in the robot referential, whose orientation is
given by θ. Note that BeAMS can detect any number of beacons, even if, for illustrative purposes,
we have only represented 3 beacons1 in Figure 1.
The sensor is composed of an infrared receiver/demodulator and a motor. To achieve the angle
measurements, the infrared receiver is combined through optical components to the motor, which
turns at a constant speed. As a result, the receiver can virtually turn at the same speed as the
motor. One of the key elements of our system is that the receiver sweeps the horizontal plane at
constant speed, so that there is a perfect relationship between the angle and time.
The core of a beacon is composed of IR LEDs, which emit signals in a plane parallel to the moving
area. In order to identify beacons and to increase robustness against noise, each beacon sends out a
unique On-Off Keying (OOK) amplitude modulated signal over a 455 kHz carrier frequency. But,
because of our choice to avoid a synchronization channel between the beacons and the robot, each

1The number 3 is the minimal number of beacons required for triangulation. Therefore, in practice, most
triangulation systems use 3 or more beacons (see [5] for more details on triangulation).
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Figure 2: The upper curve PIR(φ) is the expected infrared power collected at the receiver while
the turret is turning. R0 represents the receiver output for a non modulated infrared carrier wave
(pure 455 kHz sine wave). The black arrows represent the measured values respectively for φR to
the left (first Rising edge) and for φF to the right (last Falling edge).

beacon has to continuously emit its own IR signal. As a result, each beacon signal is a periodic
signal whose period corresponds to a particular code defining the beacon’s ID.
The principle of the angle measurement is as follow. By design, the receiver combined with the
optical components has a narrow field of view and, consequently, the amount of infrared power
collected at the receiver, denoted by PIR(φ), depends on the angle. The resulting expected curve
PIR(φ) is shown in Figure 2. First, let us assume that the beacons send a non modulated IR
signal, that is a pure 455 kHz sine wave and explain the measurement principle for one beacon
(the principle is the same for any number of beacons). While the turret is turning, the receiver
begins to “see” the IR signal from that beacon when the power threshold Pth is crossed upwards
(0 → 1 transition). The receiver continues to receive that signal until Pth is crossed downwards
(1 → 0 transition). The receiver output is depicted as R0 in Figure 2. At these transitions, the
capture module latches values for φR and φF . The angular position of the beacon is then computed
as

φB =
φR + φF

2
. (1)

1.2 Beacon identi�er and infrared codes

The convenient assumption of continuous IR signals used in the previous section is not realistic
because (1) we would not be able to distinguish between the different beacons, and (2) it is essential
to establish the beacon’s ID (especially in a very noisy environment like the Eurobot contest
where other IR sources may exist).
In BeAMS, each beacon periodically emits its own code over the 455 kHz carrier wave; this emission
is continuous so as to avoid having any form of synchronization between the beacons and the
receiver. As a result, each beacon signal is a periodic signal whose period corresponds to a
particular code defining the beacon’s ID. The design of these codes is subject to several constraints
related to (1) the receiver characteristics, (2) the loop emission, (3) the desired precision, (4) the
system’s immunity against noise, and (5) the number of beacons. We elaborate on these constraints
below:
1. Receiver. The TSOP7000 requires that the burst length (presence of carrier wave) be chosen
between 22 and 500µs, the maximum sensitivity being reached with 14 carrier wave periods
(14/455000 = 30.8µs). The gap time between two consecutive bursts (lack of carrier wave) should
be at least 26µs.
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Figure 3: Temporal representation of the C1, C2, C3, C4 and, C5 codes. These codes are repeated
continuously and multiply the 455 kHz carrier wave to compose the complete IR signal.

2. Loop emission. Because of our willingness to avoid a synchronization between beacons and
the receiver, we must ensure that the periodic emission of a code does not introduce ambiguities.
For example [0101] is equivalent to [1010] when sent in a loop. Thus any rotation of any code on
itself must be different from another code.
3. Precision. The lack of synchronization between beacons and the receiver introduces a cer-
tain amount of imprecision. Indeed, the first received IR pulse may be preceded by a gap time
corresponding to a zero symbol. This affects the estimation of φR. The same phenomenon occurs
for φF . A fairly obvious and intuitive design rule would say that we have to reduce the duration
of zeros, as well as their frequency of appearance. Therefore, we forbid two or more consecutive
zeros, and the duration of one zero (the gap time) must be reduced as much as possible.
4. Immunity. The codes should contain enough redundancy to be robust against noise or
irrelevant IR signals.
5. Number of beacons. The codes should be long enough to handle a few beacons, but as short
as possible to be seen many times in the angular window associated to a beacon, thus improving
the robustness of the decoding.
All these constraints lead us to propose this family of codes

Ci = [1i 01 12Nc−i 01] i = 1, . . . , Nc (2)

where Nc denotes the number of codes in the system. The duration of a bit is set to Tb =
30.8µs since this value maximizes the receiver sensitivity, while respecting the minimum gap
time. Although not mandatory, the duration of a one symbol has been chosen to be equal to the
duration of a zero. This is to simplify the implementation of the beacons and to ease the decoding
process. The gap time is the same for all the codes and corresponds to the duration of a unique
zero symbol. The second half part of the codes can be seen as a checksum, since it makes the
number of ones constant (2Nc). In our current implementation, we have Nc = 5 codes because
this is appropriate for our application. Figure 3 shows the temporal representation of the codes for
Nc = 5. Note that any code meeting the second requirement (differentiable under loop emission)
would work to identify the beacons. However, they may not meet the third requirement if the zero
symbols appear in random patterns. From our experience, the codes presented in expression (2)
are the best ones that meet all our requirements, but we have no formal proof of it.
The angle measurement principle still operates exactly as explained previously, even if the IR
carrier wave is modulated by the codes. Since there are gap times in the IR signal of a beacon,
there are more than two edges in the received signal. The intermediate edges are used to determine
the beacon ID, by analyzing the durations of burst lengths and gap times. But the first and last
edges of the received signal always correspond to our measurements of φR and φF . These two
edges are isolated from all other edges due to a timeout strategy, which relies on the fact that the
separation time (or angle) between two different beacons is much greater than the separation time
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between consecutive edges in a code. Actually, the separation time is set to four bit durations,
which corresponds to a separation angle equal to 0.44 deg.

1.3 Source of errors

As the receiver captures an OOK amplitude modulated signal, it can only detect the presence of
the carrier wave (denoted by a 1 or ON period) or the absence of the carrier wave (denoted by
a 0 or OFF period). If the carrier were sent continuously (that is, if the signal sent by a beacon
was not coded), there would be no OFF periods in the signal captured by the receiver. But the
coding of the beacon signals introduces 0’s into the emitted sequences.
Let us now examine the influence of the OFF periods on the first rising and last falling edges
measured by the system. Since there are errors in the system, there are no means to access the
true values of φR and φF . Therefore, we consider random variables instead, denoted by Φr and
Φf . According to (1), we propose the following estimator Φb for the beacon angular position φB

Φb =
Φr + Φf

2
. (3)

As illustrated in Figure 4, if a beacon emits a 1 when it enters into the receiver’s field of view,
there is no error on Φr. However, if a beacon emits a 0 when it enters the receiver’s field of view,
there is an error on Φr because no signal produces a 0 → 1 transition at the receiver output.
In fact the transition occurs later (Φr ≥ φR), at the next 1. The same consideration applies to
Φf , except that the 1 → 0 transition could occur sooner (Φf ≤ φF ). All these specific situations
are illustrated in Figure 4. We first represent the output of the receiver for a non modulated
carrier wave, R0. In that case, there are no errors in the transition times because the beacon
sends out a continuous 1 symbol. The four other cases represent the output of the receiver for
four different situations using an arbitrary code (we use here a simpler code than ours for the
purpose of illustration, but this does not change the conclusions). The first case, corresponding to
the received signal R1, does not induce any error because Pth is reached upwards and downwards
when the beacon emits a 1 symbol. The second case (R2) generates an error on Φr only. The third
case (R3) generates an error on Φf only, and the fourth case (R4) generates an error on both Φr
and Φf .
Assume now that the OFF periods of a sequence all have the same duration, denoted by T0 (this
is our choice by design). Because the motor rotates at a constant speed, an OFF period is then
equivalent to an OFF angle called φ0. The worst case for estimating Φr occurs when an OFF
period starts at an angle φ = φR, delaying the next transition to an angle φR + φ0. The same
reasoning applies to Φf when an OFF period begins at an angle φ = φF − φ0. In both cases, the
maximum absolute error on Φr or Φf is equal to φ0. These are the worst cases but there are many
combinations of these two errors. In the following sections, we establish the probability density
functions (PDFs) of the random variables Φr and Φf , and deduce characteristics of the estimator
Φb.

1.4 Notations

In the following, we use these notations:

• N0, N1 are the number of 0’s or 1’s in a code, respectively. The number of bits in a code is
Nb = N0 +N1.

• p0, p1 are the probabilities of obtaining a 0 or a 1 respectively at the IR power threshold
(rising or falling edge), that is their frequencies. By definition, we have p1 = N1/Nb, p0 =
N0/Nb, and p0 + p1 = 1.

• T0 is the OFF period (duration of a 0) in a code. The only assumption is that the OFF
periods of a code must all have the same duration.
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Figure 4: The upper curve PIR(φ) is the infrared power collected at the receiver while the turret is
turning. Ei are examples of emitted signals from the beacons. Ri are the corresponding received
signals at the receiver output. R0 is the special case corresponding to the non modulated infrared
carrier wave (no OFF periods). The black arrows represent the measured values respectively for
Φr to the left (first Rising edge) and for Φf to the right (last Falling edge). The encircled arrows
emphasize errors made on Φr or Φf .
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• φ0 is the OFF angle, corresponding to the OFF period T0

φ0 = ω T0. (4)

To give an example of real values, in the original setup of our system for mobile robot
positioning, we have N1 = 10, N0 = 2, p0 = 1/6, T0 = 30.8µs, and φ0 = 0.111 deg, for each
code.

• The Uniform PDF is defined as

U(a,b) (x) =

{
1
b−a if a ≤ x ≤ b,
0 otherwise.

(5)

whose mean is a+b
2 and variance is (b−a)2

12 .

• The symmetric Triangular PDF is defined as

T(a,b) (x) =

{
2
b−a −

2|2x−a−b|
(b−a)2 if a ≤ x ≤ b,

0 otherwise
(6)

where |x| denotes the absolute value of x and whose mean is a+b
2 and variance is (b−a)2

24 .
Note that, with these notations, and if b− a = d− c, we have [1, page 137]

U(a,b) (x)⊗ U(c,d) (x) = T(a+c, b+d) (x) , (7)

where ⊗ denotes the convolution product.

2 Probability density functions

BeAMS introduces a new mechanism for measuring angles. To the contrary of systems that look for
a maximum to estimate the angle of a beacon, BeAMS detects a beacon when it enters and when
it leaves the angular window. Therefore, we have two random variables, Φr and Φf , corresponding
to these events. The estimator of the angle position, Φb, is the mean of these two variables.
In this section, we establish the probability density functions of Φr ,Φf , and Φb. Obviously, there
are some symmetries for Φr and Φf ; we will use them to shorten some developments.

2.1 Probability density function of Φr

Errors on Φr originate if a beacon emits a 0 symbol while entering the angular window. Assuming
time stationarity and as there is no synchronization between the beacons and the receiver, p1 is
the probability of determining the correct angle φR as the measured value for Φr, when the beacon
enters the angular window. When the beacon emits a 0, the value measured for Φr is not correct;
we then assume that its value is uniformly distributed between φR and φR + φ0. Therefore, if we
define δ (x) as the Dirac delta function, then the PDF of Φr is given by the following mixture of
PDFs

fΦr (φ) = p1δ (φ− φR) + p0 U(φR,φR+φ0) (φ) (8)

for φ ∈ [−π, π). The mean and variance of Φr are, respectively,

µΦr = φR + p0
φ0

2
, (9)

σ2
Φr = p0

φ2
0

3
− p2

0

φ2
0

4
. (10)

The details of the calculus can be found in Section A.2.1.

8



fΦf (φ)

φ
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p1

p1
2
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φ0

2p0

φ0

φR φR + φ0 φB + φ0

2φB φFφF − φ0φB − φ0

2

fΦr(φ)

Figure 5: Probability density functions of Φr (left), Φf (right) and Φb (center) in the case of
independent Φr and Φf .

2.2 Probability density function of Φf

Because the configuration is symmetric when the beacon exits the angular window, a similar result
yields for Φf

fΦf (φ) = p1δ (φ− φF ) + p0 U(φF−φ0,φF ) (φ) , (11)

for φ ∈ [−π, π). The mean and variance of Φf are

µΦf = φF − p0
φ0

2
, (12)

σ2
Φf

= p0
φ2

0

3
− p2

0

φ2
0

4
. (13)

The details of the calculus can be found in Section A.2.2.

2.3 Characteristics of the estimators Φr and Φf

The PDFs of Φr and Φf are drawn in Figure 5. The expectations of Φr and Φf have a bias given
by ±p0

φ0

2 respectively (see equations (9) and (12)). The bias is proportional to the OFF angle φ0

and the proportion of 0’s in a code p0. The variances of Φr and Φf are equal, and they are equal
to zero if and only if there is no OFF period in the codes2.

3 Characterization of the estimator Φb

3.1 Mean of Φb

The aim of the system being to estimate the beacon angular position φB , we are now interested
in finding the mean and variance of Φb. Generally the mean and variance of a random variable
are calculated with the help of the PDF . In the case of Φb, it is not necessary to derive them
from the PDF since the estimator is a function of Φr and Φf (equation (3)), whose PDFs are
known. Let us first consider the mean of Φb. For any random variables X and Y , we have
E {X + Y } = E {X}+E {Y } (see for example [1, page 152]). Therefore, the mean of Φb is given

2OFF periods correspond to the absence of any signal. The presence of OFF periods is nevertheless necessary
because we need to code the signal to identify beacons. If the identi�er is not contained inside the signal (in-
band signaling), then we need an additional signal to obtain a beacon's identi�er (out-band signaling). Out-band
signaling systems are more complex and have their own problems, not easy to solve for mobile robot positioning.
BeAMS uses in-band signaling.
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by

µΦb =
E {Φr}+ E {Φf}

2
,

=

(
φR + p0

φ0

2

)
+
(
φF − p0

φ0

2

)
2

,

=
φR + φF

2
= φB . (14)

As can be seen, the mean of Φb is unbiased, despite that both the entering angle Φr and leaving
angle Φf estimators are biased. This justifies the construction of a symmetric receiver and the use
of that estimator.

3.2 Variance of Φb

Let us now derive the variance of Φb. The variance of the sum of two random variables can be
expanded as [1]

σ2
Φb

= var

{
Φr + Φf

2

}
=
var {Φr + Φf}

4
=
σ2

Φr
+ σ2

Φf
+ 2C {Φr, Φf}

4
. (15)

where C{Φr,Φf} denotes the covariance of Φr and Φf . If Φr and Φf are uncorrelated, we have that
[1, page 155]

σ2
Φb

=
σ2

Φr
+ σ2

Φf

4
=
σ2

Φr

2
=
σ2

Φf

2
, (16)

since σ2
Φr

= σ2
Φf

. This could also have been derived from the PDF of Φb, that is given by, in the
case of independent Φr and Φf ,

fΦb (φ) = p2
1δ (φ− φB) + 2p1p0 U(φB−φ02 , φB+

φ0
2 ) (φ) + p2

0 T(φB−φ02 ,φB+
φ0
2 ) (φ) . (17)

This result is obtained by convolving the PDFs of Φr and Φf [1, page 136], using equation (7)
and rescaling the result by using these properties [1]: 1) if Y = αX, then fY (y) = 1

|α|fX
(
y
α

)
,

and 2) δ (αx) = 1
|α|δ (x). This probability density function is also depicted in Figure 5 (center).

However, the non correlation or independence of Φr and Φf are questionable in our case; this is
discussed hereafter.
As explained earlier, four situations are possible in one angular window: (1) no error is encountered,
(2) an error occurs for Φr only, (3) an error occurs for Φf only, or (4) an error occurs for both
angles. But the codes are deterministic and not random, and the durations between OFF periods
are fixed and known. So, depending on the rotating speed and the code, it is not sure that an
error is possible on Φr and Φf simultaneously. These remarks show that the Φr and Φf variables
are not independent, and that the nature of the relationship depends on the angular window and
the coding scheme. To establish this relationship, we should analyze, in full details, the four
previous cases in function of the angular window and the different codes. However, the mean of
Φb is always given by equation (14), and despites the relationship between Φr and Φf , Φb remains
unbiased. To the contrary, the variance of Φb is no longer given by equation (16) when Φr and Φf
are correlated.
Fortunately, it is possible to derive an upper bound for σ2

Φb
for a practical use, as we did in [3].

This result is reminded hereafter. Indeed, the square of the covariance is upper bounded [1, page
153]

C2{Φr, Φf} ≤ σ2
Φrσ

2
Φf
. (18)

Given that σ2
Φr

= σ2
Φf

, we combine equations (15) and (18) to establish the following limits for
σ2

Φb
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0 ≤ σ2
Φb
≤ σ2

Φr . (19)

The upper bound of σ2
Φb

is given by

σ2
Φb
≤ σ2

Φr = σ2
Φf

= p0
φ2

0

3
− p2

0

φ2
0

4
. (20)

The upper bound for C {Φr, Φf} is a universal bound because it does not make any guess about
a possible relationship between the random variables. This result is confirmed by the simulations
but it seems to over estimate the real upper bound of σ2

Φb
. Indeed, this first upper bound does

not take into account the particular nature of the committed errors. The purpose of the following
section is to provide a more accurate result.

3.3 Computation of the upper bound of σ2
Φb

With respect to the relationship between Φr and Φf , three important points should be noted:

1. the PDFs of Φr and Φf remain correct, as well as their means and variances.

2. the estimator Φb remains unbiased, since the expectation does not depend on the relationship
between variables.

3. the upper bound computed in [3] also remains correct, even if it tends to over estimate the
variance of Φb.

In order to understand the link between Φr and Φf , and to find out a more accurate result on the
upper bound of σ2

Φb
, we have to analyze the four previous cases more cautiously in function of the

angular window and the different codes. From a mathematical point of view, we need to compute
the covariance C {Φr, Φf} for all possible cases, and put the result back into equation (15). Note
that the covariance can be expanded as [1, page 152]

C {Φr, Φf} = E {Φr, Φf} − E {Φr}E {Φf} . (21)

Since E {Φr} and E {Φf} are known (see equations (9) and (12)), we need to compute the joint
expectation E {Φr, Φf}. And to compute the joint expectation, we need to express the joint PDF
fΦrΦf (φr, φf ).

3.3.1 Modified random variables

In order to simplify the calculus, we define the modified random variables Er and Ef as follows

Er = Φr − φR, (22)
Ef = Φf − φF . (23)

Er and Ef are shifted versions of Φr and Φf , by an amount equal to φR, or φF respectively, and,
as a result, they represent the errors committed on these measurements. The PDFs of these new
random variables are

fEr (εr) = p1δ (εr) + p0 U(0, φ0) (εr) , (24)

fEf (εf ) = p1δ (εf ) + p0 U(−φ0, 0) (εf ) , (25)

and their expectations are

µEr = p0
φ0

2
, (26)

µEf = −p0
φ0

2
. (27)

11



The variances are unaltered since

σ2
Er = var {Er} = var {Φr − φR} = var {Φr} = p0

φ2
0

3
− p2

0

φ2
0

4
= σ2

Ef . (28)

Finally, we have
C {Er, Ef} = C {Φr − φR, Φf − φF } = C {Φr, Φf} . (29)

The variance of Φb, expressed in terms of these new random variables Er and Ef , is then given by

σ2
Φb

=
σ2

Φr
+ σ2

Φf
+ 2C {Φr, Φf}

4

=
σ2
Er + σ2

Ef + 2C {Er, Ef}
4

=
2σ2
Er + 2C {Er, Ef}

4

=
σ2
Er + C {Er, Ef}

2
. (30)

By definition, the covariance of Er and Ef is given by

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} , (31)

Therefore, we obtain

σ2
Φb

=
σ2
Er + E {Er, Ef} − E {Er}E {Ef}

2
(32)

=
σ2
Er
2

+
E {Er, Ef}

2
− E {Er}E {Ef}

2
(33)

= p0
φ2

0

6
− p2

0

φ2
0

8
+
E {Er, Ef}

2
+ p2

0

φ2
0

8
(34)

= p0
φ2

0

6
+
E {Er, Ef}

2
. (35)

The challenge is to compute the joint expectation E{Er, Ef}

E {Er, Ef} =

¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf . (36)

For this, we need to express fErEf (εr, εf ) for the different codes and angular windows.

3.3.2 Towards a more realistic upper bound on σ2
Φb

In order to compute a more realistic upper bound, we have to take into account the particular
nature of the errors Er and Ef , and, more specifically, their bounds. A closer look onto the Er and
Ef definitions, or their PDFs shows that we have

0 ≤ Er ≤ φ0, (37)
−φ0 ≤ Ef ≤ 0. (38)

Graphically, it means that the joint PDF of Er and Ef is not null only inside a square of side φ0,
as shown in Figure 6 (left). Moreover, their product is always negative or null

ErEf ≤ 0, (39)

12



φ0

εr

εf

−φ0

φ0

εr

−φ0

εf

Figure 6: Left hand side: possible support of the joint PDF of Er and Ef in the general case.
Right hand side: support of the joint PDF of Er and Ef when no error is possible on Φr and Φf
simultaneously.

bound on σΦb , as established in [3] new upper bound on σΦb

expression σΦb ≤ φ0

√
p0
3 −

p20
4 σΦb ≤ φ0

√
p0
6

numerical value 0.0245 deg 0.0185 deg

Table 1: Comparison of two bounds on σΦb .

and so must be their joint expectation

E {Er, Ef} ≤ 0. (40)

Therefore
max E {Er, Ef} = 0, (41)

regardless of the relationship between Er and Ef .
We can therefore derive the following upper bound from expression (35),

σ2
Φb

= p0
φ2

0

6
+
E {Er, Ef}

2
.

Theorem 1 [Upper bound of σ2
Φb

] For all our codes, the variance of Φb is bounded by p0
φ2
0

6

σ2
Φb
≤ p0

φ2
0

6
. (42)

Numerical values. In our case, p0 = 1/6 and φ0 = 0.111 deg, for each code. Previously, accord-
ing to expression (20), the standard deviation was lower than 0.0245 deg. This new upper bound
implies that σΦb ≤ 0.0185 deg; this is a decrease of about 25 %. These results are summarized in
Table 1.
As expected, the variance is related to the presence of OFF periods in the codes. More precisely,
the variance is proportional to the probability of having a zero p0, and to the square of the OFF
angle φ0. It is equal to zero if and only if there is no OFF period in the codes.
Finally, it is interesting to interpret the condition E {Er, Ef} = 0, that is the maximum of the
joint expectation. This constraint, combined to constraint (39) means that either Er or Ef must be
null. In other terms, it is impossible to make an error on both Φr and Φf . Intuitively, it is logical
that the variance is maximum in that case since an error committed on Φr is not balanced by an
error on Φf , and vice versa. Graphically, it means that the support of the joint PDF reduces to
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the axes in that case. The possible support of the joint PDF is represented in Figure 6 (right). In
the next section, we show that it can be composed of uniform PDFs along the axes (the horizontal
and vertical line segments) and a two dimensional Dirac PDF (the black dot).

4 Evolution of the variance of Φb with respect to the angular

window

In the previous section, we have computed the upper bound on Φb. This upper bound is a general
result for all codes with the sole assumption that the OFF periods of all codes must have the same
duration.
But, if we can provide the upper bound for all codes, the previous analysis does not tell for which
angular windows this upper bound is reached. To determine them, we need to consider both the
particular code and angular window. More generally, we need to express fErEf (εr, εf ) for the
different codes and angular windows. The final goal is to compute the variance of Φb, for any
code, and for any angular window. This is essential to estimate the precision of the estimator in
order to feed a Kalman filter.

4.1 Introduction to several situations

In this section, we establish the evolution of the variance with respect to the angular window. It
appears that we have to deal with 6 different situations, corresponding to:

Case 0. This case occurs when the angular window φW is lower than φ0, the OFF angle; that is
φW = λ0φ0, with λ0 < 1. It does not depend on any particular code. Errors are therefore
bounded by the maximal value of the angular window (φW = λ0φ0)

0 ≤ Er ≤ λ0φ0, (43)
−λ0φ0 ≤ Ef ≤ 0. (44)

The support of the joint PDF is similar to the one represented in Figure 6 (right), except
that the parts along the axes are smaller. The support of the joint PDF is represented in
Table 2, that regroups the PDFs of all the cases.

Case A. This case corresponds to the situation leading to a variance that is exactly equal to its
upper bound, as explained in Section 3.3.2. It means that it is impossible to have Er 6= 0 and
Ef 6= 0 simultaneously, when the value of the angular window φW falls into given intervals,
that depend on the particular code. The support of the joint PDF is represented in Table 2.

Case B. This case is a combination of case A and case D (see below). It appears for some values
of the angular window that depend on the code.

Case C. This case is a combination of case A and case E (see below). It appears for some values
of the angular window that depend on the code.

Case D. In that case, it is possible to have Er 6= 0 and Ef 6= 0 simultaneously, in addition to
the three other situations of case 0 and case A (no error, Er 6= 0 only, Ef 6= 0 only). But,
when this situation occurs, the errors are totally dependent. In particular, their difference
is constant along a part of the support of the joint PDF . It appears for values of φW , that
depend on the particular code. The support of the joint PDF is represented in Table 2.

Case E. This case is similar to case D, meaning that along a part of the support of the joint
PDF , the errors are totally dependent. But, unlike case D, this situation occurs in another
part of the joint PDF . It appears for values of φW , that depend on the particular code. The
support of the joint PDF is represented in Table 2.
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These situations, named “Cases”, have different supports for the joint PDF (as established later
in this document); these supports are shown in Table 2. It is important to understand that, while
the absolute error on Er or Ef is φ0, the maximum error on Φb is not φ0 but φ0/2! In other words,
the errors on Er and Ef do not sum up, but they compensate. This explains the particular shape
of the domain of the different PDFs. Note that, while the support of the PDFs are continuous
from a theoretical perspective, observed values are generally different for each revolution of the
turret, and that successive observations move along the support of the PDFs. We elaborate on
these aspects in subsection 4.5.
From a practical point of view, BeAMS operates with the best upper bound for Φb all over the
plane (regardless of the robot position). But this practice is far from being optimal. Indeed, we
show that the real variance evolves with the position of the robot in the plane, and therefore the
upper bound overestimates the real variance unnecessarily. It would be better to have the exact
variance for each position in the plane, and for each beacon (because the variances are related to
the code and to the angular window).
It is essential to note that the variance σ2

Φb
is not a function of the distance to a

beacon, but to the seen angular window. This might not be very intuitive, but this is
coherent and more tractable for an angular measurement system that should not be sensitive to
the distance. The major reason is that the relationship between the physical notion of distance
and the measures is dependent on parameters, like power thresholds or propagation laws, that
are out of control. The fact that σ2

Φb
is only dependent on the measured angular window and the

beacon’s code (which is known) is a huge advantage of BeAMS compared to other angle measuring
systems.
In the following, we first establish the probability density function and variance for all the Cases.
Then, we summarize them in Section 4.3. Then, we show the simulations results in Section 4.4.

4.2 Study of the di�erent cases

Before starting the detailed study, one has to remember the general results obtained so far:

1. the upper bound is always valid, and corresponds to case A.

2. the mean of Φb remains unbiased, for all cases.

3. the marginal PDFs of the joint PDF are always given by equations (24) and (25), for all
cases, except for the case 0.

In addition to these remarks, we have noted that:

1. the value of the variance of Φb is a function of the particular code, and the angular window
φW . The only constraint on φW is that it is positive or null by design (Φf ≥ Φr)

φW ≥ 0. (45)

2. as the codes are periodic, the evolution of the variance w.r.t. φW for each code must be
periodic. But, as a consequence of constraint (45), the function is not periodic in the strict
mathematical sense. Indeed, we will show that this function is (partially/semi) periodic, for
φW ≥ φ0 only

σ2
Φb

(φW ) = σ2
Φb

(φW + P ) φW ≥ φ0, (46)

where the period P is related to the length of a code: P = 12φ0.

3. in this study, we think in terms of angles instead of times since the gap time perceived by the
system (φ0 = ω T0) is a combination of the real zero duration (T0) and the rotation speed of
the turret (ω). Again, this is suitable for an angle measurement system like BeAMS.

4. the different cases are detailed hereafter in a different order than their logical name. Indeed,
we detail them in order of complexity, and the way they are named will become clear later.
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Case 0 Case A

λ0φ0 φ0

εr

−φ0

εf

−λ0φ0

φ0

εr

−φ0

εf

Case D Case E

λdφ0 φ0

εr

−φ0

εf

−λdφ0

λeφ0 φ0

εr

−φ0

εf

−λeφ0

Case B

φ0

εr

−φ0

εf

⋃
λdφ0 φ0

εr

−φ0

εf

−λdφ0

Case C

φ0

εr

−φ0

εf

⋃
λeφ0 φ0

εr

−φ0

εf

−λeφ0

Table 2: Supports of the joint PDFs of Er and Ef for the 6 different Cases.
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φ0 5φ0 φ0 5φ0 φ0

φW ∈ [φ0, 5φ0)

φW ∈ [7φ0, 11φ0)

Figure 7: Finding the intervals for the Case A, and for the code 5.

Ranges for φW
Code 1 [3φ0, 9φ0)
Code 2 [φ0, 2φ0)

⋃
[4φ0, 8φ0)

⋃
[10φ0, 11φ0)

Code 3 [φ0, 3φ0)
⋃

[5φ0, 7φ0)
⋃

[9φ0, 11φ0)
Code 4 [φ0, 4φ0)

⋃
[8φ0, 11φ0)

Code 5 [φ0, 5φ0)
⋃

[7φ0, 11φ0)

Table 3: Intervals of the angular window φW for the Case A with respect to the codes (
⋃

denotes
the union).

4.2.1 The case A

This case corresponds to the situation leading to the upper bound of the variance, as explained
in Section 3.3.2. For each code, it is possible to find values for the angular window for which it
is impossible to have Er 6= 0 and Ef 6= 0 at the same time. Firstly, we determine the values of
the angular window for which this situation occurs. We explain this reasoning with the code 5
since it is easier, and we will generalize the result later for the other codes. To find these values,
one has to pick up a fixed value for the angular window, and to move virtually the code from the
left to the right, and to check if the entering and leaving angles can both fall into the gaps (φ0).
Figure 7 illustrates the idea. From this analysis, one can see that, if the angular window φW is
comprised between φ0 and 5φ0 or between 7φ0 and 11φ0, it is impossible to commit an error on
both the entering and leaving angle. These intervals can be generalized for any code i, as given
in Table 3. The principle is the same, but we have to replace the first 5 by i, and the second 5 by
10− i (or N1 − i), as a consequence of how to define the different codes

Ci = [1i 01 110−i 01] i = 1, . . . , 5. (47)

The general case is depicted in Figure 23, and further developed in Section A.3 of the appendix.
We can summarize the intervals for the case A, and for all codes in the following compact form

φW mod (12φ0) ∈ [φ0, iφ0)
⋃

[(i+ 2)φ0, (10− i)φ0)
⋃

[(12− i)φ0, 11φ0) i = 1, . . . , 5, (48)

where
⋃

denotes the union.
Now that the intervals have been determined, we are interested in finding the joint PDF of Er
and Ef , in order to compute their joint expectation. We can represent the possible joint values of
Er and Ef on a 2D graphic where the abscissa εr represents a possible value of Er (εr ∈ [0, φ0])
and the ordinate εf represents a possible value of Ef (εf ∈ [−φ0, 0]). Indeed, this graphic is the
support of the joint PDF of Er and Ef . It is represented in Figure 8. The support of this joint
PDF is composed of an horizontal line segment from 0 to φ0 (Er 6= 0 only), a vertical line segment
from −φ0 to 0 (Ef 6= 0 only), and a black dot at the origin (no errors). The black dot represents a
two dimensional Dirac PDF , and the line segments are uniform PDFs, as explained later. There
is no part of the support outside the axes which means that is impossible to have Er 6= 0 and
Ef 6= 0 simultaneously. The line segments are denoted by a black star (?), and the origin by a
black dot (•).
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φ0

εr

−φ0

?

?•

? p0

• p1 − p0

εf

Figure 8: Support of the joint PDF of Er and Ef for the case A.

Now, we have to associate probabilities and PDFs to these three parts. Assuming time stationarity
and as there is no synchronization between the beacons and the receiver, we then assume that the
value of Er is uniformly distributed between 0 and φ0, when Ef = 0. By symmetry, we assume
that the value of Ef is uniformly distributed between −φ0 and 0, when Er = 0. Therefore, the
joint PDF of Er and Ef is given by the following mixture of joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) + p?δ (εr) U(−φ0,0) (εf ) + p?δ (εf ) U(0,φ0) (εr) , (49)

where:

• p• is the probability to commit no error, and

• p? is the probability to have Er 6= 0 only. By symmetry, we show that the probability to
have Ef 6= 0 only is also given by p?, explaining why the notation p? is the same for both.

The complete explanation about the computation of these probabilities is give in the appendix
(Section A.3). Their values are given below{

p• = p1 − p0

p? = p0

(50)

We can check that the probabilities for the case A sum up to 1

p• + p? + p? = p1 − p0 + p0 + p0 = p1 + p0 = 1. (51)

As another verification, we can also compute the marginal PDF for Er

fEr (εr) =

ˆ +∞

−∞
fErEf (εr, εf ) dεf

= (p1 − p0) δ (εr)

ˆ +∞

−∞
δ (εf ) dεf + p0δ (εr)

ˆ +∞

−∞
U(−φ0,0) (εf ) dεf

+ p0 U(0,φ0) (εr)

ˆ +∞

−∞
δ (εf ) dεf (52)

= (p1 − p0) δ (εr) + p0δ (εr) + p0 U(0,φ0) (εr)

= p1δ (εr) + p0 U(0,φ0) (εr) , (53)
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which is the same as equation (24). Likewise, the marginal PDF for the random variable Ef is
identical to equation (25). Now that we have the joint PDF , we can compute the joint expectation
E {Er, Ef}

E {Er, Ef} =

¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

= (p1 − p0)

¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+ p0

¨ +∞

−∞
εr εf δ (εr) U(−φ0,0) (εf ) dεr dεf

+ p0

¨ +∞

−∞
εr εf δ (εf ) U(0,φ0) (εr) dεr dεf

= 0 + 0 + 0 = 0. (54)

The joint expectation is null, meaning that random variables Er and Ef are orthogonal for the
case A. Then, we can compute C {Φr, Φf} for the case A

C {Φr, Φf} = C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = 0−
(
p0
φ0

2

)(
−p0

φ0

2

)
= p2

0

φ2
0

4
, (55)

and, finally, we can compute the variance of Φb for the case A

σ2
Φb

=
σ2
Er + C {Er, Ef}

2

=

(
p0

φ2
0

3 − p
2
0
φ2
0

4

)
+
(
p2

0
φ2
0

4

)
2

= p0
φ2

0

6
. (56)

Note that this value corresponds to the upper bound defined in Section 3.3.2. As long as the
angular window φW belongs to admissible ranges for the case A, the variance of Φb does not
depend on the angular window.

4.2.2 The case 0

The case 0 arises when the angular window φW is comprised between 0 and φ0, for all codes. This
case is similar to the case A in that it is impossible to have Er 6= 0 and Ef 6= 0 simultaneously.
But, unlike the case A, the intervals for the committed errors range from 0 to φW in absolute
value

0 ≤ Er ≤ φW , (57)
−φW ≤ Ef ≤ 0. (58)

Furthermore, there are parts where there is no detection at all, when the angular window is entirely
comprised in a zero symbol duration. These comments show that the probabilities depend on the
angular window. Since we have φW ∈ [0, φ0) for the case 0, let us introduce a parameter to express
φW in function of φ0

φW = λ0φ0, λ0 ∈ [0, 1). (59)

The support of the joint PDF is represented in Figure 9. The support of this joint PDF is
composed of an horizontal line segment from 0 to λ0φ0 (Er 6= 0 only), a vertical line segment from
0 to −λ0φ0 (Ef 6= 0 only), and a black dot at the origin (no errors). The black dot represents a
two dimensional Dirac PDF , and the line segments are uniform PDFs, as explained hereafter.
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λ0φ0 φ0

εr

−φ0

∗
∗

• p1−p0λ0

p1+p0λ0

•

εf

−λ0φ0

∗ p0λ0

p1+p0λ0

Figure 9: Support of the joint PDF of Er and Ef for the case 0.

There is no part of the support outside the axes which means that is impossible to have Er 6= 0
and Ef 6= 0 simultaneously. The line segments are denoted by an asterisk (∗), and the origin by a
black dot (•).
Now, we have to associate probabilities and PDFs to these three parts. Assuming time stationarity
and, as there is no synchronization between the beacons and the receiver, we then assume that the
value of Er is uniformly distributed between 0 and λ0φ0, when Ef = 0. By symmetry, we assume
that the value of Ef is uniformly distributed between −λ0φ0 and 0, when Er = 0. Therefore, the
joint PDF of Er and Ef is given by the following mixture of joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) + p∗δ (εr) U(−λ0φ0,0) (εf ) + p∗δ (εf ) U(0,λ0φ0) (εr) , (60)

where:

• p• is the probability to commit no error, and

• p∗ is the probability to have Er 6= 0 only. By symmetry, we show that the probability to
have Ef 6= 0 only is also given by p∗, explaining why the notation p∗ is the same for both.

The complete explanation about the computation of these probabilities is given in the appendix
(Section A.4). Their values are {

p• = p1−p0λ0

p1+p0λ0

p∗ = p0λ0

p1+p0λ0

(61)

We can check that the probabilities for the case 0 sum up to 1

p• + p∗ + p∗ =
p1 − p0λ0

p1 + p0λ0
+ 2

p0λ0

p1 + p0λ0
=
p1 + p0λ0

p1 + p0λ0
= 1. (62)

Like for the case A, the joint PDF of Er and Ef , as well as the support of the joint PDF (Figure
9), show that Er and Ef are orthogonal (see appendix A.4 for the details)

E {Er, Ef} =

¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf = 0. (63)

But, unlike the case A (and all other cases), the marginal PDF of Er and Ef have changed, as well
as their expectations and variances. The marginal PDF of Er is given by (see appendix A.4 for
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more details)

fEr (εr) =

ˆ +∞

−∞
fErEf (εr, εf ) dεf

=
p1

p1 + p0λ0
δ (εr) +

p0λ0

p1 + p0λ0
U(0,λ0φ0) (εr) . (64)

The marginal PDF of Ef is given by

fEf (εf ) =
p1

p1 + p0λ0
δ (εf ) +

p0λ0

p1 + p0λ0
U(−λ0φ0,0) (εf ) . (65)

Their expectations are given by, using result 123,

E {Er} =
p0λ0

(p1 + p0λ0)

λ0φ0

2
= −E {Ef} (66)

and their variances are given by, using result 125,

var {Er} = var {Ef} =
(λ0φ0)

2

12

p0λ0 (4p1 + p0λ0)

(p1 + p0λ0)
2 . (67)

Then, we can compute C {Er, Ef} for the case 0

C {Er, Ef} = E {Er, Ef} −E {Er}E {Ef} =

(
p0λ0

(p1 + p0λ0)

λ0φ0

2

)2

=
(p0λ0)

2

(p1 + p0λ0)
2

(λ0φ0)
2

4
, (68)

and, finally, we can obtain the variance of Φb for the case 0

σ2
Φb

=
σ2
Er + C {Er, Ef}

2

= p0
φ2

0

6

λ3
0

(p1 + p0λ0)

= p0
φ2

0

6
P0 (λ0) , (69)

where the first part is the same as for the case A, and the second part is a function (polynomial
ratio) of the parameter λ0

P0 (λ0) =
λ3

0

p1 + p0λ0
. (70)

Note that P0 (λ0) satisfies
0 ≤ P0 (λ0) < 1 for λ0 ∈ [0, 1). (71)

This function is equal to 0 when λ0 = 0 (angular window reduced to 0), monotonically increases
with λ0, and is equal to 1 when λ0 = 1. Note that the case 0 represents a particular situation.
Indeed, the decoded signal is composed of one rising edge, and one falling edge only. It means that
there is not enough information to compute the beacon’s ID, even if an angle could be computed
for this signal. The hardware then discards this information, so that the high level positioning
algorithm does not even need to deal with this situation. This case appears when the received
power is sufficiently low, or equivalently when the distance is high enough. Therefore, this case
could seem uninteresting, but we study this case in order to be comprehensive in our study of the
variance w.r.t. the angular window. Moreover, we could consider sending this angle to the high
level positioning algorithm if it can deal with unidentified beacons.
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Figure 10: Support of the joint PDF of Er and Ef for the case D.

4.2.3 The case D

In that case, it is possible to have Er 6= 0 and Ef 6= 0 simultaneously. When this occurs, it
can be shown that their difference is constant (see Figure 25, lines 4 and 8, or red parts, in the
appendix A.5). This situation appears for values of the angular window such that

φW mod (12φ0) ∈ [11φ0, 12φ0). (72)

However, this constant difference depends on the particular value of the angular window (εr−εf =
λdφ0, where λd is defined hereafter). Therefore, the support of the joint PDF depends on the
value of the angular window, and as a consequence, we introduce a parameter to express φW in
that interval

φW mod (12φ0) = 11φ0 + λdφ0, λd ∈ [0, 1). (73)

The support of the joint PDF is represented in Figure 10. It is composed of an horizontal line
segment from λdφ0 to φ0 (Er 6= 0 only), a vertical line segment from −φ0 to −λdφ0 (Ef 6= 0 only),
a slanted segment (Er 6= 0 and Ef 6= 0) joining the previous ones, and a black dot at the origin
(no errors). The black dot represents a two dimensional Dirac PDF , and the line segments are
uniform PDFs, as explained hereafter. The horizontal and vertical line segments are denoted by
an asterisk (∗), the slanted line segment is denoted by a circle (◦) and the origin by a black dot
(•).
Now, we have to associate probabilities and PDFs to these four parts. Again, we assume the
time stationarity, and we assume that the pairs of errors are uniformly distributed along the line
segments. Therefore, the joint PDF of Er and Ef is given by the following mixture of joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) (74)
+ p∗δ (εr) U(−φ0,λdφ0) (εf )

+ p∗δ (εf ) U(λdφ0,φ0) (εr)

+ p◦2δ ((εr − εf )− λdφ0) U(−λdφ0,λdφ0) (εr + εf )

where:

• p• is the probability to commit no error,

• p∗ is the probability to have Er 6= 0 only. By symmetry, we show that the probability to
have Ef 6= 0 only is also given by p∗, explaining why the notation p∗ is the same for both,
and
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• p◦ is the probability to have Er 6= 0 and Ef 6= 0.

The complete explanation about the computation of these probabilities is provided in Section A.5
of the appendix. Their values are given below

p• = p1 − p0 (1− λd)
p◦ = p0λd

p∗ = p0 (1− λd) .
(75)

We can check that the probabilities for the case D sum up to 1

p• + p◦ + 2p∗ = p1 − p0 (1− λd) + p0λd + 2p0 (1− λd) = p1 + p0 = 1.

The joint expectation is (see appendix A.5)

E {Er, Ef} = −p0λ
3
d

φ2
0

6
. (76)

Then, we can compute C {Er, Ef} for the case D

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0λ
3
d

φ2
0

6
+ p2

0

φ2
0

4
, (77)

and, finally, we can obtain the variance of Φb for the case D

σ2
Φb

=
σ2
Er + C {Er, Ef}

2

= p0
φ2

0

6
PD (λd) , (78)

where the first part is the same as for the case A, and the second part is a polynomial function of
the parameter λd

PD (λd) = 1− λ3
d

2
. (79)

Note that, again, PD (λd) is inferior to 1.

4.2.4 The case E

In that case, it is also possible to have Er 6= 0 and Ef 6= 0 simultaneously. When it happens, it
can be shown that their difference is constant (see Figure 26, lines 3 and 7, or red parts, in the
appendix A.6). It appears for values of the angular window such that

φW mod (12φ0) ∈ [0, φ0), φW ≥ 12φ0. (80)

However, this constant difference depends on the particular value of the angular window (εr−εf =
(1 + λe)φ0, where λe is defined hereafter). Therefore, the support of the joint PDF depends on
the value of the angular window, and as a consequence, we introduce a parameter to express φW
in that interval

φW mod (12φ0) = 12φ0 + λeφ0, λe ∈ [0, 1). (81)

The support of the joint PDF is represented in Figure 11. It is composed of an horizontal line
segment from 0 to λeφ0 (Er 6= 0 only), a vertical line segment from −λeφ0 to 0 (Ef 6= 0 only), a
slanted segment (Er 6= 0 and Ef 6= 0), and a black dot at the origin (no errors). The black dot
represents a two dimensional Dirac PDF , and the line segments are uniform PDFs, as explained
hereafter. The horizontal and vertical line segments are denoted by an asterisk (∗), the slanted
line segment is denoted by a circle (◦) and the origin by a black dot (•).
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Figure 11: Support of the joint PDF of Er and Ef for the case E.

Now, we have to associate probabilities and PDFs to these four parts. Again, we assume the
time stationarity, and we assume that the pairs of errors are uniformly distributed along the line
segments. Therefore, the joint PDF of Er and Ef is given by the following mixture of joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) (82)
+ p∗δ (εr) U(−λeφ0,0) (εf )

+ p∗δ (εf ) U(0,λeφ0) (εr)

+ p◦2δ ((εr − εf )− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (εr + εf ) ,

where:

• p• is the probability to commit no error,

• p∗ is the probability to have Er 6= 0 only. By symmetry, we show that the probability to
have Ef 6= 0 only is also given by p∗, explaining why the notation p∗ is the same for both,
and

• p◦ is the probability to have Er 6= 0 and Ef 6= 0.

The complete explanation about the computation of these probabilities is given in the appendix
(Section A.6). Their values are 

p• = p1 − p0λe

p◦ = p0 (1− λe)
p∗ = p0λe.

(83)

We can check that the probabilities for the case E sum up to 1

p• + p◦ + 2p∗ = p1 − p0λe + p0 (1− λe) + 2p0λe = p1 + p0 = 1.

The computation of the joint expectation gives (see appendix A.6)

E {Er, Ef} = −p0
φ2

0

6
(1− λe)

(
1 + 4λe + λ2

e

)
. (84)

Then, we can compute C {Er, Ef} for the case E

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0
φ2

0

6
(1− λe)

(
1 + 4λe + λ2

e

)
+ p2

0

φ2
0

4
, (85)
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Figure 12: Support of the joint PDF of Er and Ef for the case B.

and, finally, we can obtain the variance of Φb for the case E

σ2
Φb

=
σ2
Er + C {Er, Ef}

2

= p0
φ2

0

6
PE (λe) , (86)

where the first part is the same as for the case A, and the second part is a polynomial function of
the parameter λe

PE (λe) =
1− 3λe + 3λ2

e + λ3
e

2
. (87)

4.2.5 The case B

When analyzing the possible pairs of values (Er, Ef ) (see Figure 27 in the appendix A.7), it appears
that the case B is a combination of the case A and the case D. This case occurs for values of the
angular window such that

φW mod (12φ0) ∈ [iφ0, (i+ 1)φ0)
⋃

[(10− i)φ0, (11− i)φ0), i = 1, 2, 3, 4. (88)

Note that this case does not occur for the code 5, as a consequence of its particular shape. Like
for the case D, the support of the joint PDF depends on the value of the angular window, and as
a consequence, we introduce a parameter λb to have an analytical expression of φW

φW mod (12φ0) = iφ0 + λbφ0, λb ∈ [0, 1), i = 1, 2, 3, 4, (89)

in the first part of the interval, or

φW mod (12φ0) = (10− i)φ0 + λbφ0, λb ∈ [0, 1), i = 1, 2, 3, 4, (90)

in the second part of the interval. The support of the joint PDF is represented in Figure 12.
Indeed, the support of the joint PDF is obtained by the superimposition of both parts. However,
we chose to represent this support with separate parts for two reasons: 1) we want that each line
segment represents a uniform PDF , and 2) we can use all the previous results about the cases
that we have already studied. The joint PDF of Er and Ef is given by the following mixture of
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joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) (91)
+ p?δ (εr) U(−φ0,0) (εf )

+ p?δ (εf ) U(0,φ0) (εr)

+ p∗δ (εr) U(−φ0,λbφ0) (εf )

+ p∗δ (εf ) U(λbφ0,φ0) (εr)

+ p◦2δ ((εr − εf )− λbφ0) U(−λbφ0,λbφ0) (εr + εf ) ,

where the different probabilities have the same meaning as previously defined. The complete
explanation about the computation of these probabilities is given in the appendix (Section A.7).
Their values are 

p• = p1 − p0
2 (2− λb)

p◦ = p0
2 λb

p? = p0
2

p∗ = p0
2 (1− λb) .

(92)

We can check that the probabilities for the case B sum up to 1

p• + p◦ + 2p? + 2p∗ = p1 −
p0

2
(2− λb) +

p0

2
λb + 2

p0

2
+ 2

p0

2
(1− λb) = p1 + p0 = 1. (93)

The computation of the joint expectation gives (see appendix A.7)

E {Er, Ef} = −p0λ
3
b

φ2
0

12
. (94)

Then, we can compute C {Er, Ef} for the case B

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0λ
3
b

φ2
0

12
+ p2

0

φ2
0

4
, (95)

and, finally, we can obtain the variance of Φb for the case B

σ2
Φb

=
σ2
Er + C {Er, Ef}

2

= p0
φ2

0

6
PB (λb) , (96)

where the first part is the same as for the case A, and the second part is a polynomial function of
the parameter λb

PB (λb) = 1− λ3
b

4
. (97)

4.2.6 The case C

When analyzing the possible pairs of values for (Er, Ef ) (see Figure 28 in the appendix A.8), it
appears that the case C is a combination of the case A and the case E. This happens for values of
the angular window such that

φW mod (12φ0) ∈ [(i+ 1)φ0, (i+ 2)φ0)
⋃

[(11− i)φ0, (12− i)φ0), i = 1, 2, 3, 4. (98)

Note that this case does not occur for the code 5, as a consequence of its particular shape. Like
for the case E, the support of the joint PDF depends on the value of the angular window, and as
a consequence, we introduce a parameter to express φW in terms of φ0

φW mod (12φ0) = (i+ 1)φ0 + λcφ0, λc ∈ [0, 1), i = 1, 2, 3, 4, (99)
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Figure 13: Support of the joint PDF of Er and Ef for the case C.

in the first part of the interval, or

φW mod (12φ0) = (11− i)φ0 + λcφ0, λc ∈ [0, 1), i = 1, 2, 3, 4, (100)

in the second part of the interval. The support of the joint PDF is represented in Figure 13.
Indeed, the support of the joint PDF is obtained by the superimposition of both parts. However,
we chose to represent this support with separate parts for the same reasons as for the case B. The
joint PDF of Er and Ef is given by the following mixture of joint PDFs

fErEf (εr, εf ) = p•δ (εr) δ (εf ) (101)
+ p?δ (εr) U(−φ0,0) (εf )

+ p?δ (εf ) U(0,φ0) (εr)

+ p∗δ (εr) U(−λcφ0,0) (εf )

+ p∗δ (εf ) U(0,λcφ0) (εr)

+ p◦2δ ((εr − εf )− (1 + λc)φ0) U(−(1−λc)φ0,(1−λc)φ0) (εr + εf ) .

where the different probabilities have the same meaning as previously defined. The complete
explanation about the computation of these probabilities is given in the appendix (Section A.8).
Their values are 

p• = p1 − p0
2 (1 + λc)

p◦ = p0
2 (1− λc)

p? = p0
2

p∗ = p0
2 λc.

(102)

We can check that the probabilities for the case C sum up to 1

p• + p◦ + 2p? + 2p∗ = p1 −
p0

2
(1 + λc) +

p0

2
(1− λc) + 2

p0

2
+ 2

p0

2
λc = p1 + p0 = 1. (103)

The computation of the joint expectation gives (see appendix A.8)

E {Er, Ef} = −p0
φ2

0

6

(1− λc)
(
1 + 4λc + λ2

c

)
2

. (104)

Then, we can compute C {Er, Ef} for the case C

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0
φ2

0

6

(1− λc)
(
1 + 4λc + λ2

c

)
2

+ p2
0

φ2
0

4
, (105)
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and, finally, we can obtain the variance of Φb for the case C

σ2
Φb

=
σ2
Er + C {Er, Ef}

2

= p0
φ2

0

6
PC (λc) , (106)

where the first part is the same as for the case A, and the second part is a polynomial function of
the parameter λc

PC (λc) =
3− 3λc + 3λ2

c + λ3
c

4
. (107)

4.3 Summary of the variance value for all the cases

In the previous section, we have establish the value of σ2
Φb

for all the cases. It appears that σ2
Φb

is

always equal to a fraction of p0
φ2
0

6 . The fraction is a polynomial function of a parameter λ, which
represents a fraction of φ0 : λφ0, λ ∈ [0, 1). If we define an appropriate λ for each case (see the
previous section), then we can summarize the polynomial functions as follows

P0 (λ0) =
λ3

0

p1 + p0λ0
(108)

PA (λa) = 1 (109)

PB (λb) = 1− λ3
b

4
(110)

PC (λc) =
3− 3λc + 3λ2

c + λ3
c

4
(111)

PD (λd) = 1− λ3
d

2
(112)

PE (λe) =
1− 3λe + 3λ2

e + λ3
e

2
. (113)

For example, for the case D, Φb is expressed as the product of the theoretical bound
(
p0

φ2
0

6

)
, and(

1− λ3
d

2

)
, which is smaller than 1, for the admissible values of its parameter. To be general, we

have introduced PA (λa), which is the constant function 1. Also, note that the values of these
functions at the transition points (from one case to the next) are consistent

P0 (1) = PA (0) = 1

PA (1) = PB (0) = 1

PB (1) = PC (0) = 3/4

PC (1) = PD (0) = 1

PD (1) = PE (0) = 1/2

PE (1) = PA (0) = 1.
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Finally, we can express the evolution of the variance w.r.t. φW , and for each code (except the
code 5)

Ci, i = 1, 2, 3, 4 σ2
Φb

(φW ) =



p0
φ2
0

6 P0 (λ0) 0 ≤ φW < φ0

p0
φ2
0

6 φ0 ≤ φW mod (12φ0) < iφ0

p0
φ2
0

6 PB (λb) iφ0 ≤ φW mod (12φ0) < (i+ 1)φ0

p0
φ2
0

6 PC (λc) (i+ 1)φ0 ≤ φW mod (12φ0) < (i+ 2)φ0

p0
φ2
0

6 (i+ 2)φ0 ≤ φW mod (12φ0) < (10− i)φ0

p0
φ2
0

6 PB (λb) (10− i)φ0 ≤ φW mod (12φ0) < (11− i)φ0

p0
φ2
0

6 PC (λc) (11− i)φ0 ≤ φW mod (12φ0) < (12− i)φ0

p0
φ2
0

6 (12− i)φ0 ≤ φW mod (12φ0) < 11φ0

p0
φ2
0

6 PD (λd) 11φ0 ≤ φW mod (12φ0) < 12φ0

p0
φ2
0

6 PE (λe) 0 ≤ φW mod (12φ0) < φ0, φW ≥ 12φ0.

(114)
Note that some intervals associated to the case A may be reduced to zero (for i = 1, and i = 4) in
the previous expression. Because of the particular shape of the code 5, the period of its variance
w.r.t. φW is reduced to 6φ0 instead of 12φ0. Also, it does not contain the cases B and C. Therefore,
the evolution of the variance w.r.t. φW for the code 5 is expressed in a separate, but similar way

C5 : σ2
Φb

(φW ) =


p0

φ2
0

6 P0 (λ0) 0 ≤ φW < φ0

p0
φ2
0

6 φ0 ≤ φW mod (6φ0) < 5φ0

p0
φ2
0

6 PD (λd) 5φ0 ≤ φW mod (6φ0) < 6φ0

p0
φ2
0

6 PE (λe) 0 ≤ φW mod (6φ0) < φ0, φW ≥ 6φ0.

(115)

4.4 Simulations

In order to validate our theory about the code statistics, we developed a simulator. The four
parameters considered by the simulator are:

1. the angular window φW ,

2. the code (symbols and durations),

3. the turret period, and

4. the number of turret turns.

The simulations have been performed for the five codes used by BeAMS, and for values of φW
ranging from 0 to 13φ0, in order to observe the case 0 (φW ∈ [0, φ0)), followed by a full period of
the variance evolution (φW ∈ [φ0, 13φ0)). The values used for the turret period and the number
of turret turns are discussed in the next section.
Simulation results are presented in Figure 14 to Figure 18. From these figures, one can see that
the simulations perfectly match the theory. So, in order to distinguish both curves, the theoretical
variance is represented by a continuous line, and the simulated variance is represented by small
unconnected circles. For convenience, we have reported the encountered case in function of the
normalized angular window on the bottom of the graphs. Obviously, for all the codes, the case 0
only appears on the right, when φW < φ0. For other angular window values, the relevant case is
one of the possible A, B, C, D, or E cases.
In complement to the variance graphs, we have reported the pairs of observations of Er and
Ef for the different cases of the code 13, in order to visualize the simulated supports of the

3Note that we could have use another code to observe all the di�erent cases, except the code 5, since it does not
contain the cases B and C.
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Figure 14: Variance of Φb in function of φW for the code 1: simulations versus theory.
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Figure 15: Variance of Φb in function of φW for the code 2: simulations versus theory.
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Figure 16: Variance of Φb in function of φW for the code 3: simulations versus theory.
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Figure 17: Variance of Φb in function of φW for the code 4: simulations versus theory.

31



0 D EA AD E

Simulations
Theory

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

N
or
m
al
iz
ed

va
ri
an

ce
(σ

2 Φ
b/
p 0

φ
2 0 6
)

Normalized angular window (φW/φ0)

Figure 18: Variance of Φb in function of φW for the code 5: simulations versus theory.

joint PDFs of Er and Ef . These supports obtained by simulation are presented in Table 4 (for
all the cases, except for the case A, we have chosen values for the angular window, such that
λ0 = λb = λc = λd = λe = 0.5). Because the pairs of Er and Ef values are superimposed on
these graphs, it is impossible to distinguish the 2D Dirac PDF (except for the case D), and the
separate parts of the cases B and C, but it appears that simulated supports also match the theory.

4.5 Note about the time stationarity hypothesis

To establish all the theoretical results presented in this document, we have assumed the time
stationarity. In other words, these theoretical results are consistent if we can observe all the
possible values for the pairs (Er, Ef ), for all angular windows and codes. This implies that we can
observe all the possible shifted versions of a code w.r.t. the angular window (like we did in the
appendix to compute all the probabilities associated to the different cases).
So, in order to produce the previous figures showing the variance evolution w.r.t. the angular
window, and to confirm the adequacy between theory and simulations, we had to “simulate” the
time stationarity as explained hereafter. As mentioned, the simulator requires four parameters:
the angular window, the code (symbols and durations), the turret period, and the number of
turret turns. The two first parameters are variables of the study. However, the values of the turret
period and the number of turret turns can be adjusted4 to “simulate” the time stationarity. To
do so, one has to choose a value for the turret period such that the code duration and the turret
period are relatively prime (or coprime). As a result, the code will shift from one unit w.r.t. the
angular window, for each new observation, or turret turn. Finally, if the number of turret turns
is equal to the code duration, we will observe all the possible shifted versions of the code, and the
time stationarity hypothesis will be met.

4It means that we can set these parameters to values that are di�erent from the real system.
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Table 4: Simulations for the supports of the joint PDFs of Er and Ef for the 6 different Cases
(λ0 = λb = λc = λd = λe = 0.5).
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Figure 19: Variance of Φb in function of φW for the code 3: simulations versus theory (turret
period = 998400, number of turret turns = 77).

In the simulator, as well as in the real system, the bit durations and the turret period are repre-
sented by integers, whose one unit is equal to 100ns. Therefore, the bit duration is represented
by 308 (30.8µs), and the code duration is equal to 12× 308 = 3696. The turret period is equal to
998400 (0.09984 s). With these values, the code duration and the turret period are not relatively
prime, and this would induce some artifacts on the data. So, we changed the value of the turret
period to 9984015, which is relatively prime with 3696, in order to meet the time stationarity
hypothesis, and to generate the previous graphics.
However, the turret period of BeAMS does not correspond to the one used to generate the previous
graphics. The real turret period and the code duration are not relatively prime, and therefore,
the time stationarity hypothesis is not met. It means that, in practice, we do not observe all the
possible shifted versions of a code w.r.t. the angular window. In other terms, the simulator, and
the real system, act as a “bad” pseudo random number generator. As a consequence, the pairs
of observed values (Er, Ef ) are not well balanced, and finally the computed variance of Φb can
oscillate (slightly) around its theoretical value. To enlighten this phenomenon, we have performed
additional simulations, with four different turret periods (998400, 999000, 999200, and 999300
respectively), all not relatively prime with the code duration. The results are presented in Figure
19 to Figure 22. From these figures, one can observe the oscillations of the variance of Φb.
As a consequence, the variance may exceed the theoretical bound established in this document.
Unfortunately, it is difficult to formalize how the variance can exceed the theoretical bound, since
it depends on the code symbols, the code duration, and the turret period. However the simulator
can always help in finding all these characteristics. In the case of BeAMS, this variance can exceed
the theoretical bound by up to 14 % for the code 2 and 4. Finally, note that the number of turret
turns has been chosen such that we cover a complete period of observations of the code through

5Note that we chose the closest relatively prime integer, but we could have chosen any other relatively prime
integer.
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Figure 20: Variance of Φb in function of φW for the code 3: simulations versus theory (turret
period = 999000, number of turret turns = 154).

A0 B C A B C A D E

Simulations
Theory

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

N
or
m
al
iz
ed

va
ri
an

ce
(σ

2 Φ
b/
p 0

φ
2 0 6
)

Normalized angular window (φW/φ0)

Figure 21: Variance of Φb in function of φW for the code 3: simulations versus theory (turret
period = 999200, number of turret turns = 231).
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Figure 22: Variance of Φb in function of φW for the code 3: simulations versus theory (turret
period = 999300, number of turret turns = 308).

the angular window

number of turret turns =
code duration

gcd(code duration, turret period)
, (116)

where gcd(a, b) is the greatest common divisor of a and b. Also, one can observe from these figures,
that the oscillations in the simulated variances decrease if the number of turret turns require to
cover a complete period of observations increases. The theoretical time stationarity condition is
reached when gcd(code duration, turret period) is equal to 1, that is, when the code duration and
the turret period are relatively prime.

5 Conclusions

In [4], we have proposed a new angle measurement system, named BeAMS, that is the key element
of an algorithm for mobile robot positioning. BeAMS introduces a new mechanism to measure
angles: it detects a beacon when it enters and leaves an angular window. One of the major
challenges of such a system is to be able to model its behavior from a statistical point of view in
order to both have an adequate measure of its efficiency and appropriate values to feed a tracking
system (a Kalman filter for instance).
A theoretical framework for a thorough performance analysis of BeAMS has been provided in [4]
to establish the upper bound of the variance, and to validate this bound through experiments and
simulations. It has been shown that the estimator derived from the center of this angular window
provides an unbiased estimate of the beacon angle.
This document complements our paper by going into further details related to the code statistics of
modulated signals in general, with an emphasis on BeAMS. In particular, the probability density
function of the measured angle has been previously established with the assumption that there is no

36



correlation between the times a beacon enters the angular window or leaves it. This assumption
is questionable and, in this document, we reconsider this assumption and establish the exact
probability density function of the angle estimated by BeAMS (without this assumption).
The conclusion of this study is that the real variance of the estimator provided by BeAMS was
slightly underestimated in our previous work. In addition to this specific result, we also provide
a new and extensive theoretical approach that can be used to analyze the statistics of any angle
measurement method with beacons whose signal has been modulated.
In this document, we have developed four major ideas:

1. it is possible to establish the exact probability density function of the angle estimator of
BeAMS.

2. a practical upper bound of the variance of this estimator has been established, which is of
practical interest for calibration and tracking (see Table 1, on page 13, for a summary),

3. there are many particular cases for analyzing BeAMS or, more generally, any angle mea-
surement based on the emission of modulated (coded) signals. Therefore, we have to develop
a new theoretical approach to evaluate the performance of systems, and to clarify all possible
cases.

4. it is shown that the variance evolves as a function of the angular window (while remain-
ing below the upper bound). This is essential for any system that measures angles. Often,
authors consider that the variance evolves with the distance. However, our analysis is prefer-
able, because the angular window is measurable by the system even if the robot position is
unknown. Our analysis has a direct usage for any practical situation.

Because the developments given in this document are very complete, it is possible to really under-
stand the behavior of the system and to improve the design of BeAMS. Further extensions concern
improved calibration procedures, better estimate, and an enhanced tracking of the robot position
over time.
To conclude this document, we believe it is important to mention that, although this study was
carried on to understand and improve BeAMS, the theoretical framework is larger than that of
BeAMS. It is applicable to any estimator that is built like that of BeAMS. In particular, it is
applicable to any measurement system that estimates a value by taking the mean of a previous
event and a later event, based on the reception of an On-Off Keying modulated signal. For
example, the study of the different “Cases” is general and extensible to any code. Likewise, if
measures on the events are symmetric, then the mean is always unbiased.
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A Some details

A.1 Mean and variance of a random variable whose PDF is expressed
as a weighted sum (mixture) of PDFs

Let X be a random variable with a probability density function (PDF ) fX (x)

X ∼ fX (x) . (117)

Suppose that fX (x) can be written as a weighted sum (mixture) of functions fi (x)

fX (x) =
∑
i

ki fi (x) , (118)

whose coefficients ki sum up to 1 ∑
i

ki = 1. (119)

and that the area of each fi (x) is equal to 1
ˆ +∞

−∞
fi (x) dx = 1, (120)

so that we haveˆ +∞

−∞
fX (x) dx =

ˆ +∞

−∞

∑
i

ki fXi (x) dx =
∑
i

ki

ˆ +∞

−∞
fXi (x) dx = 1, (121)

The existence theorem (see [1, page 73]) states the following.

Theorem 2 If fi (x) is nonnegative, if its area is equal to 1, if its integral Fi (x) is continuous
from the right, and if, as x increases from −∞ to ∞, Fi (x) increases monotonically from 0 to 1,
then we can define a random variable Xi whose PDF is fi (x)

Xi ∼ fi (x) = fXi (x) . (122)

Then the expectation of X is given by

E {X} =
∑
i

kiE {Xi} (123)

and the variance of X is given either by

var {X} =
∑
i

ki

[
var {Xi}+ E {Xi}2

]
− (E {X})2

, (124)

or by
var {X} =

∑
i

ki var {Xi}+
∑
i<j

kikj (E {Xi} − E {Xj})2
. (125)

Proof For the mean, we have

E {X} =

ˆ +∞

−∞
xfX (x) dx

=

ˆ +∞

−∞
x
∑
i

ki fXi (x) dx

=
∑
i

ki

ˆ +∞

−∞
xfXi (x) dx

=
∑
i

kiE {Xi} . (126)
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The first expression of the variance is obtained as follows

var {X} =

ˆ +∞

−∞
(x− E {X})2

fX (x) dx

=

ˆ +∞

−∞
x2fX (x) dx− (E {X})2

=

ˆ +∞

−∞
x2
∑
i

ki fXi (x) dx− (E {X})2

=
∑
i

ki

ˆ +∞

−∞
x2fXi (x) dx− (E {X})2

=
∑
i

ki

[
var {Xi}+ E {Xi}2

]
− (E {X})2

, (127)

and the second expression of the variance is obtained by starting from the previous result

var {X} =
∑
i

ki

[
var {Xi}+ E {Xi}2

]
− (E {X})2

=
∑
i

ki

[
var {Xi}+ E {Xi}2

]
−

(∑
i

kiE {Xi}

)2

=
∑
i

ki

[
var {Xi}+ E {Xi}2

]
−

∑
i

k2
iE {Xi}2 +

∑
i<j

2kikjE {Xi}E {Xj}


=

∑
i

kivar {Xi}+

[∑
i

kiE {Xi}2 −
∑
i

k2
iE {Xi}2

]
−
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
i

ki (1− ki)E {Xi}2 −
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
i

ki
∑
j, j 6=i

kjE {Xi}2 −
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
j 6=i

kikjE {Xi}2 −
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
i<j

kikjE {Xi}2 +
∑
j<i

kikjE {Xi}2 −
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
i<j

kikjE {Xi}2 +
∑
i<j

kjkiE {Xj}2 −
∑
i<j

2kikjE {Xi}E {Xj}

=
∑
i

kivar {Xi}+
∑
i<j

kikj

(
E {Xi}2 + E {Xj}2 − 2E {Xi}E {Xj}

)
=

∑
i

kivar {Xi}+
∑
i<j

kikj (E {Xi} − E {Xj})2
. (128)

A.2 Means and variances of Φr and Φf

A.2.1 Mean and variance of Φr

The PDF of Φr is given by

fΦr (φ) = p1δ (φ− φR) + p0 U(φR,φR+φ0) (φ) . (129)
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By using (123), we can compute the mean of Φr

µΦr = p1φR + p0

(
φR +

φ0

2

)
(130)

= φR + p0
φ0

2
. (131)

The variance of Φr is computed after (125)

σ2
Φr = p10 + p0

φ2
0

12
+ p1p0

(
φR −

(
φR +

φ0

2

))2

(132)

= p0
φ2

0

12
+ (1− p0) p0

(
φ0

2

)2

(133)

= p0
φ2

0

12
+ p0

φ2
0

4
− p2

0

φ2
0

4
(134)

= p0
φ2

0

3
− p2

0

φ2
0

4
. (135)

A.2.2 Mean and variance of Φf

The PDF of Φf is given by

fΦf (φ) = p1δ (φ− φF ) + p0 U(φF−φ0,φF ) (φ) . (136)

By using (123), we can compute the mean of Φf

µΦf = p1φF + p0

(
φF −

φ0

2

)
(137)

= φF − p0
φ0

2
. (138)

The variance of Φf is computed after (125)

σ2
Φf

= p10 + p0
φ2

0

12
+ p1p0

(
φF −

(
φF −

φ0

2

))2

(139)

= p0
φ2

0

12
+ (1− p0) p0

(
φ0

2

)2

(140)

= p0
φ2

0

12
+ p0

φ2
0

4
− p2

0

φ2
0

4
(141)

= p0
φ2

0

3
− p2

0

φ2
0

4
. (142)

A.3 Details for the case A

The purpose of this section is to establish the p• and p? probabilities.
To compute these probabilities, we have to measure the total duration for which the different
events occur over a code period, and then divide by the code period (we can do this since the
codes are periodic). The situation is depicted in Figure 23. The scheme represents the generalized
case, for any code i. We have to shift the code from left to right (for a fixed value of the angular
window), and check when the different events occur, until we have analyzed the complete period
of the code. We can distinguish between 8 different scenarios (1 → 8) depending on the angular
shift:
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Figure 23: Computation of the probabilities and intervals associated with the case A, and for all
codes (φW is supposed to be constant).

• 0: initial condition: the left extremity of φW coincides with the start of a code period (no
shift),

• 1: we can shift φW for iφ0 − φW with no error,

• 2: for the next φ0 shift, there is an error on Φf ,

• 3: we can shift φW for φW − φ0 with no error,

• 4: for the next φ0 shift, there is an error on Φr,

• 5: we can shift φW for (N1 − i)φ0 − φW with no error,

• 6: for the next φ0 shift, there is an error on Φf ,

• 7: we can shift φW for φW − φ0 with no error,

• 8: for the next φ0 shift, there is an error on Φr.

Note that in Figure 23, as for all other cases (Figures 24, 25, 26, 27, 28), we use the following color
convention:

• green: no error,

• cyan: Er = 0 and Ef 6= 0,

• blue: Er 6= 0 and Ef = 0,

• red: Er 6= 0 and Ef 6= 0 (for the cases B, C, D, and E only),

• brown: no edge detection at the receiver (for the case 0 only).

Now we add the favorable parts (lines 1, 3, 5, and 7, or green parts of the drawing) to find the
duration of the event associated to p•

φ• = (iφ0 − φW ) + (φW − φ0) + ((N1 − i)φ0 − φW ) + (φW − φ0) = N1φ0 −N0φ0. (143)
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Figure 24: Computation of the probabilities and intervals associated with the case 0, and for all
codes (λ0 = 0.8 in the scheme).

To compute p•, we have to divide this duration by the period duration of a code Nbφ0 = (N1 +
N0)φ0

p• =
N1φ0 −N0φ0

Nbφ0
=
N1

Nb
− N0

Nb
= p1 − p0. (144)

Firstly, we can notice that this probability does not depend on the angular window φW (if the
value belongs to the intervals defined for the case A). Secondly, we notice that this probability
does not depend on the code. Of course the case A for the other codes does not occur for the
same intervals, but the probabilities, and the PDFs are the same.
Now we have to compute p?. Let us consider the errors on Φf first. We can use the same
reasoning as before and use Figure 23 to count favorable and unfavorable situations. In this case,
the favorable parts are the cyan parts of lines 2 and 6. The counting gives

φ? = 2φ0 = N0φ0, (145)

and the probability p? to commit an error on Φf is obtained by dividing it by the period duration

p? =
N0φ0

Nbφ0
=
N0

Nb
= p0. (146)

The same reasoning also applies to Φr, but for the blue parts of line 4 and 8. The probability to
commit an error on Φr is the same as for Φf , explaining why the notation p? is the same for both.
We can check that the probabilities for the case A sum up to 1

p• + p? + p? = p1 − p0 + p0 + p0 = p1 + p0 = 1. (147)

A.4 Details for the case 0

The probabilities p• and p∗ are computed as follows. To compute these probabilities, we have
to measure the total duration for which the different events occur over a code period, and then
divide by the code period (we can do this since the codes are periodic). The situation is depicted
in Figure 24.
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The scheme represents the generalized case, for any code i. One has to move virtually the code
from left to right (for a fixed value of the angular window) and check when the different events
occur, until we reach the period of the code. We can distinguish between 8 different scenarios
depending on the angular shift:

• 0: initial condition: the left extremity of φW coincides with the start of a code period (no
shift),

• 1: we can shift φW for iφ0 − φW with no error,

• 2: then we can shift φW for a duration φW , with an error on Φf only,

• 3: for the next φ0 − φW move, there is no edge detection at the receiver since there is no 1
symbol between the rising and falling edge,

• 4: then we can shift φW for a duration φW , with an error on Φr only,

• 5: we can shift φW for (N1 − i)φ0 − φW with no error,

• 6: same as line 2,

• 7: same as line 3,

• 8: same as line 4.

This is very similar to the case A, except that there are two parts (lines 3 and 7, or brown parts
of the drawing) where there is no edge detection at all. To compute p•, we first add the favorable
parts (lines 1, and 5, or green parts of the drawing)

φ• = (iφ0 − φW ) + ((N1 − i)φ0 − φW ) = N1φ0− 2φW = N1φ0−N0φW = N1φ0−N0φ0λ0. (148)

But unlike the case A (and all other cases), we cannot divide this duration by the code duration.
Indeed, we have to remove from the code duration the parts where there is no edge detection (lines
3 and 7, or brown parts of the drawing)

φduration−case 0 = (N1 +N0)φ0 − 2 (φ0 − φW )

= (N1 +N0)φ0 −N0 (φ0 − φW )

= (N1 +N0)φ0 −N0φ0 (1− λ0)

= N1φ0 +N0φ0λ0. (149)

Now we can compute p•

p• =
φ•

φduration−case 0
=
N1φ0 −N0φ0λ0

N1φ0 +N0φ0λ0
=
p1 − p0λ0

p1 + p0λ0
. (150)

Now , it remains to calculate p∗. Let us consider the errors on Φf first. We can use the same
reasoning as before and use Figure 24 to do the counting. But in this case, the favorable parts are
the cyan parts of lines 2 and 6. The counting gives

φ∗ = 2φW = N0φW = N0φ0λ0, (151)

and the probability p∗ to commit an error on Φf is obtained by dividing φ∗ by the reduced period
duration

p∗ =
φ∗

φduration−case 0
=

N0φ0λ0

N1φ0 +N0φ0λ0
=

p0λ0

p1 + p0λ0
. (152)

The same reasoning also applies to Φr, but for the blue parts of line 4 and 8. The probability to
commit an error on Φr is the same as for Φf , explaining why the notation p∗ is the same for both.
Again, we can check that the probabilities for the case 0 sum up to 1

p• + p∗ + p∗ =
p1 − p0λ0

p1 + p0λ0
+ 2

p0λ0

p1 + p0λ0
=
p1 + p0λ0

p1 + p0λ0
= 1. (153)
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The computation of the joint expectation is detailed hereafter

E {Er, Ef} =

¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

=
p1 − p0λ0

p1 + p0λ0

¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+
p0λ0

p1 + p0λ0

¨ +∞

−∞
εr εf δ (εr) U(−φ0,0) (εf ) dεr dεf

+
p0λ0

p1 + p0λ0

¨ +∞

−∞
εr εf δ (εf ) U(0,φ0) (εr) dεr dεf

= 0 + 0 + 0 = 0. (154)

The marginal PDF of Er and Ef have changed (unlike the case A and all other cases), as well as
their expectations and variances. The marginal PDF of Er is given by

fEr (εr) =

ˆ +∞

−∞
fErEf (εr, εf ) dεf

= p•δ (εr)

ˆ +∞

−∞
δ (εf ) dεf + p∗δ (εr)

ˆ +∞

−∞
U(−λ0φ0,0) (εf ) dεf + p∗ U(0,λ0φ0) (εr)

ˆ +∞

−∞
δ (εf ) dεf

=
p1 − p0λ0

p1 + p0λ0
δ (εr) +

p0λ0

p1 + p0λ0
δ (εr) +

p0λ0

p1 + p0λ0
U(0,λ0φ0) (εr)

=
p1

p1 + p0λ0
δ (εr) +

p0λ0

p1 + p0λ0
U(0,λ0φ0) (εr) . (155)

Likewise, the marginal PDF of Ef is given by

fEf (εf ) =
p1

p1 + p0λ0
δ (εf ) +

p0λ0

p1 + p0λ0
U(−λ0φ0,0) (εf ) . (156)

Their expectations are given by (using result 123)

E {Er} =
p1

(p1 + p0λ0)
0 +

p0λ0

(p1 + p0λ0)

λ0φ0

2
=

p0λ0

(p1 + p0λ0)

λ0φ0

2
= −E {Ef} , (157)

and their variances are given by (using result 125)

var {Er} =
p1

(p1 + p0λ0)
0 +

p0λ0

(p1 + p0λ0)

(λ0φ0)
2

12
+

p1

(p1 + p0λ0)

p0λ0

(p1 + p0λ0)

(
0− λ0φ0

2

)2

=
p0λ0

(p1 + p0λ0)

(λ0φ0)
2

12
+

p1p0λ0

(p1 + p0λ0)
2

(λ0φ0)
2

4

=
(λ0φ0)

2

12

p0λ0 (p1 + p0λ0) + 3p1p0λ0

(p1 + p0λ0)
2

=
(λ0φ0)

2

12

p0λ0 (4p1 + p0λ0)

(p1 + p0λ0)
2 = var {Ef} . (158)

Then, we can compute C {Er, Ef} for the case 0

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} =

(
p0λ0

(p1 + p0λ0)

λ0φ0

2

)2

=
(p0λ0)

2

(p1 + p0λ0)
2

(λ0φ0)
2

4
,

(159)
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Figure 25: Computation of the probabilities and intervals associated with the case D, and for all
codes (λd = 0.6 in the scheme).

and, finally, we obtain the variance of Φb for the case 0

σ2
Φb

=
σ2
Er + C {Er, Ef}

2

=

(
(λ0φ0)2

12
p0λ0(4p1+p0λ0)

(p1+p0λ0)2

)
+
(

(p0λ0)2

(p1+p0λ0)2
(λ0φ0)2

4

)
2

=
(λ0φ0)

2

24

[
p0λ0 (4p1 + p0λ0) + 3 (p0λ0)

2

(p1 + p0λ0)
2

]

=
(λ0φ0)

2

24

4p0λ0

(p1 + p0λ0)

= p0
φ2

0

6

λ3
0

(p1 + p0λ0)
. (160)

A.5 Details for the case D

The different probabilities are computed as follows: we have to measure the total duration for
which the different events occur over a code period, and then divide by the code period. The
situation is depicted in Figure 25. The computation of these probabilities is detailed hereafter:

φ• = 2φW − 2 (N1 +N0)φ0 +N1φ0

= 2 [(N1 + 1)φ0 + λdφ0]−N1φ0 − 2N0φ0

= N1φ0 −N0φ0 +N0λdφ0

= N1φ0 −N0φ0 (1− λd) . (161)

p• =
φ•

φduration
=
N1φ0 −N0φ0 (1− λd)

(N1 +N0)φ0
= p1 − p0 (1− λd) . (162)
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φ◦ = 2φW − 2 (N1 +N0)φ0 + 2φ0

= 2 [(N1 + 1)φ0 + λdφ0]− 2N1φ0 −N0φ0

= 2N1φ0 +N0φ0 +N0λdφ0 − 2N1φ0 −N0φ0

= N0φ0λd. (163)

p◦ =
φ◦

φduration
=

N0φ0λd
(N1 +N0)φ0

= p0λd. (164)

φ∗ = 2 (N1 +N0)φ0 − 2φW

= 2 (N1 +N0)φ0 − 2 [(N1 + 1)φ0 + λdφ0]

= N0φ0 −N0λdφ0

= N0φ0 (1− λd) . (165)

p∗ =
φ∗

φduration
=
N0φ0 (1− λd)
(N1 +N0)φ0

= p0 (1− λd) . (166)

We can check that the probabilities sum up to 1

p• + p◦ + 2p∗ = p1 − p0 (1− λd) + p0λd + 2p0 (1− λd) = p1 + p0 = 1. (167)

The joint expectation is derived as follows

E {Er, Ef} =

¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

= p•
¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εr) U(−φ0,λdφ0) (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εf ) U(λdφ0,φ0) (εr) dεr dεf

+ p◦
¨ +∞

−∞
εr εf 2 δ ((εr − εf )− λdφ0) U(−λdφ0,λdφ0) (εr + εf ) dεr dεf

= 0 + 0 + 0 + p◦

(
− (λdφ0)

2

6

)
= −p0λd

(λdφ0)
2

6
= −p0λ

3
d

φ2
0

6
. (168)

The covariance is then given by

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0λ
3
d

φ2
0

6
+ p2

0

φ2
0

4
. (169)

So that we can establish the value of the variance as

σ2
Φb

=
σ2
Er + C {Er, Ef}

2

=

(
p0

φ2
0

3 − p
2
0
φ2
0

4

)
+
(
−p0λ

3
d
φ2
0

6 + p2
0
φ2
0

4

)
2

=
p0

φ2
0

3 − p0λ
3
d
φ2
0

6

2

= p0
φ2

0

6

2− λ3
d

2

= p0
φ2

0

6

(
1− λ3

d

2

)
. (170)
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The presence of the factor 2 in the fourth term of fErEf (εr, εf ) is explained hereafter. This factor
is necessary so that the joint PDF integrates to 1, as explain below

I =

¨ +∞

−∞
k δ ((εr − εf )− λdφ0) U(−λdφ0,λdφ0) (εr + εf ) dεr dεf = 1. (171)

To compute this, we apply this change of variables{
a = εr − εf
b = εr + εf

(172)

or, equivalently, {
εr = a+b

2

εf = b−a
2

(173)

and the associated Jacobian is equal to

J =

∣∣∣∣∣∣
∂εr
∂a

∂εr
∂b

∂εf
∂a

∂εf
∂b

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1
2

1
2

− 1
2

1
2

∣∣∣∣∣∣ =
1

4
−
(
−1

4

)
=

1

2
. (174)

So, we have

I =

¨ +∞

−∞
k δ (a− λdφ0) U(−λdφ0,λdφ0) (b) |J | da db

= k |J |
ˆ +∞

−∞
δ (a− λdφ0) da

ˆ +∞

−∞
U(−λdφ0,λdφ0) (b) db

= k × 1

2
× 1× 1 =

k

2
= 1⇒ k = 2. (175)

The computation of the fourth term of E {Er, Ef} is detailed hereafter

K =

¨ +∞

−∞
εr εf 2δ ((εr − εf )− λdφ0) U(−λdφ0,λdφ0) (εr + εf ) dεr dεf . (176)

By using the same change of variables, we have

K =

¨ +∞

−∞

(
a+ b

2

)(
b− a

2

)
2δ (a− λdφ0) U(−λdφ0,λdφ0) (b) |J | da db

=

¨ +∞

−∞

(
b2 − a2

4

)
δ (a− λdφ0) U(−λdφ0,λdφ0) (b) da db

=
1

4

¨ +∞

−∞
b2δ (a− λdφ0) U(−λdφ0,λdφ0) (b) da db

− 1

4

¨ +∞

−∞
a2δ (a− λdφ0) U(−λdφ0,λdφ0) (b) da db

= K1 −K2. (177)

The first term K1 is equal to

K1 =
1

4

(ˆ +∞

−∞
δ (a− λdφ0) da

)(ˆ +∞

−∞
b2U(−λdφ0,λdφ0) (b) db

)
=

1

4
(1)

(
(2λdφ0)

2

12

)

=
(λdφ0)

2

12
. (178)
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Figure 26: Computation of the probabilities and intervals associated with the case E, and for all
codes (λe = 0.6 in the scheme).

The second term K2 is equal to

K2 =
1

4

(ˆ +∞

−∞
a2δ (a− λdφ0) da

)(ˆ +∞

−∞
U(−λdφ0,λdφ0) (b) db

)
=

1

4
(λdφ0)

2
(1)

=
(λdφ0)

2

4
. (179)

And, finally we have

K = K1 −K2 =
(λdφ0)

2

12
− (λdφ0)

2

4
= − (λdφ0)

2

6
= −φ

2
0

6
λ2
d. (180)

A.6 Details for the case E

The different probabilities are computed as follows: we have to measure the total duration for
which the different events occur over a code period, and then divide by the code period. The
situation is depicted in Figure 26. The computation of these probabilities is detailed hereafter:

φ• = (2N1 + 2N0 +N1)φ0 − 2φW

= 3N1φ0 + 2N0φ0 − 2 [(N1 +N0)φ0 + λeφ0]

= 3N1φ0 + 2N0φ0 − 2N1φ0 − 2N0φ0 − 2λeφ0

= N1φ0 −N0φ0λe. (181)

p• =
φ•

φduration
=
N1φ0 −N0φ0λe

(N1 +N0)φ0
= p1 − p0λe. (182)

φ◦ = (2N1 + 2N0 + 2)φ0 − 2φW

= 2N1φ0 + 3N0φ0 − 2 [(N1 +N0)φ0 + λeφ0]

= N0φ0 −N0λeφ0

= N0φ0 (1− λe) . (183)
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p◦ =
φ◦

φduration
=
N0φ0 (1− λe)
(N1 +N0)φ0

= p0 (1− λe) . (184)

φ∗ = 2φW − 2 (N1 +N0)φ0

= 2 [(N1 +N0)φ0 + λeφ0]− 2 (N1 +N0)φ0

= 2λeφ0

= N0φ0λe. (185)

p∗ =
φ∗

φduration
=

N0φ0λe
(N1 +N0)φ0

= p0λe. (186)

We can check that the probabilities sum up to 1

p• + p◦ + 2p∗ = p1 − p0λe + p0 (1− λe) + 2p0λe = p1 + p0 = 1. (187)

The joint expectation is derived as follows

E {Er, Ef} =

¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

= p•
¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εr) U(−λeφ0,0) (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εf ) U(0,λeφ0) (εr) dεr dεf

+ p◦
¨ +∞

−∞
εr εf 2 δ ((εr − εf )− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (εr + εf ) dεr dεf

= 0 + 0 + 0 + p◦
(
−φ

2
0

6

(
1 + 4λe + λ2

e

))
= −p0

φ2
0

6
(1− λe)

(
1 + 4λe + λ2

e

)
. (188)

This leads to the expression of the covariance

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0
φ2

0

6
(1− λe)

(
1 + 4λe + λ2

e

)
+ p2

0

φ2
0

4
. (189)

The variance is then given by

σ2
Φb

=
σ2
Er + C {Er, Ef}

2

=

(
p0

φ2
0

3 − p
2
0
φ2
0

4

)
+
(
−p0

φ2
0

6 (1− λe)
(
1 + 4λe + λ2

e

)
+ p2

0
φ2
0

4

)
2

=
p0

φ2
0

3 − p0
φ2
0

6 (1− λe)
(
1 + 4λe + λ2

e

)
2

= p0
φ2

0

6

[
2− (1− λe)

(
1 + 4λe + λ2

e

)
2

]

= p0
φ2

0

6

(
1− 3λe + 3λ2

e + λ3
e

2

)
. (190)

The explanation about the presence of the factor 2 in the fourth term of fErEf (εr, εf ) is the same
as for the case D. The computation of the fourth term of E {Er, Ef} gives

K =

¨ +∞

−∞
εr εf 2δ ((εr − εf )− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (εr + εf ) dεr dεf . (191)
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By using the same change of variables (equation (173)), we have

K =

¨ +∞

−∞

(
a+ b

2

)(
b− a

2

)
2δ (a− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (b) |J | da db

=

¨ +∞

−∞

(
b2 − a2

4

)
δ (a− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (b) da db

=
1

4

¨ +∞

−∞
b2δ (a− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (b) da db

− 1

4

¨ +∞

−∞
a2δ (a− (1 + λe)φ0) U(−(1−λe)φ0,(1−λe)φ0) (b) da db

= K1 −K2. (192)

The first term K1 is equal to

K1 =
1

4

(ˆ +∞

−∞
δ (a− (1 + λe)φ0) da

)(ˆ +∞

−∞
b2U(−(1−λe)φ0,(1−λe)φ0) (b) db

)
=

1

4
(1)

(
(2 (1− λe)φ0)

2

12

)

=
((1− λe)φ0)

2

12
. (193)

The second term K2 is equal to

K2 =
1

4

(ˆ +∞

−∞
a2δ (a− (1 + λe)φ0) da

)(ˆ +∞

−∞
U(−(1−λe)φ0,(1−λe)φ0) (b) db

)
=

1

4
((1 + λe)φ0)

2
(1)

=
((1 + λe)φ0)

2

4
. (194)

And, finally, we have

K = K1 −K2 =
((1− λe)φ0)

2

12
− ((1 + λe)φ0)

2

4

=
φ2

0

12

[
(1− λe)2 − 3 (1 + λe)

2
]

=
φ2

0

12

(
−2− 8λe − 2λ2

e

)
= −φ

2
0

6

(
1 + 4λe + λ2

e

)
. (195)

A.7 Details for the case B

The different probabilities are computed as follows: we have to measure the total duration for
which the different events occur over a code period, and then divide by the code period. The
situation is depicted in Figure 27. The computation of these probabilities is detailed hereafter:

φ• = φW − φ0 + (N1 − i)φ0 − φW + φW − φ0

= φW + (N1 − i− 2)φ0

= (iφ0 + λbφ0) + (N1 − i−N0)φ0

= N1φ0 −
N0

2
φ0 (2− λb) . (196)
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Figure 27: Computation of the probabilities and intervals associated with the case B, and for all
codes, except the code 5 (λb = 0.6 in the scheme).

p• =
φ•

φduration
=
N1φ0 − N0

2 φ0 (2− λb)
(N1 +N0)φ0

= p1 −
p0

2
(2− λb) . (197)

φ◦ = φW − iφ0

= (iφ0 + λbφ0)− iφ0

=
N0

2
φ0λb. (198)

p◦ =
φ◦

φduration
=

N0

2 φ0λb

(N1 +N0)φ0
=
p0

2
λb. (199)

φ? = φ0

=
N0

2
φ0. (200)

p? =
φ?

φduration
=

N0

2 φ0

(N1 +N0)φ0
=
p0

2
. (201)

φ∗ = (i+ 1)φ0 − φW
= (i+ 1)φ0 − (iφ0 + λbφ0)

= φ0 − λbφ0

=
N0

2
φ0 (1− λb) . (202)

p∗ =
φ∗

φduration
=

N0

2 φ0 (1− λb)
(N1 +N0)φ0

=
p0

2
(1− λb) . (203)

We can check that the probabilities sum up to 1

p• + p◦ + 2p? + 2p∗ = p1 −
p0

2
(2− λb) +

p0

2
λb + 2

p0

2
+ 2

p0

2
(1− λb) = p1 + p0 = 1. (204)
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The joint expectation is expressed as

E {Er, Ef} =

¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

= p•
¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+ p?
¨ +∞

−∞
εr εf δ (εr) U(−φ0,0) (εf ) dεr dεf

+ p?
¨ +∞

−∞
εr εf δ (εf ) U(0,φ0) (εr) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εr) U(−φ0,λbφ0) (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εf ) U(λbφ0,φ0) (εr) dεr dεf

+ p◦
¨ +∞

−∞
εr εf 2 δ ((εr − εf )− λbφ0) U(−λbφ0,λbφ0) (εr + εf ) dεr dεf

= 0 + 0 + 0 + 0 + 0 + p◦

(
− (λbφ0)

2

6

)
= −p0

2
λb

(λbφ0)
2

6
= −p0λ

3
b

φ2
0

12
. (205)

Then we derive the covariance of Er and Ef

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0λ
3
b

φ2
0

12
+ p2

0

φ2
0

4
. (206)

This leads to the following expression of the variance:

σ2
Φb

=
σ2
Er + C {Er, Ef}

2

=

(
p0

φ2
0

3 − p
2
0
φ2
0

4

)
+
(
−p0λ

3
b
φ2
0

12 + p2
0
φ2
0

4

)
2

=
p0

φ2
0

3 − p0λ
3
b
φ2
0

12

2

= p0
φ2

0

6

(
1− λ3

b

4

)
. (207)

A.8 Details for the case C

The different probabilities are computed as follows: we have to measure the total duration for
which the different events occur over a code period, and then divide by the code period. The
situation is depicted in Figure 28. The computation of these probabilities is detailed hereafter:

φ• = iφ0 + (N1 − i)φ0 − φW + iφ0

= N1φ0 + iφ0 − φW
= N1φ0 + iφ0 − ((i+ 1)φ0 + λcφ0)

= N1φ0 −
N0

2
φ0 (1 + λc) . (208)

p• =
φ•

φduration
=
N1φ0 − N0

2 φ0 (1 + λc)

(N1 +N0)φ0
= p1 −

p0

2
(1 + λc) . (209)
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Figure 28: Computation of the probabilities and intervals associated with the case C, and for all
codes, except the code 5 (λc = 0.6 in the scheme).

φ◦ = (i+ 2)φ0 − φW
= iφ0 + 2φ0 − ((i+ 1)φ0 + λcφ0)

= φ0 − λcφ0

=
N0

2
φ0 (1− λc) . (210)

p◦ =
φ◦

φduration
=

N0

2 φ0 (1− λc)
(N1 +N0)φ0

=
p0

2
(1− λc) . (211)

φ? = φ0

=
N0

2
φ0. (212)

p? =
φ?

φduration
=

N0

2 φ0

(N1 +N0)φ0
=
p0

2
. (213)

φ∗ = φW − (i+ 1)φ0

= ((i+ 1)φ0 + λcφ0)− (i+ 1)φ0

= λcφ0

=
N0

2
φ0λc. (214)

p∗ =
φ∗

φduration
=

N0

2 φ0λc

(N1 +N0)φ0
=
p0

2
λc. (215)

We can check that the probabilities sum up to 1

p• + p◦ + 2p? + 2p∗ = p1 −
p0

2
(1 + λc) +

p0

2
(1− λc) + 2

p0

2
+ 2

p0

2
λc = p1 + p0 = 1. (216)
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The joint expectation is expressed as

E {Er, Ef} =

¨ +∞

−∞
εr εf fErEf (εr, εf ) dεr dεf

= p•
¨ +∞

−∞
εr εf δ (εr) δ (εf ) dεr dεf

+ p?
¨ +∞

−∞
εr εf δ (εr) U(−φ0,0) (εf ) dεr dεf

+ p?
¨ +∞

−∞
εr εf δ (εf ) U(0,φ0) (εr) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εr) U(−λcφ0,0) (εf ) dεr dεf

+ p∗
¨ +∞

−∞
εr εf δ (εf ) U(0,λcφ0) (εr) dεr dεf

+ p◦
¨ +∞

−∞
εr εf 2 δ ((εr − εf )− (1 + λc)φ0) U(−(1−λc)φ0,(1−λc)φ0) (εr + εf ) dεr dεf

= 0 + 0 + 0 + 0 + 0 + p◦
(
−φ

2
0

6

(
1 + 4λc + λ2

c

))
= −p0

2
(1− λc)

φ2
0

6

(
1 + 4λc + λ2

c

)
= −p0

φ2
0

6

(1− λc)
(
1 + 4λc + λ2

c

)
2

. (217)

Then we derive the covariance of Er and Ef

C {Er, Ef} = E {Er, Ef} − E {Er}E {Ef} = −p0
φ2

0

6

(1− λc)
(
1 + 4λc + λ2

c

)
2

+ p2
0

φ2
0

4
, (218)

and, finally, the variance:

σ2
Φb

=
σ2
Er + C {Er, Ef}

2

=

(
p0

φ2
0

3 − p
2
0
φ2
0

4

)
+

(
−p0

φ2
0

6

(1−λc)(1+4λc+λ
2
c)

2 + p2
0
φ2
0

4

)
2

=
p0

φ2
0

3 − p0
φ2
0

6

(1−λc)(1+4λc+λ
2
c)

2

2

= p0
φ2

0

6

2− (1−λc)(1+4λc+λ
2
c)

2

2


= p0

φ2
0

6

(
4− 1− 4λc − λ2

c + λc + 4λ2
c + λ3

c

4

)
= p0

φ2
0

6

(
3− 3λc + 3λ2

c + λ3
c

4

)
. (219)
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