1. Implantation des cultures

B. Bodson¹, C. Roisin², F. Vancutsem¹, B. Seutin³, B. Monfort⁴, R. Oger⁵

1. Etape clé	2
2 La date de semis	2
3 La préparation du sol	3
4 La profondeur de semis	7
5 La densité de semis	8

¹ ULg GxABT – Unité de Phytotechnie des régions tempérées

 ² CRA-W – Département Agriculture et milieu naturel – Unité Fertilité des sols et protection des eaux
³ ULg GxABT – Unité de Phytotechnie des régions tempérées – Production intégrée des céréales en Région Wallonne – Projet CePiCOP (DGARNE, du Service Public de Wallonie)

⁴ Projet APE 2242 (FOREM) et projet CePiCOP (DGARNE, du Service Public de Wallonie)

⁵ CRA-W – Département Agriculture et milieu naturel

1 Etape clé

L'implantation de la culture est une étape-clé du processus de production. Elle doit requérir une grande attention et doit à l'instar d'autres interventions culturales comme la fumure et la protection de la culture être raisonnée à la parcelle. Le choix du travail du sol et sa réalisation correcte et homogène ainsi que les modalités de semis auront des répercussions souvent significatives sur la conduite des cultures de céréales.

La mode des Techniques Culturales Simplifiées ne signifie nullement qu'il est possible d'implanter correctement dans n'importe quelles conditions de sol; au contraire, des règles précises doivent toujours être respectées.

Ce premier chapitre les reprend de manière succincte. Les points particuliers à prendre en compte pour les tous prochains semis sont mis en évidence.

2 La date de semis

2.1 En froment

En froment, les semis effectués entre le 10 octobre et le début novembre constituent le meilleur compromis entre le potentiel de rendement et les risques culturaux.

Dans nos conditions agroclimatiques, le froment d'hiver peut être semé de la première semaine d'octobre jusqu'à la fin décembre, voire même jusqu'en février.

- Les semis très précoces (avant le 10 octobre) présentent quelques désavantages et entraînent souvent un accroissement des coûts de protection dus à :
 - des adventices plus nombreuses, un désherbage plus onéreux ;
 - une contamination dès l'automne par les maladies cryptogamiques (piétin verse; septoriose) et à la verse;
 - un risque accru de sensibilité au gel ;
 - un danger plus grand d'infestation par les pucerons porteurs de virus de la jaunisse nanisante et souvent, la nécessité de protection insecticide dès l'automne.
- Les semis tardifs (après le 15 novembre) inévitables après certains précédents, sont plus difficiles à réussir parce que :

- l'humidité généralement importante du sol ne permet pas une préparation du sol soignée;
- les conditions climatiques, notamment les températures, allongent la durée de levée et en réduisent le pourcentage.

Lorsqu'un travail correct n'est pas possible, il est préférable de reporter l'emblavement de quelques jours, voire de quelques semaines et d'attendre que la préparation du sol et le semis puissent être effectués dans de meilleures conditions. Le retard éventuel du développement de la végétation sera rapidement compensé par de bien meilleures possibilités de croissance de la culture.

2.2 En escourgeon

La période la plus favorable pour le semis de l'escourgeon se situe en fin septembre et début d'octobre.

Une date plus précoce ne se justifie pas : tallage excessif en sortie d'hiver, attaques fongiques dès l'automne et risques plus élevés de transmissions de viroses par les pucerons, sensibilité accrue au gel.

En retardant le semis, la levée est plus lente et peut demander 15 à 20 jours. Il se peut alors que l'hiver survienne avant que la culture n'ait atteint le stade tallage. Une moins bonne résistance au froid est alors à craindre. A cet inconvénient s'ajoute une réduction de la période consacrée au développement végétatif et génératif avec comme conséquence éventuelle une culture trop claire.

3 La préparation du sol

Il n'existe aucune méthode, aucun outil, aucune combinaison d'outils, aucun réglage qui soit passe-partout. Chaque terre doit être traitée en fonction de ses caractéristiques structurales propres, compte tenu de son historique cultural, de la nature du précédent, de son état au moment de la réalisation de l'emblavement et des conditions climatiques immédiatement après le semis.

Quelle que soit la méthode choisie, il convient :

- 1. de réaliser un état de la situation de la parcelle
- 2. de choisir les modalités de réalisation (profondeur de travail, choix d'outils et des réglages)
- 3. d'effectuer la préparation du sol avec le maximum de soin et dans les meilleures conditions possibles

3.1 Le travail du sol primaire

Le froment et l'escourgeon étant des cultures peu sensibles à la compacité du sol, le labour ne se justifie généralement pas. Les TCS (Techniques culturales simplifiées) peuvent avantageusement remplacer le labour lorsque l'état du sol (absence d'ornières ou de compaction sévère) le permet et que le matériel de semis employé est compatible avec l'abondance des débris végétaux abandonnés en surface lors de la récolte du précédent.

Après les cultures de céréales, betteraves, chicorées, pomme de terre, maïs ensilage récoltées en bonnes conditions, la préparation du sol peut très bien se limiter à la couche superficielle. Pour réaliser cette opération, il n'est pas nécessaire de recourir à l'emploi d'un matériel spécifique, un outil de déchaumage pouvant généralement convenir. Lors de ce travail, il convient toutefois d'éviter autant que possible la formation de lissages à faible profondeur car ceux-ci sont préjudiciables à la pénétration de l'eau et risquent d'occasionner l'engorgement du lit de semences lors de périodes particulièrement pluvieuses. Ce phénomène peut en effet conduire à l'asphyxie des jeunes plantules et à leur disparition, et augmente par ailleurs la sensibilité de la culture au gel qui surviendrait éventuellement plus tard. Dès lors, on évitera autant possible d'employer un covercrop ou un outil à pattes d'oies en tant qu'outil de préparation superficielle. Il est recommandé d'employer plutôt un outil à dents étroites, si possible sans ailettes, quitte à travailler le sol sur une profondeur plus importante (entre 15 et 18 cm), ce qui sera favorable à la pénétration de l'eau et au drainage du lit de semences.

Lorsque la couche arable a subi au cours des années antérieures une compaction importante, il peut être intéressant de profiter de la préparation du semis de froment pour essayer de réparer les dégâts de structure et d'améliorer l'état structural du sol tout en profitant des avantages qu'une céréale d'hiver procure en termes de conservation et d'amélioration de la fertilité physique : longue période de couverture du sol, colonisation importante et profonde par le système racinaire, assèchement prononcé du profil en fin de végétation et conditions de récolte généralement peu dommageables pour la structure. Dans ce cadre, la préparation du sol sera moins simplifiée et fera appel à la technique du décompactage qui consiste à fissurer et fragmenter la couche arable sur une profondeur équivalent au labour et sans la retourner à l'aide d'un outil constitué de dents rigides (droites avec ailettes ou courbées) permettant d'atteindre le fond de la couche arable, quelle que soit sa résistance mécanique. Par rapport au labour traditionnel, cette technique présente l'avantage, de conserver la matière organique au sein des couches superficielles et peut souvent être réalisée en même temps que la préparation superficielle et le semis. Il convient toutefois de savoir que cette technique ne peut être effectuée correctement et avec des effets positifs sur la structure que si le sol est suffisamment ressuyé au moment de sa réalisation et ne présente pas d'ornière.

Après culture de pomme de terre, la technique du décompactage est particulièrement adaptée car elle permet de supprimer une partie de la compaction, de favoriser la destruction par le gel des petits tubercules perdus à la récolte et surtout de ne pas enfouir, en fond de profil comme le ferait la charrue, l'épaisse couche de terre fine et déstructurée provenant de la formation des buttes et du tamisage intense de la terre au moment de la récolte.

Toutefois, il existe un certain nombre de situations dans lesquelles le labour reste vivement conseillé :

- lorsque la compaction se situe en profondeur, en dessous de 15 cm. Le labour permet en effet de ramener en surface les blocs compacts qui pourront alors subir l'action des outils de préparation superficielle et les effets éventuels du gel et surtout des alternances humectation/dessiccation;
- lorsque des ornières importantes ont été créées lors de la récolte de la culture précédente ;
- lorsque des résidus d'herbicides rémanents appliqués à la culture précédente doivent être dispersés et dilués dans la couche arable ;
- lorsque les populations d'adventices telles que vulpin et gaillets sont devenues trop importantes ;
- après une culture de maïs grains afin de réduire le risque de dépassement de la teneur en DON du grain.

3.2 La préparation superficielle

Il faut idéalement (figure 1):

Figure 1 – Profil idéal d'une préparation de sol (Arvalis).

- en surface : assez de mottes pas trop grosses (max. 5-6 cm de diamètre) pour assurer une bonne résistance à la battance due aux effets des précipitations et des gelées hivernales, sans constituer d'obstacle à une émergence rapide des plantules ;
- sur une épaisseur de quelques cm (5-6 cm maximum) : un mélange de terre fine et de petites mottes afin de garantir un bon contact entre la graine et le sol qui permettra un approvisionnement suffisant en eau de la graine et de la jeune plantule, c'est le lit de semences ;
- sous le lit de semences, une couche de terre comprenant des mottes de dimensions variables, retassées sans lissage, sans porosité importante ni creux, qui doit permettre, au départ, un drainage du lit de semences en cas de pluies importantes et, par la suite, un développement racinaire sans obstacle.

Cette structure donnée par la préparation superficielle du sol permet une circulation rapide de l'eau et de l'air à l'intérieur du lit de semences vers les couches plus profondes et ainsi de satisfaire les besoins de la graine et de la jeune plantule en eau, en oxygène et en chaleur.

Règles à respecter impérativement dans le cas d'une préparation superficielle du sol

- ne pas travailler le sol dans des conditions trop humides : lissage, tassement, sol creux en profondeur, terre fine insuffisante sont inévitables en cas d'excès d'eau dans le sol ;
- la **profondeur du lit de semences** doit être **régulière**, pas trop importante, et le **sol** doit être suffisamment **rassis**, **rappuyé** pour éviter un lit de semences trop soufflé, qui provoque :
 - l'engorgement en eau du lit de semences en cas de précipitations importantes ;
 - les phénomènes de déchaussements en cas d'alternances de gel-dégel ;
 - le placement trop profond des graines.
- ne pas travailler trop profondément avec les outils animés ;
- éviter les sols trop creux ou mal fissurés dans la couche de sol sous le lit de semences grâce à un retassement éventuel effectué entre le travail profond (labour) et la préparation superficielle. Ce retassement peut être obtenu par un roulage, l'utilisation de roues jumelées et d'un tasse-avant ou le passage d'un outil à dents vibrantes travaillant sur 10 cm de profondeur;
- Un sol bien retassé permet de limiter les attaques éventuelles de la mouche grise ;
- **vérifier la qualité du travail effectué** lors de la mise en route dans chaque parcelle, pour pouvoir, lorsqu'il n'est pas correct, adapter la méthode ou les outils utilisés ;
- la terre doit, si possible, « reblanchir » après le semis.

En escourgeon et orge d'hiver :

Les orges demandent une préparation du sol plus soignée que les froments. Il faut veiller lors de la préparation du sol à ce que **la terre ait suffisamment de pied** pour éviter au maximum les risques de déchaussement pendant l'hiver.

Comme, à l'époque du semis, le sol est souvent assez sec, il n'est pas rare de voir des sols trop soufflés, surtout lors d'une mauvaise utilisation d'outils animés. De plus, ce défaut de préparation de sol peut le cas échéant être favorable à une pullulation de limaces.

4 La profondeur de semis

Il faut semer à un ou deux cm de profondeur en veillant à une bonne régularité du placement et à un bon recouvrement des graines.

Un semis trop profond (4-5 cm) allonge la durée de la levée, réduit le pourcentage de levée, la vigueur de la plantule et peut inhiber l'émission des talles. Beaucoup de cultures qui paraissent trop claires, qui ne tallent pas ou qui traînent au printemps sont le résultat du fait que toutes les semences ou une partie d'entre elles ont été déposées trop profondément.

Ce défaut majeur d'implantation peut être dû à :

- un travail trop profond de la herse rotative;
- un retassement insuffisant du sol;
- une trop forte pression sur les socs du semoir ;
- un mauvais réglage des organes assurant le recouvrement des graines ;
- une trop grande vitesse d'avancement lors du semis.

Attention, avec de nombreux herbicides utilisables à l'automne, le semis doit être fait à profondeur régulière (2-3 cm maximum) et les semences doivent être bien recouvertes afin de garantir une meilleure sélectivité des traitements.

Le développement homogène de la jeune culture, en grande partie régi par la régularité du semis, est aussi nécessaire pour que les stades limites de chaque plantule soient atteints simultanément lors d'éventuels traitements de postémergence automnale.

Dans le cas de semis direct sur des terres où la paille a été hachée, la profondeur de semis doit être légèrement augmentée (+ 1 cm) pour que les graines soient bien mises dans la terre.

5 La densité de semis

5.1 En froment

L'objectif est d'obtenir une population d'environ 150 à 200 plantes par m^2 à la sortie de l'hiver pour les semis précoces et normaux et 200 à 250 plantes par m^2 pour les semis tardifs.

Au-delà de 250 plantes, quelles que soient les phytotechnies mises en œuvre, les rendements atteints ne sont pas supérieurs à ceux obtenus avec des densités moindres. Ils s'avèrent même souvent plus faibles et sont en tout cas plus coûteux à obtenir.

En deçà de 150 plantes, les rendements peuvent encore régulièrement se situer très près de l'optimum. Dans les semis précoces, ou à date normale, la population pour autant qu'elle soit régulière peut même descendre à près de 100 plantes par m² sans pertes significatives de rendement.

Les densités recommandées

La densité de semis doit être adaptée en fonction :

Tableau 1 – Densité de semis en fonction de la date de semis.

Dates	Densités en grains/m²
01 - 20 octobre	200 - 250
20 - 30 octobre	250 - 300
01 - 10 novembre	300 - 350
10 - 30 novembre	350 - 400
01 - 31 décembre	400 - 450
31 déc 28 février	400

- **de la date de semis** : dans nos régions, pour un semis réalisé en bonnes conditions de sol, les densités de semis recommandées selon l'époque de semis sont reprises dans le tableau 1 ;
- de la préparation du sol et des conditions climatiques qui suivent le semis
- Pour des semis réalisés dans des conditions « limites » (temps peu sûr, longue période pluvieuse avant le semis, ...), elles peuvent être majorées de 10 %. Au contraire, lorsque les conditions de sol et de climat sont idéales, elles peuvent être réduites de 10 à 20 %;

du type de sol

Dans des terres plus froides, plus humides, plus argileuses, voire très difficiles (Polders, Condroz), ces densités doivent être majorées de 20 à 50 grains/m².

5.2 En escourgeon

En conditions normales, la densité de semis de l'escourgeon doit être d'environ 225 grains/m² soit 90 à 120 kg/ha; celle de l'orge d'hiver doit être un peu plus élevée : environ 250 grains/m² soit 120 à 125 kg/ha.

La densité de semis doit être augmentée lorsque le semis est réalisé :

- dans de mauvaises conditions climatiques ;
- dans des terres mal préparées ;
- dans des terres froides (Condroz, Polders, Ardennes);
- tardivement.

5.3 La densité de semis des variétés d'escourgeons hybrides

Le coût des semences des variétés hybrides est nettement plus élevé que celui des variétés lignées. Une partie de ce surcoût peut-il être amorti par une réduction de la densité de semis de ces variétés hybrides? Pour répondre à cette question, plusieurs expérimentations ont été réalisées, d'une part à Lonzée (tableau 2) par le POB et l'Unité de phytotechnie de Gembloux Agro Bio-Tech et d'autre part, dans quatre lieux du réseau d'essais pour l'inscription des variétés au Catalogue national par l'Unité Stratégies phytotechniques du CRA-W (tableau 3).

Tableau 2 – Comparaison de l'influence de quatre densités de semis (75 à 225 grains/m²) sur le rendement (en kg/ha) de variétés hybrides et lignées d'escourgeon. GxABT – Lonzée 2012.

Semis		22-sept	
Précédent			Froment
	T	13-mars	
Fumure	R	27-mars	
	DF	2-mai	
Eongicido		5-avr	Opus 1,5 L + Bravo 1L
Fongicide		4-mai	Opera 1,2 L + Bravo 1L

	Rendement (kg/ha)											
Densité de	sité de Saskia Cervoise		Volume - hybride Tatoo - hybride			moyenne						
semis	0-90-90	35-55-90	0-90-90	35-55-90	0-90-90	35-55-90	0-90-90	35-55-90	0-90-90	35-55-90	générale	
75 gr	8392	8702	8606	8798	10329	9970	9353	9977	9170	9362	9266	
125 gr	8443	8793	8725	8964	10048	9835	9467	9879	9171	9368	9269	
175 gr	8517	8737	8707	8784	9997	10081	9573	9631	9198	9308	9253	
225 gr	8473	8727	9013	8874	10154	9867	9586	9783	9307	9313	9310	
Moyenne	8456	8740	8763	8855	10132	9938	9495	9817	9212	9337	9274	

	Variété	Fumure	Densité	inter var- fum	inter var- dens	inter fum- dens
\mathbf{F}	173,42 SS	5,90 S	0,22 NS	5,17 SS	0,60 NS	0,74 NS
ppds05	145	103	145			
ppds01	192	136	192			
CV	3,54					

Dans cet essai, où les densités de semis variaient de 225 gr/m² (densité normale pour les variétés lignées) à 75 gr/m², aucune différence significative de rendement n'apparaît entre la densité recommandée en variétés classiques et les densités réduites, y compris jusqu'à un tiers de la densité recommandée. Cette absence de réponse à la densité de semis est observée non seulement pour les variétés hybrides mais aussi pour les variétés lignées, quel que soit le mode de fractionnement de la fumure azotée.

Tableau 3 – Comparaison de l'influence de trois densités de semis sur le rendement de deux variétés hybrides d'escourgeon en quatre lieux du réseau d'essais « Catalogue national » CRA-W, 2012.

		Date de semis	Précédent	Fumure		
Nettines				13-mars	40 N	
	Condroz/Famenne	22-sept	Froment	4-avr	40 N	
				7-mai	40 N	
Bossière	Limoneux	26 sont	Colza	15-mars	50 N	
	Limoneux	26-sept	Coiza	3-avr	35 N	
Vous Domest	Hadhaya liágaoiga	25 sant	Froment	15-mars	50 N	
Vaux Borset	Hesbaye liégeoise	25-sept	Froment	25-avr	50 N	
Enghien	Limonauv hannuvar	29 sant	Froment	22-mars	50 N	
	Limoneux hennuyer	28-sept	rioment	10-mai	40 N	

Rendements kg/ha										
	Nettines		Bossièı	Bossière		set	Enghien		Moven	no
	Condroz/Fam	nenne	Limoneu	lX	Hesbaye liég	eoise	Limoneux hennuyer		Moyen	ne
Tatoo 225	8317	a*	10761	a*	9780	a*	9991	a*	9712	a*
Tatoo 175	8339	a*	10028	ab*	9872	a*	9931	a*	9543	a*
Tatoo 125	8191	a*	10422	ab*	10080	a*	9480	a*	9543	a*
Volume 225	8457	a*	10239	ab*	9682	a*	10108	a*	9622	a*
Volume 175	8460	a*	9498	b*	9655	a*	10086	a*	9425	a*
Volume 125	8004	a*	10058	ab*	9943	a*	10040	a*	9511	a*

^{*} Comparaison des moyennes: une même lettre signifie que les rendements ne sont pas significativement différents pour l'essai considéré

Dans 3 lieux sur les quatre, hormis à Bossière, les différences observées entre les rendements obtenus avec les densités normales (225 gr/m²) et les densités réduites de 50 et 100gr/m² ne sont pas significatives. A Bossière, les rendements sont plus fortement réduits à 175 gr/m² qu'à 125 gr/m², la tendance observée est quelque peu inattendue.

De ces essais 2012, on peut conclure qu'effectivement il est possible en escourgeon hybride comme en froment hybride de réduire les densités de semis sans perte significative du

potentiel de rendement, mais que dans les conditions des essais, cette possibilité était tout aussi valable pour les variétés classiques.

5.4 Remarques

- La qualité des semences est primordiale. Les densités de semis préconisées ne sont, bien sûr, valables que pour des semences convenablement désinfectées dont le pouvoir et l'énergie germinative sont excellents. Pour des lots de semences à moins bonne énergie germinative, les densités doivent évidemment être adaptées en fonction du pouvoir germinatif.
- Ces densités de semis sont données en grains/m² et non en kg/ha parce que suivant l'année, la variété, les lots de semences, le poids des grains peut varier assez sensiblement.
- **Pour les variétés hybrides**, les normes recommandées doivent être réduites de 30 à 40 % quelle que soit l'époque de semis.

Voir la rubrique « Traitements des semences » dans le chapitre « Protection des semis et des jeunes emblavures »