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ABSTRACT

Solar twins have been a focus of attention for more than a decade, because their structure is extremely close to that of the Sun. Today,
thanks to high-precision spectrometers, it is possible to use asteroseismology to probe their interiors. Our goal is to use time series
obtained from the HARPS spectrometer to extract the oscillation frequencies of 18 Sco, the brightest solar twin. We used the tools
of spectral analysis to estimate these quantities. We estimate 52 frequencies using an MCMC algorithm. After examination of their
probability densities and comparison with results from direct MAP optimization, we obtain a minimal set of 21 reliable modes. The
identification of each pulsation mode is straightforwardly accomplished by comparing to the well-established solar pulsation modes.
We also derived some basic seismic indicators using these values. These results offer a good basis to start a detailed seismic analysis
of 18 Sco using stellar models.
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1. Introduction

In the field of stellar physics, the study of solar twins has recently
received growing attention. Since the term was first coined by
Cayrel de Strobel et al. (1981) to designate stars spectroscopi-
cally identical to the Sun, they have been the focus of photomet-
ric and spectroscopic studies aiming at measuring their funda-
mental atmospheric parameters (Gustafsson 1998; Meléndez &
Ramírez 2007; Gustafsson 2008; Meléndez et al. 2010). On the
one hand there has been an on-going race to find the “best” solar
twin. On the other, samples of such stars have been used to try
to answer statistically the question: is the Sun a peculiar star?

Nowadays, thanks to various technical breakthroughs in the
field of observational astrophysics, these founding studies can be
supplemented by additional measurements. Spectropolarimetric
surveys of the solar twins using NARVAL have allowed ob-
servers to detect magnetic fields in several objects and to re-
construct their magnetic topology (Petit et al. 2008). More

� Based on observations collected at the European Organisation
for Astronomical Research in the Southern Hemisphere, Chile (run
ID: 183.D-0729(A)).
�� Results of the MCMC analysis are only available at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/544/A106

recently, Bazot et al. (2011, hereafter Paper I) combined
interferometric and asteroseismic measurements, from respec-
tively the PAVO beam combiner at the CHARA array and the
high-precision spectrograph HARPS at La Silla Observatory, to
estimate the linear and acoustic radii of 18 Sco, the brightest so-
lar twin, and to derive its mass. The method used to determine
the acoustic radius relied on the use of the autocorrelation of the
radial-velocity time series. This paper is the continuation of this
study, which now aims at a detailed analysis of the seismic data.

Asteroseismology measures quantities directly sensitive to
the stellar interiors. This is an advantage compared to the classi-
cal observable quantities, usually obtained from spectroscopy or
photometry, which are sensitive to the poorly-modelled external
layers of the stars. In contrast, it is possible to extract informa-
tion from the seismic signal roughly independent of these layers
and more robustly described by the existing stellar codes.

Following the development of high-precision spectrographs
(mostly for the search of extrasolar planets) and the space mis-
sions CoRoT and Kepler, seismic data have been more and
more frequently used to model stars in general, and main se-
quence sun-like stars in particular (e.g., Miglio & Montalbán
2005; Bazot et al. 2005, 2008; Doğan et al. 2010; Metcalfe et al.
2010; Brandão et al. 2011). The best-case scenario from the
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Fig. 1. Time series of radial velocities (upper panel) and their uncertain-
ties (lower panel) from HARPS observations of 18 Sco. A few points
deviating strongly from the bulk of the time series lie outside the plotted
range.

perspective of detailed modelling is to have access to the eigen-
frequencies of the stellar pulsation modes and to their charac-
teristic numbers n, l,m.1 They are then combined to effectively
obtain surface-independent information. In the following, we
present the strategy used to determine these frequencies.

In Sect. 2 we discuss the data and return to some of the
sampling issues evoked in Paper I. Before proceeding to the fre-
quency analysis we give an overview of the characteristics of the
noise affecting the seismic signal in Sect. 3. We recall the char-
acteristics of the parametric model used to describe the power
spectrum in Sect. 4. We define an inverse problem for the esti-
mation of the parameters and cast it into a Bayesian formulation.
We then solve it numerically using a Markov chain Monte Carlo
(MCMC) algorithm. Our strategy is to first, test the methodol-
ogy using simulated time-series and then to apply it to the real
data. In Sect. 5, we discuss several aspects of our results. From
a methodological standpoint, we try to assess the robustness of
our MCMC strategy by comparing it to another estimation pro-
cedure. We also discuss the choice of our parametric model and
the priors we used in our Bayesian formulation. From a physical
point of view, we measure the impact of our new estimates on
the acoustic radius and the stellar mass.

2. Data

The time series was described in Paper I and is shown in Fig. 1 in
its unfiltered version. We collected 2833 radial velocity measure-
ments over 12 nights from 10 to 21 May 2009. In this section, we
would like to draw the attention on some of the consequences of
the window function w(t) =

∑
δ(t − tn), with tn the median time

of the nth exposure.
The observed signal can be written y(t) = ỹ(t)w(t), with ỹ(t)

the continuous time series. When the sampling is uniform, the
definition of the Nyquist frequency is νN = 1/(2Δt), with Δt
the sampling time. In the case of unevenly sampled time series,
there is, strictly speaking, no Nyquist frequency. However, this
does not mean that there is no spectral folding and equivalent
frequencies have been suggested (see e.g. Bretthorst 2000).

1 With n the number of nodes of the eigenfunction to the stellar pul-
sation equations and l,m corresponding to the angular degree and the
azimuthal order of the eigenfunction, related to the orthogonal set of
spherical harmonics Ym

l , which are solutions to Laplace’s equation.

Fig. 2. Power spectrum of the radial velocity of 18 Sco estimated using
a Lomb-Scargle weighted periodogram. The vertical dashed line marks
the equivalent Nyquist frequency calculated using the median exposure
time. The inset shows the power spectrum of the window function w(t),
normalized to its maximum.

The power spectrum of 18 Sco is shown in Fig. 2. The dif-
ferences with the figure of Paper I come from the filtering of
the time series2. The inset shows the spectral window, that is the
squared modulus of the Fourier transform of w(t). Its maximum
is at 0 (around which also stand the daily aliases, not visible here,
see Paper I), and two prominent peaks at ±7.4 mHz. They are
the aliases caused by the sampling. This means that any signal
present at frequencies around 3.7 mHz is likely to be folded. It
should, however, be emphasized that this is not a clear-cut limit,
nor an exact estimate; therefore, it is not possible to assess firmly
whether some modes at higher frequencies perturb the spectrum
below 3.7 Hz or, for that matter, if we are missing some genuine
modes above this limit.

It turns out that the median observing time, med(Δt), offers a
reasonably good estimator of the upper limit for folding. This is
expected because the sampling is close to uniform. From night
to night, the mean values of the observing time lie in the range
132–172 s and their standard deviations within 2–232 s (the up-
per value resulting mostly from one cloudy night, otherwise, the
standard deviations lie in the range 2–60 s, the remaining dis-
crepancy being explained by longer exposures during some of
the nights). Furthermore, the median is almost unaffected by the
daily gaps. Defining our “equivalent Nyquist frequency” as

ν(n.u.)N =
1

2med(Δt)
, (1)

we obtain an indicative value of 3.7 mHz, in good agreement
with the general shape of the spectrum.

Such a low value of ν(n.u.)N is also a problem when estimating
the various noise contributions in the power spectrum. In partic-
ular, it makes it difficult to address the question of the photon
noise level, which is the main source of noise at high frequen-
cies, i.e. few mHz above the p-mode envelope (see Fig. 3). A
common, straightforward approach consists of estimating it by
simply calculating an average of the amplitude spectrum well
above the p-mode region; this cannot be done here because of
the spectral folding.

2 And from a small numerical bug in the weighting scheme of the
LS spectrum in Paper I. The lower amplitude observed in Fig. 2 should
be considered as the reference. This does not affect the results from
Paper I.
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Fig. 3. Power spectrum of the radial velocity of 18 Sco represented in
logarithmic units. The contributions to the noise from granulation (G),
supergranulation (SG) and from a third Harvey-like component are rep-
resented as dashed lines. The photon noise is a dot-dashed line. The p
mode component of the spectrum appears as a dotted line. The full red
line shows their sum. The black dots are the points of a binned power
spectrum that has been effectively used to perform the fit.

3. Noise

Before considering the extraction of p-mode oscillation frequen-
cies, we discuss briefly the impact of the different noise sources
on the relevant signal. It is customary to consider three main phe-
nomena contributing to the overall noise: activity, granulation
(at different scales) and instrumental noise (which we assumed
to be close to the photon noise, however see Dumusque et al.
2011). Characteristic times for activity typically scale as the ro-
tational period. In the case of 18 Sco, a 22.7-d rotation period
has been measured from spectropolarimetry (Petit et al. 2008).
A 12-d time series is certainly not enough to capture this kind of
signal. We therefore ignore this contribution.

Harvey (1985) suggested modelling the contributions to
the power spectrum coming from granulation as Lorentzian,
4σ2τ/[1+(2πντ)2], with τ the characteristic timescale of the pro-
cess and σ the velocity rms. Such functions are representative of
non-oscillatory velocity fields whose autocorrelations decay ex-
ponentially with time. However, it is difficult to detect this kind
of signal precisely enough to assess accurately which of these
phenomena contribute effectively to the low-frequency signal.
In fact, the exact dependency of these noise components on fre-
quency is unclear and still subject to discussion (e.g. Guenther
et al. 2008). Note that it is also possible to use simpler scal-
ing laws of the form ν−2 to model them. In all cases, following
Harvey (1985), we should warn that these models are crude.

In seismic studies, it is customary to use parametrized
“Harvey functions”, H (ν) = α/[1 + (2πντ)β], in order to im-
prove the fit to these low-frequency components. After several
trials we found that we needed to use three such functions. The
photon noise is assumed to be white. The contribution to the
power spectrum of the p modes is modelled as a Lorentzian enve-
lope (Dumusque et al. 2011). Figure 3 shows the power spectrum
corresponding to our time series in logarithmic units. It has been
computed using a weighted Lomb-Scargle periodogram (Lomb
1976; Scargle 1982; Zechmeister & Kürster 2009). It was evalu-
ated at frequencies separated by 1/T , with T the total observing
time. To allow comparison with previous studies, it has been nor-
malized according to Kjeldsen et al. (2005). The best fit to the
spectrum of this composite model is also shown. For stability,

Table 1. Parameters for the best fit to the smoothed spectrum with
uncertainties.

τ (s) α (m2 s−2/μHz) β

1 (SG) 6642 ± 438 (7.2 ± 1.1) × 10−2 5.1 ± 0.3
2 1051 ± 34 (6.8 ± 0.5) × 10−2 16.9 ± 1.3
3 (G) 389 ± 5 (5.7 ± 0.1) × 10−4 2.47 ± 0.05

Power (m2 s−2/μHz)
Photon noise (6.46 ± 0.16) × 10−5

Notes. SG and G stand respectively for the supergranulation and gran-
ulation components.

the fit to the background was performed on a heavily smoothed
version of the spectrum in order to retain only the slowly-varying
features. These values, because of the low “Nyquist” frequency,
should be considered with care. In particular, it is much easier to
perform this fit when the photon-noise constant component can
be fixed separately using the signal-free high-frequency regions
of the power spectrum3.

The results of our fit are given in Table 1, which displays
the parameters of the Harvey functions and the average photon
noise. In order to estimate uncertainties on the fitted parameters,
we assumed that the binned points in the smoothed power spec-
trum obey Gaussian statistics, whose variances were evaluated
using the rms in each bin. We then used a simple Monte Carlo
experiment with 10 000 simulated spectra to obtain the uncer-
tainties displayed in Table 1.

The Harvey functions are often interpreted as representing
different scales of surface convective motions. In the case of
granulation, the timescale agrees well with those found in the so-
lar case by Harvey (1985) and Lefebvre et al. (2008). It is possi-
ble that the the larger timescale phenomena correspond to super-
granulation, which has been well-studied in the solar case. We
however note that the value returned for τ is lower by one or two
orders of magnitude than results found by Harvey (1985); Title
et al. (1989); De Rosa et al. (2000) and Shine et al. (2000). It is
not possible with such short time series to determine whether it
is an intrinsic difference between 18 Sco and the Sun or if this is
a methodology-induced effect. The intermediate scale is some-
times interpreted as mesogranulation (Dumusque et al. 2011),
but its very existence is subject to debate in the solar case (see
Nordlund et al. 2009, and references therein). This debate being
outside the scope of this paper, we limit ourselves to mention this
intermediate scale without attributing it to surface convection or
to an instrumental artifact in the data.

4. Modelling of the signal

4.1. The spectrum model

In sun-like stars, p modes are excited by turbulent convective
motions. Meanwhile, each mode is damped (see e.g. Houdek
et al. 1999). It is assumed that the number of excitation events
per damping time is large. The central-limit theorem then en-
sures that the amplitude distributions of the modes converge
towards normal ones (Foglizzo 1998), which translates into a
power spectrum that is exponentially distributed. We make the
additional assumption that the frequency bins in the Fourier

3 In fact, the only region of the power spectrum that seems relatively
free from stellar granulation noise is the narrow range 1800–2200 μHz,
where the average noise is 2.6 cm s−2 (against 2.4 cm s−2 for the fitted
photon noise).
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space are independent. In this case, the density probability den-
sity of the power spectrum at frequency νi is given by

f (p(νi)) =
1

P(νi)
exp

[
− p(νi)

P(νi)

]
· (2)

Ideally, if one obtains many independent measurements of the
stellar power spectrum, it will tend, at each νi, towards the ex-
pectation value P(νi). The form of this function must be speci-
fied from our knowledge of the physical processes governing the
mode excitation and the various sources of noise. The expected
value of the power spectrum corresponding to one oscillation
mode k, Pk(νi), was derived theoretically by Anderson et al.
(1990). Considering the equation for a simple damped oscillator
with random forcing, they showed that Pk(νi) has the form of
a Lorentzian centred at νk, the eigenfrequency of the mode. If
we make the additional assumption that the modes are uncorre-
lated, which is supported by the observations in the solar case
(Foglizzo et al. 1998), the expectation value for the multi-modal
power spectrum can be written in the form

P(νi) �
⎡⎢⎢⎢⎢⎢⎣P ′(νi) +B(νi) +

K∑
k=1

V2
k Hk

1 + u2
i,k

⎤⎥⎥⎥⎥⎥⎦ ∗ |W(ν)|2. (3)

Here, the Vk represent the visibilities of the modes, Hk their
heights, and ui,k = 2(νi − νk)/Γk, with Γk the linewidth of the
Lorentzian. It is related to the mode lifetime through the relation
Γk = 1/πτk, with τk the lifetime of mode k. These parameters are
real-valued. P ′(νi) is the power density for all the modes that
are not taken into account in the sum (mostly l = 4 and 5 modes,
but also unidentified modes with l ≤ 3; Fletcher et al. 2009) but
still contribute to the overall power, and B(νi) the noise con-
tribution, using a ν−2 scaling law to describe the low-frequency
component. Note that the convolution by |W(ν)|2 (W(ν) being
the Fourier transform of the window function) in Eq. (3) is only
justified because we are considering the expectation value of the
power of a stochastic function (Deeming 1975), hence assuming
our time series are purely stochastic functions. A more rigorous
approach can be found in Stahn & Gizon (2008) but was not
implemented here.

The model is characterized by a parameter vector θ ∈
{{θk}1≤ k≤K , θB, θP′ }, which we must estimate. Here θk ∈
{νk, Γk,Hk} and has to be estimated for K modes4 (the Vk can
be computed straightforwardly provided some assumptions are
made on the mode degree). The vectors θB and θP′ regroup
the parameters describing respectively B (see Sect. 3) and P ′.
The inverse problem is now set, as we need to provide estimates
of θ being given y = (y1, . . . , yN). This estimation problem,
when applied to helio- or asteroseismic data is sometimes re-
ferred to as “peak bagging”.

A classical approach, first used in helioseismology and then
adopted in asteroseismology, involves estimating the parame-
ters of P(ν) by minimizing the corresponding negative log-
likelihood function (Anderson et al. 1990)

− ln(L(θ)) = −
∑

i

ln f (p(νi; θ)) =
∑

i

[
p(νi)
P(νi)

+ ln P(νi)

]
, (4)

where we used the notation f (p(νi; θ)) = f (p(νi)) to indicate the
dependency on the model parameters5.

4 This number has to be provided by some ansatz.
5 Using the (frequentist) Maximum Likelihood (ML) method, one de-
fines a Maximum Likelihood Estimator (MLE) as the value of θ that
minimizes −L(θ)

MLE(θ) = argmin
θ

(− ln(L(θ))).

4.2. Bayesian formulation of the problem

Studying L(θ) can be an challenging task. For likelihoods that
are highly non-linear in the parameters, the chance is high that
they possess multiple maxima. This makes the identification of
high-likelihood regions equivocal and hence complicates the pa-
rameter estimation. Furthermore, if the dimension of the space of
parameters is large, serious algorithmic problems might occur. In
particular, it becomes difficult to even locate the maxima of L(θ)
because one cannot sample efficiently the space of parameters.

A possible approach to this problem consists of using the
Bayes’ formula

π(θ|y) ∝ π(θ)L(θ), (5)

where π(θ|y) is the posterior probability density (PPD) of the
parameters for fixed data y and π(θ) is the prior density on the
parameters. We can therefore explicitly include the knowledge
we already have on θ in the PPD, so that π(θ|y) becomes the
quantity of interest instead of L(θ). If the prior is adequately
chosen it might significantly restrain the volume to sample in
the space of parameters. This potentially offers two advantages:
(i) from the statistical point of view, by reducing the number
of local maxima, (ii) numerically, some algorithms being more
likely to converge when the volume in the parameter space de-
creases. For general reviews on the Bayesian methodology, we
refer to monographs by Gregory (2005) or Robert (2007).

This approach has become very popular in the case of aster-
oseismology of sun-like stars. The main reason is that realistic
priors on the frequency distribution of the pulsation modes can
be obtained by using the theoretical asymptotic distribution of
the p modes6.

Bayesian methodology applied to asteroseismology and how
it might improve the fitting of the data has been discussed by,
e.g., Brewer et al. (2007) and Gaulme et al. (2009). In the fol-
lowing, we will mostly focus on the specific setups used in our
algorithms, with a particular emphasis on the priors included in
our probabilistic models.

4.3. Markov chain Monte Carlo estimation

A widespread approach to Bayesian estimation consists in using
MCMC algorithms to approximate the PPD of the parameters.

The (stochastic) sampling in the parameter space relies on
the convergence properties of Markov chains which, under cer-
tain circumstances, generate realizations of a random variable
according to a stationary distribution. The underlying idea of
MCMC algorithms is thus to produce a Markov chains whose
stationary distribution is the target PPD (Robert & Casella
1999). MCMC algorithms are a class of numerical methods that
aim at approximating PPDs. One of their features is that one can
sample a complex distribution using much simpler ones (often
called instrumental laws).

The base used here is a Metropolis-Hastings algorithm
(Metropolis 1953; Hastings 1970). Because the complexity of
the sampling increases with the dimension of the parameter
space, an additional scheme was added in order to set the instru-
mental law used for the sampling. This was done in a burn-in

6 The asymptotic relation in the limit of high frequencies (high orders)
and low degrees was given to successive orders of approximation by
Vandakurov (1967) and Tassoul (1980) and can be written as νn,l = (n+
l/2+ε)Δν+O(ν−1), with Δν the average large separation, i.e. the inverse
of twice the stellar acoustic radius, and ε a phase-related constant.
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sequence, during which the chain converges towards its station-
ary distribution7. The algorithm also allows one to run multi-
ple parallel chains in order to use tempering, which is useful to
prevent the Markov chains becoming stuck in local minima. A
complete description of the algorithm was given by Handberg &
Campante (2011).

4.3.1. Priors and algorithmic setup

The prior density on the frequency is certainly the most char-
acteristic feature of asteroseismology of sun-like star. We first
assume that the components θB and θP′ of θ are independent
from the other parameters. We fix them before the estimation of
the rest of the parameters. This assumption might affect the esti-
mation of the frequency of some low-amplitude mode. However,
it improves significantly the convergence of our algorithm. We
can reduce the prior probability density to

π(θ) = π(ν,Γ,H), (6)

where we used the simplifying notation ν = (ν1, . . . , νK), Γ =
(Γ1, . . . , Γk) and H = (H1, . . . ,Hk).

In practice, we recast the problem of estimating the
K linewidths Γk to the estimation of only two parameters by as-
suming a linear dependency of the linewidth on the frequency.
We considered only the values of the linewidth Γ1 and Γ2 at
2800 μHz and 3600 μHz respectively. From theoretical mod-
elling and observational results in the Sun, it is clear that this is
an oversimplification. However, it is difficult to suggest a proper
empirical law and retaining a linear model should at least cap-
ture the overall increasing trend of the linewidth with frequency
(Houdek et al. 1999), although it might not even be strictly
monotonic (Chaplin et al. 2005). The relevant parameter space
is now {ν, Γ1, Γ2,H}. Assuming that the νk, Γ1 and Γ2 are all in-
dependent parameters, we can write the second term in (6) as

π(ν,Γ,H) = π (H|ν, Γ1, Γ2) π(ν, Γ1, Γ2)

= π (H|ν, Γ1, Γ2)
K∏

k=1

π(νk)
2∏

i=1

π(Γi). (7)

Mode heights have been fixed as follows. We first smoothed the
power spectrum8, according to Kjeldsen et al. (2008). To each νk
we can thus associate a value for the amplitude, Ak, which is then
converted to height using the relation Hk = 2A2

k/(πΓk) (Chaplin
et al. 2008). The first term in the right-hand side of Eq. (7) is
therefore

π(H|ν, Γ1, Γ2) =
K∏

k=1

δ

⎛⎜⎜⎜⎜⎝Hk −
2A2

k

πΓk

⎞⎟⎟⎟⎟⎠ · (8)

For the frequencies and the mode lifetimes we chose uniform
distributions9 on the regions where the parameters are allowed
to vary. The prior density simplifies to

π(θ) =
K∏

k=1

�ak (νk)δ

⎛⎜⎜⎜⎜⎝Hk −
2A2

k

πΓk

⎞⎟⎟⎟⎟⎠ 2∏
i=1

�bi(Γi), (9)

7 This burn-in sequence is then discarded when estimating the PPD.
8 This procedure might, of course, depend slightly on the filter used.
We neglect this contribution.
9 Such distributions sometimes enter in the quite generic category of
uninformative priors. Considering that we severely restrict our individ-
ual modes to vary in a small portion of the frequency domain, this seems
hardly to apply here. . .

where

�a(ν) =

{
1 if ν ∈ a,
0 if ν � a.

(10)

The intervals ak were chosen to have widths of 12 μHz and be
centred on the initial guesses. These were selected by multiply-
ing by 0.991 the solar frequencies from Broomhall et al. (2009,
see Sect. 4.3.4 for a discussion). This ensured that the daily
aliases at ±11.57 μHz of each modes should not perturb the fit.
Moreover, provided that the small separations (see Sect. 5.3) are
large enough, this should also limit the possibilities of “mode
swapping” for close peaks. We consider frequencies only in the
range 1965–3700 μHz. The total number of frequencies was
fixed at K = 52. This prior effectively filters out the signal that
is not included in windows centred on our first guesses for the
frequencies. For the linewidths, we set b1 = b2 = [0, 5] μHz.

This is essentially the same approach as used for the study of
Procyon with the same algorithm in Bedding et al. (2010). One
has to keep in mind that these are strong assumptions, especially
the one on the mode heights. This has to be taken into consid-
eration when comparing the results to other methodologies in
Sect. 5.

The simulation made use of 6 parallel chains for tempering.
After removal of a ∼250 000 sample burn-in sequence, we ob-
tained an approximate PPD for θ based on ∼2 000 000 samples.

4.3.2. Statistical analysis

The MCMC simulation provides us directly with the marginal
probability densities of our parameters10. We can thus calculate
various statistics that describe these densities. For each of them,
we considered the posterior mode and the posterior median.

The corresponding 100(1 − η)% credible sets for the modes
was defined as the smallest set containing the parameter with
probability 1 ≥ 1 − η ≥ 0

Cmode
k = {νk ∈ ak |π(νk|y) ≥ q(η)} , (11)

with q the smallest constant such as P(Cmode
k |y) ≥ 1 − η. This

credible set always include the mode11.
For the medians, the credible 100β% sets were defined as

the intervals for which the parameter is higher or lower than
these quantities with equal probability, β/2 with 1 ≥ β ≥ 0.
We computed them using using the cumulative distribution
function12 (cdf)

Cmedian
k =

{
νk ∈ ak|1 + β2

≥ cdf(νk |y) ≥ 1 − β
2

}
· (12)

The corresponding credible intervals are simply the upper and
lower values of the corresponding set. We now discuss the rel-
evance of these statistics using our MCMC algorithm on simu-
lated time series.

10 The marginal PPD of a given parameter is simply the PPD integrated
over all the other

π(θi|y) =
∫
π(θ|y)dθ1 . . . dθi−1dθi+1 . . . dθN .

11 The marginal distribution itself was estimated from the MCMC sam-
ple using a kernel density estimation algorithm.
12 The cdf is obtained directly from the MCMC output.
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4.3.3. Results for simulated time series

Evaluating the performance of estimation methods against arti-
ficial data is common practice. Of course, we need simulations
realistic enough to ensure the conclusions can be transposed to
the real case. 18 Sco offers a good opportunity to carry out such
an exercise. Indeed, its similarity to the Sun suggests that we
can obtain satisfying mock data. To that effect, we simply need
to start from a solar seismic model, which, with respect to as-
teroseismic standards, is extremely well-known, and scale its
parameters accordingly.

In this section, we use only one artificial time series, in par-
ticular because of the MCMC algorithm is time-consuming. The
artificial time series were constructed using the BiSON solar fre-
quencies. They were multiplied by the ratio of 18 Sco average
large separation to the solar one (�0.991). The mode heights and
lifetimes were assumed to be solar. These parameters were given
as input to the solarFLAG simulator (Jiménez-Reyes et al. 2008)
to produce evenly sampled time series. These data were subse-
quently interpolated to the observing times of the 18 Sco data.

An additional heuristic adjustment has been made in order
to produce a realistic data set. We scaled the amplitude of the
time series by a constant factor and added to each point the re-
alization of a Gaussian random variable to simulate the photon
noise. This was done by setting the noise level in the frequency
space and then converting to the time space using the relation
σphot = NA(ν)/π, with σphot the scatter due to the photon noise,
N the length of the time series, and A(ν) the photon noise level
as estimated from the amplitude spectrum. The scaling constant
and the variance of the underlying noise distribution were ad-
justed to reproduce roughly the signal-to-noise ratio observed
in the amplitude spectrum of 18 Sco13. We crudely fixed these
values to 0.95 and 0.4 cm/s, so that the artificial signal-to-noise
ratio is 6.46, compared to the 6.65 value measured for the ob-
servations. This gives a maximum amplitude and a noise level in
the simulated spectrum within 5% of the observed ones.

We note that such a photon noise level corresponds to an
average amplitude of 2.7 cm/s (or 8.3 × 10−5 m2 s−5/μHz) in the
region 1800–2200 μH. This is similar to the observed value, for
which we assumed that only photon noise was present in this
interval (Sect. 3). This might be an a posteriori warning that this
assumption is inadequate. It might also mean that neglecting the
term P ′(ν) in Eq. (3) is not valid. The time series was analyzed
using the MCMC algorithm set as described above.

Table 2 gives the results of our numerical experiment. It dis-
plays the mode and median estimates of the frequencies and their
corresponding credible intervals. We also listed the input fre-
quencies to the time series simulator. These results might guide
us as to which summary statistic to use. The median capturing
the central tendency of the distribution, it might often lead to
a better fit to the data than the mode of the marginal posterior.
However, we notice that 35% of the input frequencies are con-
tained in the credible intervals for the modes, whereas only 30%
of them are in the median credible intervals. The mode credible
intervals are in general larger than those computed for the me-
dian, and quite often the former encompass the latter. These low
values might indicate that we underestimate the uncertainties in
both cases. On the other hand, if we define an average absolute
error as

∑
k |̂νk−νinput

k |/K with ν̂k, k = 1, . . . ,K, the estimated fre-
quencies, we find a larger value for the modes (1.76 μHz) than

13 Defined for practical purpose as the ratio of the amplitude maxi-
mum in the 1500–3700 μHz region to the averaged amplitude over the
1800–2200 μHz interval.

Fig. 4. Echelle diagram for 18 Sco. The blue dots represent the frequen-
cies given in Table 3. The 68.3% credible interval are also represented.
The black circles show the scaled BiSON frequencies for the Sun (their
best-fitting model, Table 1 in Broomhall et al. 2009). To plot this échelle
diagram, we used the value of the large separation given in Paper I.

for the medians (1.31 μHz). This indicates that the median is
indeed, on average, more accurate than the mode.

A closer look at the marginal densities could give some
explanation to this. We often observe very skewed or multi-
modal marginal posterior densities for the eigenfrequencies of
our model. It is especially true at low and high frequency, i.e. for
low and high radial orders. The median is a better estimator in
∼66% of the case, almost all corresponding to this kind of dif-
ficult situations. Therefore, and considering that the credible in-
tervals are conservative enough for both statistics, we opted for
the estimator leading to the most accurate and precise values,
i.e. the median.

It should also be noted that, at low frequencies, some den-
sities are very strongly peaked around a central eigenfrequency.
This translates into very narrow credible intervals that seem to
be unrealistic. This can be explained by the fact that these pul-
sation modes have long lifetimes and are thus unresolved by our
time series. Thus, they appear in the spectrum as Dirac functions
and are not properly modelled by a Lorentzian. They should be
considered carefully. At the very least the credible intervals as-
sociated with these particular frequencies are meaningless.

4.3.4. Mode identification

The problem of identification, i.e. associating a couple (n, l) to
the frequencies14 detected in the time series, can be extremely
difficult to solve. The standard way to proceed consists in com-
paring the observations to the theoretical asymptotic formula
(see note 6). However, there are many instances of seismic stud-
ies, both from space and ground-based, whose outcome led to
uncertainty on the identification (Martić et al. 2004; Carrier &
Bourban 2003; Kjeldsen et al. 2005; Appourchaux et al. 2008;
Benomar et al. 2009; Bedding et al. 2010). This of course may be
pathological when confronted with single-site ground-based ob-
servations. This is problematic from the modelling standpoint,

14 Rotation is neglected, therefore m = 0.
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because if one wants to compare observed and theoretical fre-
quencies (or, see Sect. 5.3, rational functions of the νn,l), one
needs to be able to identify precisely the observed modes.

We are thus in a very particular position when studying
18 Sco, in which we can confirm a posteriori the orders and de-
grees we assigned for each mode. If we make the assumption
that in a close vicinity of the Sun the surface related terms in the
asymptotic relation do not vary significantly, we can consider
that the individual frequencies scale roughly as the average large
separation, i.e. as the mean density of the star.

Such a situation is expected if the stars are close to homolo-
gous (which in fact is never really the case for main-sequence
stars). This is somewhat justified by the findings of Paper I,
giving a ratio for the large separations Δν�/Δν18Sco ∼ 1.0007.
Therefore, we simply assign the (n, l) by comparing directly the
frequencies of 18 Sco to the scaled solar ones as suggested by
Bedding & Kjeldsen (2010). A graphical check is sufficient to
do so, as seen in Fig. 4, in which are plotted the solar modes
obtained from BiSON (Broomhall et al. 2009).

4.3.5. Observed frequencies

We analyzed the observed time series using the method de-
scribed in Sect. 4.3.1. For the 52 fitted modes, we found cred-
ible intervals consistent with those estimated from the simulated
time series. Given the comments made above, we are confident
in their robustness. In some cases we obtained very narrow cred-
ible sets, whose upper and lower limits, relative to the median
value, are <0.1 μHz in absolute value. These are always high am-
plitude modes. In Table 3, we give the medians of the marginal
densities alongside the corresponding 68.3% credible regions.
They are shown in Fig. 4.

The marginal probability densities are qualitatively in good
agreement with the results from the simulations. However more
of them exhibit multiple maxima, perhaps because of the lower
photon noise level used in the simulations. This is always prob-
lematic when using the median, since it might bias the estima-
tion towards maxima not corresponding to the real frequency.
We flagged these modes in Table 3. Note, however, that the
process remains subjective, and we considered only the densities
for which the secondary maxima were obvious. These modes can
be used in subsequent studies, but one should keep in mind that
the summary statistics we used do not capture all the features
of the distribution. The average width of the 68.3% credible re-
gions on the median is slightly smaller than the one observed for
the simulated time series, but this should not prove significant.
Compared to the simulations, we also found more skewed dis-
tributions. This reinforces our choice to use the median for the
statistical summary.

We again observe some very sharply peaked marginal den-
sities. Such shapes lead to very narrow and unrealistic credi-
ble regions, for instance much narrower than has been found
from space missions with much longer observing baselines (see
e.g. Gaulme et al. 2009; Mathur et al. 2010; Campante et al.
2011). They appear at low frequencies where the mode lifetimes
are known to be longer, and we can thus express doubts about
the resolution of modes (0, 14), (1, 13), (1, 14), and (2, 13),
which are flagged accordingly in Table 3. They are all located
at low frequencies, ν � 2150 μHz. This give an approximate
limit above which the modes start to be resolved. In the case of
modes (1, 13) and (1, 14), the kernel estimations of the densities
return a numerical error. This might indeed confirm that they
cannot be approximated by a continuous density, which would
be characteristic of an unresolved pulsation mode. These modes

might very well be real. However, because the Lorentzian model
becomes incorrect for unresolved modes, the associated uncer-
tainties are likely to be widely underestimated.

Finally, and anticipating the discussion below, some modes,
when estimated with an alternative strategy which does not fix
the heights (see Sect. 5) did not pass an hypothesis testing. We
flagged them and do not recommend their use in subsequent
studies.

The results of our MCMC simulation are available at
www.astro.up.pt/~bazot/data/18ScoII/.

5. Discussion

5.1. Comparison to a MAP approach

Our goal in this section is to compare the performance of our
MCMC approach with another Bayesian strategy based on the
direct optimization of the PPD. Note that this is a very general
comparison, since not only do we change the a posteriori esti-
mators (median and maximum of the PPD), but we also modify
our probabilistic model, i.e. the priors. We chiefly want to get
an idea of how consistent they might be. This is good procedure
to cross-check results obtained using different methodologies.
In the case of 18 Sco, given the relatively difficult nature of the
data, we see this as necessary.

In the Maximum A Posteriori (MAP) approach, the like-
lihood is replaced by the PPD. The estimator for the model
parameters becomes

MAP(θ) = argmax
θ

(π(θ|y)). (13)

This estimator is sometimes called the regularized likelihood.
This is a common strategy and has been used in the case of the
Sun (Chaplin et al. 2002; Broomhall et al. 2009) and stars ob-
served from satellites (Appourchaux et al. 2008; Deheuvels &
Michel 2010). Here, the regularized likelihood is maximized us-
ing a Powell algorithm.

5.1.1. Setup and tests

An interesting feature of this direct optimization approach is
that it converges somewhat more easily than our MCMC algo-
rithm. Therefore, we were able to use less constraining priors.
The mode lifetimes and heights were both left free to vary. We
applied on the frequencies priors close to those described by
Eq. (9). The main difference is that, instead of considering in-
dividual frequencies, we considered pairs of frequencies of sim-
ilar parities and differing by one radial order. The ak were set to
±22 μHz above the l = 0 (or 1) and below the l = 2 (or 3) modes
(Fletcher et al. 2009).

It should be noted that the uncertainties in the MAP frame-
work are estimated by inverting the Hessian matrix of the pa-
rameters. This is well-justified if the errors, and their second
derivatives with respect to the parameters, are small and if these
derivatives are not much correlated with the errors. Moreover,
the posed fitting problem must also be well-constrained, other-
wise the formal uncertainties will also be a poor representation
of the true uncertainties. In our case, given the relative complex-
ity of the probability distributions we consider (as can be seen
from the MCMC results), these assumptions are not likely to
hold. We also note that, from one mode to the other, the Hessian-
derived and MCMC uncertainties might differ significantly from
the MCMC estimates.
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Table 3. Oscillation frequencies detected for 18 Sco along with their radial order n and degree l.

n l = 0 l = 1 l = 2 l = 3

12 1985.12+0.87
−1.12

‡

13 2001.51+0.02
−0.02

† 2062.78+0.03
−0.20

† 2117.89+0.60
−0.99

∗

14 2074.41+1.05
−0.40

† 2140.38+0.03
−0.02

† 2198.63+0.88
−0.92

∗ 2253.00+1.02
−1.64

15 2208.79+1.44
−0.77

∗,‡ 2271.66+1.12
−1.18

∗ 2331.20+1.57
−1.02

∗ 2383.34+1.35
−0.68

∗,‡

16 2342.00+0.57
−1.10 2403.96+0.07

−0.20
∗ 2464.27+2.40

−0.17
∗ 2518.43+0.49

−0.42

17 2473.63+1.79
−1.00

∗ 2536.58+0.04
−0.04 2595.27+0.26

−0.31
∗,‡ 2650.84+0.35

−0.36

18 2607.31+0.26
−0.75

‡ 2668.72+0.11
−0.14 2730.13+0.74

−0.24 2786.75+0.07
−0.08

19 2740.27+0.31
−1.01

∗ 2802.67+0.09
−0.08 2863.20+0.27

−0.73
∗ 2924.12+0.31

−0.48

20 2873.78+1.61
−0.12

∗ 2936.02+0.22
−0.29 2994.18+2.01

−0.48
∗ 3055.39+0.17

−0.17
‡

21 3005.34+4.41
−0.41

∗,‡ 3071.49+0.12
−0.11 3132.89+0.07

−0.07 3187.21+1.23
−1.24

‡

22 3140.10+0.06
−0.06 3202.06+0.53

−0.19
∗ 3263.98+0.16

−0.17 3322.77+0.14
−0.22

23 3275.80+0.14
−0.17

∗ 3338.91+0.13
−0.14 3397.52+0.29

−0.17 3458.25+1.68
−1.75

‡

24 3408.53+0.36
−0.26

∗ 3475.34+0.53
−0.53

∗ 3531.08+1.69
−0.96

? 3595.93+1.00
−1.01

‡

25 3545.96+0.44
−1.01

∗,‡ 3605.76+0.40
−0.27 3667.94+0.26

−0.33

26 3674.80+0.53
−0.45

Notes. The quantities given here are the median of the marginal posterior distributions for each eigenfrequency considered in our model. The cor-
responding credible intervals are given alongside. We use some flags to signal estimates requiring additional caution. (∗) Indicate eigenfrequencies
with clear multimodal marginal distributions; (†) pulsation modes potentially unresolved; (‡) pulsation modes that have not passed a hypothesis
testing when using the heights estimated with the MAP approach in Sect. 5.1.2; and (?) the mode that has not been identified by the MAP approach.

Another issue with the MAP estimation approach is the po-
tential instability of the minimization algorithm with respect
to the initial guesses. To test this, we varied randomly the
first-guess frequencies – using a top-hat distribution of width
±3 μHz – and the final frequencies were median estimates over
1000 such fits. We found that the scatter in the estimate over
these 1000 fits is similar to or larger than the Hessian-derived
uncertainties. It was the possibility of deriving more realistic un-
certainties that ultimately led us to choose the MCMC estimates
as a reference.

We tested our MAP algorithm using the artificial data de-
scribed in Sect. 4.3.3. The results are given in Table 2, along-
side those from the MCMC approach. The estimated frequen-
cies are extremely close for the two methods. Nevertheless, the
MAP algorithm performs better in terms of accuracy, with the
average absolute error being lower than from the MCMC esti-
mates values.

This opens the door to questions with respect to the proper
use of priors in Bayesian analysis. Indeed, if this relative lack
of accuracy in the MCMC approach is caused by a bias intro-
duced by the stringent prior constraints imposed, it means that
those included in our MAP setup are better. However, this is a
difficult problem, numerically, to assume such a great variation
of the mode lifetimes and heights in the MCMC approach. This
shows how delicate it is to choose between different Bayesian
methodologies. Note however that for sufficiently long and pre-
cise measurements the two approaches should converge.

5.1.2. Estimates from the observations

Applying the MAP algorithm to the real data, we found re-
sults, given in Table 4 for reference, similar to those of the

MCMC approach for the frequency estimates. The uncertain-
ties are consistent with our tests using simulated time series.
There is only one inconsistency in the identification between the
two approaches. The (l = 2, n = 24) mode was identified as
(l = 0, n = 25) in the MCMC framework. It is likely that the
(l = 0, n = 25) frequency returned from optimization is in fact
an alias of the real mode. However, these are very low-amplitude
peaks, rejected in the hypothesis testing (see below).

It should also be noted that the greater “flexibility” we have
in terms of convergence has allowed us to estimate the mode
heights and the lifetimes. This allowed us to perform a posteri-
ori some hypothesis testing for each mode (Appourchaux et al.
2009). It is somewhat more satisfying to carry out such tests
on genuinely estimated heights rather than on fixed heights de-
rived from a filtered spectrum, such as the ones used for our
MCMC simulations. Therefore, in Table 3, we flag the values
with positive hypothesis testing results. This way, one can chose
or not to include them when using the list of frequencies. Note
that only 40 frequencies were incompatible with the H0 (null)
hypothesis, which tests here the hypothesis that the peak is due
to the noise in the data.

5.2. Comparison with time-domain modelling

Another approach commonly used in asteroseismology involves
representing the signal in the time domain

ỹ(tn) =
M∑

k=1

ck sin(2πνktn) + dk cos(2πνktn) + εn, (14)

where (ck, dk) and νk are the amplitudes and frequencies of the
pulsation modes and εn, the noise.
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Table 4. Estimated frequencies of 18 Sco from the MAP method using direct optimization.

n l = 0 l = 1 l = 2 l = 3
12 1984.32 ± 0.68
13 2002.00 ± 0.26 2063.13 ± 0.16 2118.01 ± 0.10
14 2074.88 ± 0.17 2140.60 ± 0.12 2199.47 ± 0.39 2254.95 ± 0.24
15 2209.49 ± 0.19 2270.54 ± 0.17 2330.74 ± 0.20 2385.35 ± 2.17
16 2339.14 ± 0.18 2404.25 ± 0.49 2467.29 ± 0.78 2519.03 ± 0.44
17 2475.62 ± 0.67 2536.84 ± 0.11 2595.50 ± 0.15 2651.51 ± 1.24
18 2605.46 ± 0.15 2669.69 ± 0.97 2730.41 ± 1.06 2786.96 ± 0.20
19 2741.34 ± 1.54 2803.55 ± 0.11 2863.74 ± 0.17 2918.07 ± 1.40
20 2874.13 ± 0.20 2936.92 ± 0.69 2994.29 ± 1.18 3055.77 ± 0.61
21 3006.00 ± 1.35 3071.97 ± 0.48 3133.10 ± 0.43 3186.07 ± 1.53
22 3140.58 ± 0.40 3203.11 ± 0.95 3264.55 ± 0.57 3322.89 ± 0.40
23 3276.19 ± 0.68 3339.44 ± 0.37 3398.24 ± 0.52 3459.01 ± 2.76
24 3408.74 ± 0.60 3476.24 ± 1.81 3545.86 ± 3.58 3593.56 ± 2.68
25 3556.15 ± 3.92 3610.70 ± 2.32 3669.81 ± 2.20
26 3679.63 ± 2.51

Notes. The associated uncertainties were derived from the inversion of the Hessian matrix.

Comparing with model (3), some shortcomings of
model (14) are clear. In particular, it does not take into account
the fact that the modes have finite lifetimes. This may lead
to an over-fitting of the signal in the vicinity of some modes,
i.e. several sine functions being required to reproduce what is
actually the dual of a Lorentzian. However, this effect clearly
depends on the ratio of the characteristic damping time to the
length of the time series. If it is large, then the chances are
high that the mode will be unresolved, the power excess largely
being confined to one frequency bin (see Sect. 5). In this case,
model (14) will be accurate enough. The unresolved-mode
assumption has often been made in the case of ground-based
seismic observations (Kjeldsen et al. 1995; Bouchy & Carrier
2001; Bouchy et al. 2005; Bazot et al. 2007; Kjeldsen et al.
2005; Bedding et al. 2010). Because of its simplicity, interesting
methodologies can be applied to the problem of estimating
its parameters. We consider two here. The first one is the
well-known CLEAN algorithm (Gray & Desikachary 1973;
Roberts et al. 1987), used for iterative deconvolution, and the
second one is the SparSpec algorithm, a penalization approach
to minimization in the context of spectral analysis (Bourguignon
et al. 2007). We used both methods to make sure that the results
discussed below are not due to algorithmic artifact.

The objective of this section is to compare our results with
simulations in order to understand the impact of our choice for
a physical model (time-domain representation against frequency
domain representation) for the power spectrum. We also try to
understand, at least qualitatively if this is more important than
our choice for the priors on the parameters included in our prob-
abilistic description. We explain how, in the case of 18 Sco, a
frequency-domain representation is an improvement for gapped
and irregularly sampled time series, for which models such as
Eq. (14) have previously been used.

5.2.1. Performances of the methods

We used a sample of 100 artificial time series constructed as de-
scribed in Sect. 4.3.3. They only differ by the realizations of the
low-frequency and white noises. We applied the MAP, CLEAN
and SparSpec algorithms to each element of this sample. The
MAP setup is similar to the one described in Sect. 5.1.1. In the

case of CLEAN, we limited our search to the 1500–3700 μHz
region. We set a threshold for the detection at three times the
noise level in the 1800–2200 μHz interval, that is 7.2 cm s−1.
The relevant parameter for SparSpec is the penalization factor
(Bourguignon et al. 2007), which we empirically set to 0.34, so
that the results are close to those obtained for CLEAN.

Note that we did not include the MCMC algorithm in this
comparison. This should not be a problem since we have seen
that the results from the direct MAP optimization and the
MCMC agree well. Our main goal is to evaluate the efficiency
of our algorithm, i.e. how the estimated frequencies reproduce
the input frequencies to the time series simulator. We are not
concerned with the uncertainties on the parameters here, which
were the main reason to retain the MCMC estimates as our ref-
erence. Therefore, since we have seen in Sect. 5.1 that the MAP
and MCMC approach lead to close enough estimates, one can
extrapolate the following discussion to the MCMC case.

In the case of CLEAN and SparSpec, it is not possible to go
through the normal adjustment of the outputs of the algorithms
for the 100 realizations of the time series15. We can only obtain
crude estimates of how many times each input frequency is actu-
ally detected. This can be done by looking at Fig. 5, which repre-
sents the histograms of the 100 outputs for each method. These
are upper limits to the rate of detection of the time-series sim-
ulator input frequencies, mostly because of the multiple peaks
sometimes necessary to describe a single mode.

The two methods lead to very similar results. This indicates
that the model we used is the main factor determining the out-
come of the estimation process. Both methodologies are obvi-
ously very sensitive to the amplitude of the mode. Only in the
2800–3400 μHz region do these algorithms find the input fre-
quency ∼50% of the time within a frequency interval corre-
sponding to twice the natural resolution δ = 1/T . This percent-
age, drops strongly below and above these values.

In the MAP case, the main factor affecting the efficiency of
the algorithm is the mode lifetime. More precisely, at higher fre-
quencies, when the mode is most likely resolved, the proportion

15 These adjustments consist in removing manually the peaks that are
obviously due to noise or aliases not properly removed by the algorithm.
In a sense, this is very much similar to applying some prior knowledge
one would have on the frequencies, but after the estimation process.
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Fig. 5. Histograms of the output frequencies from the MAP, CLEAN
(with and without prior filtering) and SparSpec algorithms for 100 ar-
tificial time series. The vertical green lines mark the input frequencies
to the time-series simulator.

of correct detections decreases. It is in the range 60%–100% for
frequencies between 1980 μHz and ∼3400 μHz. It drops signif-
icantly for eigenfrequencies above ∼3400 μHz. In any case, the
detection rates are much higher than those observed for CLEAN
and SparSpec. This is the reflection of the fact that we used dif-
ferent physical models to describe the signal. It is somewhat in
disagreement with the findings of White et al. (2010).

5.2.2. Impact of the prior formulation

To further understand how the priors affect the results, we tried
to combined our CLEAN algorithm with constraints similar to
those described by our prior on the frequencies. It should be
noted that algorithms such as CLEAN have not been designed
with a Bayesian perspective in mind (see for instance Schniter
et al. 2009). Therefore, we could only try to mimic the impact of
the prior. To this effect, we retained the idea that the frequency
prior acts in analogy like a bandpass filter, which removes all
signal outside the top-hat functions. We therefore applied such a
filter (a sum of bandpass filters) to our spectrum. We then used
the CLEAN algorithm to search only for two frequencies per
individual bandpass filter. In a sense, this strategy is very sim-
ilar to the “ridge search” approach used for η Boo by Kjeldsen
et al. (1995). The corresponding output histogram is displayed in
Fig. 5. The information we get from this test is, of course, only
qualitative, but it gives an interesting picture of the performance
of the two algorithms under constraints that are fairly similar.

We performed this test on the same 100 time-series sam-
ple. We can see that this definitely enhances the performance of
the CLEAN algorithm. The detection rate increases everywhere,
particularly in the low-frequency regions of the spectrum. In
the high-frequency regions, the situation also improves, but the
model is subject to limitations concerning the mode lifetimes,
which perturb the estimation. However, the overall performance
remains largely inferior to the outcome of the MAP strategy,
which uses model (3). This is very revealing as to the effect the
priors have on the final frequency estimates. It is often contended
that Bayesian analysis may use too strong priors and retrieve

only what as been defined in π(θ) before the estimation. This
is not entirely the case here. The priors on the frequencies we
used are not so strong that any algorithm will be able to per-
form equally well under such a constraint. This result illustrates
the subtle interplay between the numerical and statistical advan-
tages of the Bayesian method mentioned in Sect. 4.2. Not only
do the priors tighten the relevant volume in the space of parame-
ters, but they also stabilize the fit to the data when using a more
complex but also more accurate model, involving a larger num-
ber of parameters (higher dimension of the parameter space).

This is not the first time that Bayesian methods have been
used on time series with such short time baseline (Brewer et al.
2007, for instance). However, the very favourable case of 18 Sco
allows us to contend that, provided the frequency priors are accu-
rate enough, direct fits to the power spectrum are more efficient
than classical time-domain modelling. A further step would be
to test this claim with more sophisticated models for the spec-
trum (Stahn & Gizon 2008) or the time series (Brewer & Stello
2009).

5.3. Large and small separations

Two common seismic indicators are the large and small sep-
arations, defined respectively by Δνl(n) = νn+1,l − νn,l and
δνl,l+2(n) = νn,l − νn−1,l+2. They both stem from a first analysis
of the asymptotic relation for p modes. Their use has been popu-
larized by the fact that they are supposed to be relatively free of
the unknown surface effects affecting the oscillation frequencies.
This however is only partially true and other combination of fre-
quencies have been suggested in the literature (e.g., Roxburgh &
Vorontsov 2003; Cunha & Metcalfe 2007). We nevertheless limit
ourselves to these two quantities, which are plotted in Fig. 6.

It is also interesting to compute the average values of the
large and small separations. In order to estimate them, we use
the MCMC samples. They are convenient to study densities of
averages because, if we assume that the central-limit theorem
roughly applies, we can expect to deal with Gaussian distribution
(Benomar, private communication). This greatly simplifies the
subsequent statistical analysis.

To estimate the average large separation we retained only the
unflagged modes in Table 3. Basing ourselves on the asymptotic
relation, we consider that, for a fixed degree, the frequency is a
linear function of the mode order, with slope the average large
separation. We thus computed the derivative of ν(n) at each order
for each degree and averaged over both quantities. The resulting
distribution is well approximated by a Gaussian and we obtained
〈Δν0,2〉 = 133.8± 0.2 μHz. This value agree with the estimate of
Paper I, 〈Δν0,2〉 = 134.4 ± 0.3 μHz, at 2σ level.

This sheds a new light on the mass estimate we gave in
Paper I. Using these new values for the average large separa-
tion and the interferometric radius, one might evaluate the mass
of 18 Sco to be 1.01 ± 0.03 M�, which brings it even “closer” to
the Sun. Although this agrees within the 1σ error bars with the
value of Paper I, it is relevant for modelling if one is to use on
of these masses estimates in order to, for instance, apply a prior
on the mass when modelling 18 Sco in the Bayesian framework
(Bazot et al. 2008).

The average small separations are slightly more problem-
atic. This is due to the fact that fewer values are available to
average over, in particular for δν02. We thus decided to include
the frequencies from Table 3 flagged with a (∗). Even though
they display the multiple maxima, our idea is that the most
prominent peaks in the distributions will be the main contrib-
utors to the density of the averaged value. We indeed found
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Fig. 6. Individual large (lower panel) and small (upper panel) separa-
tions for 18 Sco. The circles (◦) corresponds to l = 0, the diamonds
(♦) to l = 1, the squares (�) to l = 2 and the triangles (�) to l = 3.
Filled symbols mark the combinations using unflagged frequencies in
Table 3. A few error bars do not appear because they are smaller than
their respective symbols.

Gaussian distributions for 〈δν0,2〉 and 〈δν1,3〉 (the latter being
much better approximated by such a distribution than the for-
mer). Using their first moments, we get 〈δν0,2〉 = 9.4 ± 0.9 μHz
and 〈δν1,3〉 = 16.7 ± 0.8 μHz.

It is known that the small separations depend on frequency.
However, to the first order, they can be approximated by con-
stants δν0,2(n) � 6D0 � 3δν1,3/5, with D0 an integral containing
the derivative of the sound speed (Gough 1986; Gabriel 1989).
The estimated values lead to a ratio 〈δν0,2〉/〈δν1,3〉 = 0.57, in
good agreement with the theoretical expectations.

6. Conclusion

We presented a detailed analysis of the ground-based seismic
data obtained for the solar twin 18 Sco from the high-precision
spectrograph HARPS. The sampling of the time series causes se-
rious problems for stellar eigenfrequency estimation. We chose
to use an MCMC algorithm in order to estimate the frequen-
cies of 52 stellar pulsation modes. A careful examination of the
PPDs for each of them show that at least 21 are reliable and at
least 19 others are worth consideration, even though the corre-
sponding marginal PPDs are more difficult to analyze. 11 were
rejected after comparison with a the MAP direct optimization
methodology. We were able to estimate Bayesian credible in-
tervals for these modes which reflect with some robustness the
uncertainties of our data.

By comparing with other estimation methods, we have dis-
cussed how reliable are the priors we used for the estimation. On
the one hand, they are constraining enough to allow us to use a
(relatively) realistic model. On the other hand, they are not so
restrictive that they would impede a proper estimation. We note
that our methodology can be further improved by increasing the
efficiency of our MCMC algorithm (which would allow to relax
further the priors on the parameters) and/or by using even more
accurate models (which may require more conservative priors).

The individual eigenfrequencies obtained for 18 Sco allowed
us to study some basic seismic estimators, including the large
separations, whose estimation of the average value was ad-
dressed earlier in Paper I. The two values agree at 2σ level, with
the new one being lower. We derived a new value for the mass
of the star slightly lower than the previous one. It remains to see
how much this might affect the modelling of the star.

The sampling issues of our data certainly played an impor-
tant part in producing the differences observed between the var-
ious methods used in our study. A next step would be to observe
this star with more than one telescope, even though its mag-
nitude makes such a task challenging for most of the ground-
based instruments now available. Furthermore, we noticed that
the length of the time series might imply that we only resolve
a fraction of the detected modes. This could be resolved with a
longer time basis.
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Table 2. Results from the benchmarking of the estimation algorithms.

l n Input Median Mode MAP

0 14 2074.60 2072.33+0.71
−0.33 2072.00+1.62

−0.85 2074.39 ± 0.39
0 15 2208.52 2207.75+0.08

−0.13 2207.78+0.21
−0.19 2208.11 ± 0.18

0 16 2341.62 2341.60+0.34
−0.51 2341.76+0.55

−0.62 2341.98 ± 0.42
0 17 2473.77 2474.77+0.65

−0.62 2474.77+1.36
−1.17 2473.56 ± 0.33

0 18 2606.07 2606.27+0.37
−0.47 2606.71+0.50

−1.27 2606.10 ± 0.08
0 19 2739.37 2738.42+0.38

−0.33 2738.22+1.06
−0.86 2738.57 ± 0.16

0 20 2872.82 2872.56+0.86
−0.57 2871.87+2.08

−0.82 2872.38 ± 0.13
0 21 3006.50 3002.07+1.22

−0.57 3001.11+1.93
−0.59 3005.58 ± 0.26

0 22 3140.17 3141.63+0.30
−0.33 3141.70+0.77

−0.77 3140.86 ± 1.18
0 23 3273.89 3275.11+0.36

−0.36 3275.05+0.98
−0.86 3274.67 ± 0.73

0 24 3408.19 3406.99+0.49
−0.41 3406.70+1.19

−0.95 3407.34 ± 0.28
0 25 3542.70 3542.89+0.88

−1.05 3543.37+1.51
−2.86 3540.86 ± 1.27

0 26 3677.54 3674.49+0.70
−0.72 3674.42+1.42

−1.86 3675.50 ± 1.88
1 13 2002.44 2001.50+0.03

−0.04 2001.51+0.02
−0.04 2001.96 ± 0.26

1 14 2137.33 2137.00+0.78
−0.46 2136.62+1.34

−0.58 2137.33 ± 0.43
1 15 2271.23 2271.32+0.18

−0.47 2271.52+0.13
−0.15 2271.37 ± 0.35

1 16 2403.73 2403.16+0.18
−0.21 2403.21+0.35

−0.69 2403.89 ± 0.39
1 17 2536.27 2540.48+0.49

−0.37 2541.21+0.34
−1.32 2536.61 ± 0.16

1 18 2669.12 2669.39+0.09
−0.09 2669.41+0.19

−0.23 2669.92 ± 0.21
1 19 2802.69 2802.13+0.11

−0.11 2802.14+0.26
−0.28 2803.04 ± 0.18

1 20 2936.64 2936.45+0.13
−0.13 2936.42+0.34

−0.29 2937.02 ± 0.18
1 21 3070.29 3072.04+1.14

−1.64 3073.84+1.00
−1.64 3074.67 ± 0.54

1 22 3204.20 3202.73+0.28
−0.28 3202.78+0.62

−0.77 3203.02 ± 0.51
1 23 3338.27 3338.60+0.22

−0.21 3338.49+0.61
−0.41 3339.05 ± 0.31

1 24 3472.67 3471.80+0.61
−1.12 3472.38+0.82

−1.12 3472.51 ± 1.13
1 25 3607.63 3604.87+1.02

−0.91 3603.29+0.42
−0.19 3605.10 ± 2.22

2 13 2063.21 2061.33+2.20
−0.57 2060.73+0.20

−0.20 2064.18 ± 0.43
2 14 2197.53 2196.48+0.09

−0.18 2196.54+0.22
−0.19 2197.01 ± 0.14

2 15 2331.10 2332.79+0.55
−1.72 2332.96+0.99

−0.25 2330.55 ± 0.34
2 16 2463.53 2463.47+0.52

−0.61 2463.57+1.34
−1.39 2463.76 ± 0.53

2 17 2596.15 2595.29+0.30
−0.46 2595.64+0.55

−1.18 2596.00 ± 0.08
2 18 2729.73 2726.75+0.29

−0.37 2726.94+0.70
−0.89 2727.57 ± 0.17

2 19 2863.47 2861.20+0.33
−0.29 2861.00+0.92

−0.65 2863.65 ± 0.15
2 20 2997.50 2996.55+0.40

−0.48 2996.97+0.75
−1.39 2997.59 ± 0.24

2 21 3131.46 3131.08+0.16
−0.17 3131.11+0.39

−0.42 3131.55 ± 0.39
2 22 3265.46 3263.80+0.35

−0.41 3264.08+0.73
−1.11 3264.55 ± 0.52

2 23 3400.03 3398.69+0.31
−0.34 3398.88+0.72

−0.89 3399.34 ± 0.46
2 24 3534.80 3530.31+0.65

−0.49 3529.53+1.62
−0.58 3531.10 ± 2.02

2 25 3669.86 3667.57+1.58
−1.46 3665.18+4.32

−0.83 3665.32 ± 2.00
3 12 1983.00 1984.31+1.11

−1.02 1985.79+1.22
−3.45 1983.74 ± 0.48

3 13 2118.42 2115.46+1.19
−0.86 2113.83+3.00

−0.88 2118.57 ± 0.38
3 14 2252.78 2251.42+1.66

−1.40 2250.00+0.30
−1.63 2254.28 ± 0.68

3 15 2385.91 2385.77+0.86
−0.91 2386.00+2.59

−2.27 2386.54 ± 0.82
3 16 2518.85 2519.01+1.00

−0.87 2518.67+3.06
−1.32 2519.77 ± 0.18

3 17 2652.01 2649.85+0.34
−0.33 2649.73+0.89

−0.91 2650.13 ± 0.22
3 18 2786.05 2789.10+0.53

−0.49 2789.09+1.89
−0.92 2787.33 ± 0.23

3 19 2920.37 2923.79+0.60
−0.81 2924.46+1.10

−2.03 2921.05 ± 0.47
3 20 3054.48 3054.85+1.28

−2.45 3056.51+0.78
−0.95 3057.32 ± 0.62

3 21 3188.85 3187.85+1.21
−1.12 3187.58+2.59

−2.87 3184.63 ± 1.26
3 22 3323.28 3324.29+1.31

−1.25 3323.05+4.40
−0.98 3322.36 ± 0.46

3 23 3458.15 3457.42+1.92
−1.01 3456.20+1.35

−1.30 3456.01 ± 1.20
3 24 3593.50 3595.80+1.09

−1.34 3596.28+3.22
−2.22 3587.87 ± 2.49

Notes. For the right and left tables, Cols. 1 and 2 give the orders and degrees of the simulated modes. Column 3 gives the input frequencies to the
time series simulator (Jiménez-Reyes et al. 2008, only the frequencies we effectively searched for are displayed, more modes with lower amplitude
were included in the simulated time series). Columns 4 and 5 display the frequencies obtained from our MCMC algorithm using the posterior
median (Col. 4) and the mode (Col. 5) estimates alongside with the upper and lower limits of the corresponding credible interval. Column 6 shows
the frequencies estimated with the MAP direct-optimization methodology, alongside uncertainties derived by inversing the Hessian matrix.
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