Méca 11,
2017-2018

V- Dencet Structural Mechanics II
Part I: Structural Stability and Structural Dynamics

Vincent Denoél

GCIV2037-1

Academic Year 2017-2018

Last update : February 7, 2018

1/276



v GENERAL INFORMATION

Méca II,
2017-2018 .
Download updates of this document?

http://hdl.handle.net/2268/130616

(click on the URL above and accept the connection to ORBI)

V. Denoél

2/276


http://hdl.handle.net/2268/130616
mailto:v.denoel@ulg.ac.be

:' . GENERAL INFORMATION

Méca II,
2017-2018 .
Download updates of this document?

http://hdl.handle.net/2268/130616

(click on the URL above and accept the connection to ORBI)

V. Denoél

Where? When?
The course is organized on Thursday, 8:30-12:30 (second semester)

Contact me?
Office room: B52/3, +1/422

Phone: 04/366.29.30
Mail: v.denoel@ulg.ac.be

2/276


http://hdl.handle.net/2268/130616
mailto:v.denoel@ulg.ac.be

t

Méca II,
2017-2018

V. Denoél

2/276

GENERAL INFORMATION

Download updates of this document?
http://hdl.handle.net/2268/130616

(click on the URL above and accept the connection to ORBI)

Where? When?
The course is organized on Thursday, 8:30-12:30 (second semester)

Contact me?
Office room: B52/3, +1/422

Phone: 04/366.29.30
Mail: v.denoel@ulg.ac.be

Objectives of the course and pedagogical plan? System of examination?
5 ECTS includes classes and homeworks (more details in “Engagements
pédagogiques”)

Oral and written examination


http://hdl.handle.net/2268/130616
mailto:v.denoel@ulg.ac.be

t

Méca II,
2017-2018

V. Denoél

2/276

GENERAL INFORMATION

Download updates of this document?
http://hdl.handle.net/2268/130616

(click on the URL above and accept the connection to ORBI)

Where? When?
The course is organized on Thursday, 8:30-12:30 (second semester)

Contact me?
Office room: B52/3, +1/422

Phone: 04/366.29.30
Mail: v.denoel@ulg.ac.be

Objectives of the course and pedagogical plan? System of examination?
5 ECTS includes classes and homeworks (more details in “Engagements
pédagogiques”)

Oral and written examination


http://hdl.handle.net/2268/130616
mailto:v.denoel@ulg.ac.be

4' g ORGANIZATION

Méca II,

2017-2018 References:

V. Denogl Dynamics of Structures, Clough and Penzien
Structural Stability, Timoshenko
Analyse des structures II, V. Denoél (available lecture notes)

Course Outline:
e Structural Stability
e Numerical Integrators (solution of IVP)
® Deterministic Dynamics

e Discrete Models: single- and multiple-degree-of-freedom
systems
e Continuous Models

e Introduction to Seismic Analysis
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Feb 8th, 2017

Feb 15th, 2017
Feb 22rd, 2017
Mar 1st, 2017

Mar 8th, 2017

Mar 15th, 2017
Mar 22rd, 2017
Mar 29th, 2017
Apr 5th, 2017

Apr 12th, 2017
Apr 19th, 2017
Apr 26th, 2017
May 3th, 2017
May 10th, 2017
May 17th, 2017

Structural stability

Structural stability & Intro dynamics
Plates (Prof. Rigo)

Plates (Prof. Rigo)

Plates (Prof. Rigo)

Eq. of motion, Numerical Integrators
Numerical Integrators

SDOF systems: Free response/Harmonic loading
Respiration

Easter Test - Stability

SDOF systems: Impulsive loading
MDOF systems

MDOF systems

Ascension

Continuous systems, Intro to Earthquake Engineering
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Introduction

SECTION I: INTRODUCTION

LEARNING OUTCOMES:

® understand the balance of forces in structural dynamics
® overview of possible applications of the theories developed in this course

® gain practice with the lumped modeling of real structures
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Introduction

P
/ % Lee’s frame

EI¢

|/

Displacement under applied load ?

laxial force is column is less than P, but
(i) it is also bent,

(ii) the beams stabilizes the column (rotational

spring)]
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Applied load
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Introduction

Structural
Stability

Numerical
Integrators

SDOF

System

MDOF
System

Continuou
Structures

Seismic

Analysis
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Horizontal Displacement

Introduction [ Vertical Displacement -
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Numerical
Integrators
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System
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— Show pictures and videos —
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v OBJECTIVES 1

Méca II,
2017-2018

V. Denoél
Nonlinear Analysis of Structures = determination of
internal stresses, displacements, strains, etc.

Introduction

Nonlinear — Equilibrium in a deformed configuration

Classification:

e large displacement (necessary - to be discussed when setting up
equations)

e large or moderate rotations
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¥ REAL-LIFE EXAMPLES OF DYNAMIC LOADINGS

&

Méca II. A few videos showing examples of application of structural dynamics in civil
2017-2018 engineering
V. Denogl

® (Cable-stayed bridge Dubrovnik. https://youtu.be/SsfQN1ilcGU

e Galloping Basin Electric transmission lines due to wind
https://youtu.be/GEGbYRiild4

® Démolition Des Piliers Auxiliaires D’un Pont
https://youtu.be/SBdTwcbp69M

® Amazing Controlled Demolition Of A skyscraper
https://youtu.be/e2E_m712Rww

® Reach racking collapse https://youtu.be/ZXvWARWM-0E
® Wolfsburg Stadium roof during storm https://youtu.be/69nR1QXQM6Q
® Le stade de Francfort qui tremble ! https://youtu.be/ITe00HdN-zI

Introduction
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4. # REAL-LIFE EXAMPLES OF DYNAMIC LOADINGS
& 11

Méca II,
2017-2018

V. Denoél . . o . . .
e Dynamics in Civil Engineering

Introduction
® Seismic loading
® Wind buffeting loading

® Aeroelastic and hydro-elastic phenomena (vortex shedding, galloping,
rain-wind, etc)

® Footbridges & stadia: human-induced vibrations (comfort assessment)
® Impacts and explosions
® Wave loading, marine flows, breaking waves

e Traffic-induced vibrations in bridges (bridge-vehicle interactions,
comfort)

® Vibrations resulting from turning and vibrating machines
® Vibrations resulting from sports activity (jump, dance, etc)

® Cable vibrations (anchor motion, wind action)
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u OBJECTIVES 1

Méca 11, Dynamic Analysis of Structures = determination of
2017-2018 . . .

internal stresses, displacements, strains, etc.
V. Denoél

Introduction

Dynamic — Time Evolution

(to be precised in the equations...)

Classification:
e Stationary .vs. Non-stationary Loadings
e Stationary .vs. Non-stationary Response
e Fast Dynamics .vs. Quasi-static Response (slow loads)
e Linear .vs. Nonlinear structural behavior (ex. cable dynamics)

e Deterministic .vs. Stochastic Dynamics
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u OBJECTIVES 11

Méca II,
2017-2018

V. Denoél .
In a structural design

Introduction

e use extreme values (in time series)

o of stresses or internal forces (ULS)
o of displacement/velocity/acceleration (SLS)

e choose a clever design

o ductility
e robustness, redundancy, alternative load paths

Warning: Although we study the structural analysis in this course, a clever
design is of course always welcome. When uncertainties are coming into play
(on the load level for instance), a clever design is usual much more interesting
than a theoretically satisfied design.
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;i g THE GOVERNING EQUATIONS I

Méca 11, What do we solve 7
i Example: Transverse vibrations of a Bernoulli beam
V. Denoél
Introduction pr
M T M+dM
>x ] | TAD VY
dx A TedT
v
v in
Pv(x,t) 9 9?v(x,t) 3% (x,t)
—_ T\ —( El ) -N 5 _ t 1
Hor T ok < 22 ) 3 PeD )

with u the lineic mass (mass per unit length) and E/ the bending stiffness.

oM 9 J%v d%v
T= % = 9x <7Elﬁ> and f; —,udxw (2)

[ Beam equation, with inertial forces and geometric nonlinear forces]
[ Same method applies for truss bars, plates, shells, volumes]
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4' g THE GOVERNING EQUATIONS II

Méca II,
2017-2018

Particular cases
V. Denoél

e Nonlinear static analysis (d — d) and constant El

Introduction

EN" — NV = p

e Linear static analysis
EN" — p

e Linear dynamic analysis and constant E/
(92 4., _
HAZv+EI9%v = p(x.t)

There are three ways to establish the governing equations:

e Global equilibrium
e Local equilibrium

e Energy considerations
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4' g THE GOVERNING EQUATIONS III

Méca II,
2017-2018 The governing equation of a continuous structure is a (partial)

differential equation

Introduction The governing equation of a discrete structure is an algebraic (static) or
differential equation (dynamic)

V. Denoél

Examples: 1-DOF structure, 2-DOF structure, the Euler column
(continuous structure)
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4' g THE GOVERNING EQUATIONS IV

Méca II,

50175018 In static structural analysis : How to get rid of the ODE ?

V. Denogl e use the displacement method (transforms into a set of algebraic

equations)

Introduction

e use the finite element method (same, more general)

In dynamic structural analysis : How to get rid of the PDE ?
Lumped modeling:
1. assume the response takes place in an appropriate shape
v(x,t) =¢(x)q(t)

(¢ (x) satisfies boundary conditions)
2. project the response in the assumed shape

m*G(0)+ K a(0)dx = [ 0(x)p(x.0)dx (3)
Q

with m* = Jo #62 (x)dx and k* = o9 (x) & (EI diji;’t)) dx.
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u THE GOVERNING EQUATIONS V

Méca II,
2017-2018
V. Denoél
Introduction
Structural
Stability
. [nb: Another way to cope with the difficulty of the PDE is to recourse to
\tegrators
eigen functions - See section related to vibrations of continuous systems]
SDOF
System
o [nb: Another alternative is the finite element method (transformation of an
System ODE into a set of algebraic equations]
Continuou
Structures
Seismic
Analysic
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Structural
Stability

Introductiox

cavations SECTION II: STRUCTURAL STABILITY

Critice
Analys

LEARNING OUTCOMES:

® understand difference between bifurcation and divergence, critical and
non-critical

® estimate critical load multipliers

® estimate second order displacements and internal forces
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:' A SIMPLE EXAMPLE TO START WITH...

Méca 11, Buckling of the Euler column
2017-2018
V. Denoél AP

EI ¢

Introduction

L C

T

a b
Governing equation (for example, from global equilibrium):

EIV'+APv=0
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4' A SIMPLE EXAMPLE TO START WITH... II

Méca 11, Solution of the governing differential equation (E/v” +APv =0)
2017-2018
V. Denoél kmx 71?2 El
= vosin — d  AP=kK
v = vosin — an 7
(or v=0). What does critical mean ? There is a trivial solution v =0
Introduction (because the equation has no righthand forcing term - it is homogenous)

AA ?
Trivial solution ;

N

472El  second critical mode
£2

2
m*EI  First critical mode

Z?

v(€/3) or v(¢/2)
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Introduction
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ANOTHER SIMPLE EXAMPLE... I

Determine the governing equation for this structure (use global
equilibrium)

Investigate the nonlinear force-displacement response



<I!

2017-2018

V. Denoél

Introduction
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ANOTHER SIMPLE EXAMPLE... II

Critical load

A

Trivial solution

PN

=K g

Linear model

I

Sy
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Introduction
Equilibrium
equations

Critical
Analysis
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Structural Stability

Equilibrium equations
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Equilibrium
equations
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WRITING EQUILIBRIUM EQUATIONS I

Three different ways to obtain the governing equations

e Global equilibrium
EIV'+APv=0

e Local equilibrium
dM=Tdx ; dT=-Ndo6 ; dN=Tdo

e Energy considerations (or Virtual works principle)

l
V//2 V/2
HIv(x):E1LAP) = U+ V = [ (517 4p7> dx
0

All three methods provide the same governing equation



4' g WRITING EQUILIBRIUM EQUATIONS II

Méea 11, Local equilibrium
2017-2018
V. Denoél 0+d0
AP
N +dN LdN
$>x M+dM M i

Equilibri “‘ v(w) dx T+dT Q T +dT
. ‘ Q
E T ‘\T¥6ﬂ
J— \%M A
xr
[

1779',77 N

dM=Tdx ; dT=—-Nd8 ; dN=Tdo

Discuss large rotations .vs. large displacements formulations
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4' g WRITING EQUILIBRIUM EQUATIONS III

Méca II, Energy considerations
20172018 The total potential energy is
V. Denoél

Hlv(x);p] :=U+ V.

with U the potential of external forces (-work) and V the work done by
internal forces. The equilibrium configurations of a structure v, (x) are
Bauitibrivm the stationary points of the total potential energy that satisfy the
boundary conditions:
IH[vi + 1]
———=0
Jde

Example :

l
. _ VN27 LQ nm "n_
H[v(x); EI,AP] = El 5 le dx — Elv,"+APv/ =0
0

Exercise. Do the same for the rigid column with rotational spring at its
bottom support.
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4' g WRITING EQUILIBRIUM EQUATIONS IV

Méca 11, Summary of important contributions to the total potential
2017-2018 energy

V. Denoél
Equilibrium

equations

Truss bar / spring: U= %fg EAu?dx, U= %%A2 = %kA2
Rotational spring: U = %K62
Bernoulli beam : U = %j(f El'v'?dx

External Axial load : V = 3AP [§ v2dx

34/276
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Equilibrium
equations
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ON THE DERIVATION OF THE GOVERNING
EQUATION(S): SUMMARY I

Two options to derive the governing equations

Local or global equilibrium
— the governing equation translates the equilibrium of the body
— Two possibilities:

e ODE in case of continuous systems (infinite number of dofs) or

e Algebraic equation(s) in case of discrete systems

Conservation of energy

— the governing equation translates the conservation of energy

— the equilibrium equation may be recovered (but set it up right away
if this is the objective)

— deformed configuration(s) corresponding to equilibrium minimize(s)
the total potential energy

o Investigate the nonlinear force-displacement response
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Introductiox

Equilibrium
equations

Criti
Anal
\na
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EXERCISE

Determine the governing equations for this structure

AP

y

(,El =0

,El =00

e This structure has 2 degrees-of-freedom — set of 2 algebraic

equations
o Compare global equilibrium and energy formulation
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Critical
Analysis
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STABILITY OF AN EQUILIBRIUM
CONFIGURATION [

The different types of stability
AP
B B
c

A A
A: Stable - B: Unstable - C: Neutral

o Remember equilibrium means stationary point

e Transition from stable to unstable is associated with zero curvature



4. F STABILITY OF AN EQUILIBRIUM
& CONFIGURATION II

Méca II,

2017-2018
V. Denoél
An equilibrium configuration is said to be stable if the effects of an
infinitely small perturbation tend to decrease asymptotically in time
(nb: dynamics!?)
An equilibrium configuration is said to be neutral if the effects of an
Oritical infinitely small perturbation remain indefinitely without growing nor
Analysis

decreasing (on “average”)

Example. Let’s perturb a bit the Euler column problem
EIV'+APv=c¢,

compute v(x;€), then look at the solution as € — 0.
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Critical
Analysis

40/276



u THE RAYLEIGH METHOD I

Méca II,
2017-2018

V. Denoél

- Discuss minimum of critical load multiplier

Critical
Analysis
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:' g THE RITZ-GALERKIN METHOD [

Méca II,

2017-2018

V. Denoél

Ir

I

rttiont - Replace a space-continuous system by a discrete algebraic model
Anelysis and compute eigen values
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Numerical
Integrators
General Fac
Example

Num
Integrato

MDOF &
Nonlinear
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SECTION II: NUMERICAL INTEGRATORS

LEARNING OUTCOMES:

® understanding of numerical techniques for initial value problems

being able to implement some algorithms

explain the limits of stability of integration schemes

classification of numerical integrators into explicit or implicit families
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Numerical Integrators
General Facts

General Facts
Examples o
Numerical
Integrators
Stability
Accuracy
MDOF &
Nonlinear

Structures
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THE EQUATION OF MOTION I

P .
Y 0 .
O\ .t o kinetic energy : T = %mr292
(v K | potential energy: —V = mgr (1 —cos8)
mg

Conservation of energy

1 .
Emr292 + mgr (1 —cos0) = constant

... differentiation with respect to t, then divide by 6

mr?0+mgrsin@ =0  with 6(0) = 69,6 (0) = 6o

Equation of motion: 2nd order differential equation (with 2 initial
conditions)



4' g THE EQUATION OF MOTION II

Méca II,
2017-2018

V. Denoél

General Facts
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General Case

There are several ways to establish the equation of motion:
e Newton’s law (second law, system of material points): Y f; = ma
o d’Alembert principle: Y f;—ma=20
e principle of virtual works: W, +36Wg =0

e Hamilton principle: %g—é — z—é =0withL=T-V

In any case, one ends up with the same 2nd order differential equation
(in displ., position, rotation)

In practice, a structure is a continuous medium. Two options:

e Model it as a continuous system (with one or several abscissa in
space) — analytical developments

e Discretize the structural model with a finite number of
degrees-of-freedom (e.g. finite element method).
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V. Denoél

General Facts
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THE EQuATION OF MOTION III

Discrete Version
Static Analysis (Finite Element Method):

Kx=p (4)

Dynamic Analysis:

Mx (t) + Cx(t)+Kx(t) =p(t) (5)

e M: mass — inertia
e C: viscosity — damping
o K: stiffness — internal forces

[ nb: introduction of the quasi-static response xgs (t) = K™ 1p(t) ]



;i g THE EQuATION OF MOTION IV

Méca II,
2017-2018

V. Denoél

General Facts

48/276

Two different nomenclatures for two different versions of the equation
of the motion:

Multi degree-of-freedom systems (matrix version, M-DOF)

Mk (t) 4+ Cx (t) + Kx(t) = p(t) (6)

Single degree-of-freedom systems (scalar version, S-DOF)

ma(£)+cq (t)+ ka(t) = p(¢) (7)

Discuss the importance to understand the behavior of the S-DOF system

before tackling more complex M-DOF' systems.



:' g SINGLE-DEGREE-OF-FREEDOM OSCILLATOR I

212)41é7c-a28)]1's o (t) =cC Q(t)
V. Denoél fs (t) =kq (t)

= frot = p(t) —kq(t) —cq(t)
General Facts p(t)

Newton’s law:
ma(e)=for = ma(t)+cq(t)+ka(e) =p(t) (®)

[nb: connection with a real structure]

49/276



B

4' SINGLE-DEGREE-OF-FREEDOM OSCILLATOR II

Méca II,

2017-2018
V. Denoél mq(t)+cq(t)+kq(t) =p(t)

The structural behavior is characterized by 3 parameters: m , ¢ and k
General Facts One can also write

4(0) + 204 (1) + ofq() = PO

k 2m
=4/—== =27h
w1 ™ T1 T

Cc C
&=

2mar  2v/km

FEquivalently, the structural properties are characterized by three other
parameters: m, 1, &1.

where
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' g THE MATHEMATICIAN’S SOLUTION

Méca II,
2017-2018

v Donen 4(0) + 20814 (0) + ofq() = PO

The solution of a 2nd order ODE, non-homogenous, with constant
coefficients is obtained by:

' e establishing the general solution of the homogeneous equation
gomers e gn (t) (with 2 constants of integration)
e finding one particular solution g (t)
e the solution then reads q = q,+qp
e constants A and B introduced in gp(t) are then determined from
initial conditions
Analytical solutions are known is some cases only — need to:
e understand the physics on the basis of these simple analytical
solutions

o develop numerical methods to treat more complex problems
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: ' g EXERCISES

Méca II,
2017-2018

V. Denoél

General Facts

52/276

. Express the equation of motion of a single-degree-of-freedom

system excited by its support (i.e. seismic excitation).

. Express the lumped equation of motion of a beam resting on two

supports (assume that the deformed shape is sinusoidal)

. Express the lumped equation of motion of a tower (assume that

the deformed shape is quadratic/cubic/quartic)

x(t)
—
k ¢ p(x.t)
l I oL 1
________________________________________ 2
4’;/(0 q(t)



: ' g MOTIVATION

Méca II,
2017-2018

V. Denoél
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Solution of

. R t
§(t)+2m&E4(t)+ 07 q(t) = %
with ¢(0)=0;¢(0)=07?

Class of problem: Initial Value Problem (IVP)

Discuss case of an earthquake loading or complex loading
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General Facts
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Solution of

g(t)+2w1&1g(t)+ 0?q(t) = %

with ¢(0)=0;¢(0)=07?
Class of problem: Initial Value Problem (IVP)

Discuss case of an earthquake loading or complex loading

Satisfy the equation of motion at certain time instants tp, ti, ...

and assume a particular response in between.
nb: most usually t; = tg+iAt (constant time step).

only



<I!

2017-2018

V. Denoél

General Facts
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COMPARISON WITH A STANDARD PROBLEM

Standard Problem

d .
Ey—y—f(y,t)

Equation of motion

mq (t)+cq(t) +kq(t) = p(t)
Let x; = q, X2 = (-77

w(2)=(2)=(sp-in )

same formulation — possible to use the same methods as those that are
used to solve the standard problem



:' g GENERAL FACTS

20172015
V. Denoél
One way to classify methods:
o explicit methods (simple recurrence from time step to time step)
Yerar = fet (ve, ye-at,--.)
Gomoral Facts e implicit methods (requires iteration inside a step)

Yerar =fet (Verae Yo Ye-ats )

Another way to classify methods:

e methods based on approximations of the derivatives

e methods based on approximations of integrals
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General Facts
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EXAMPLES I
Solution of dy/dt =f(y,t)

Method 1

1. Equation at time t:
dy
—| =f t
o =roen

2. Approx. of the derivative (forward)

ﬂ o Yt+Aar T Yt
dt|, At
Algortithm:

Ye+Ar — Yt f(ye.t)

Ar =  Yirar =Y+ At (v, t)

— simple recurrence to obtain y;;a; (explicit method)
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General Facts
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EXAMPLES II
Solution of dy/dt =f(y,t)

Method 2
1. Equation at time t+ At:

dy

=f(Yerar, t+At)
de t+AL

2. Approx. of the derivative (backward)

QJ o YAt — Yt

dt Jeine At

Algorithm:
Yt+At — Ve
At
= iterations are necessary to obtain y;; Ay (implicit method)

=f (Yerar, t+At)
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ExXAMPLES III
Solution of dy/dt =f(y,t)

Method 3
Approx. of the integral (trapeze rule)
t+At

Yerar =Ye+ / fy,t)dt =y +
t

f(Yesar t+At)+f(ye, t)

At
2

= iterations to obtain y;; Ay (implicit method)

Method 4
Approx. of the integral (rectangle rule)

t+At
Ye+ar = Ye + / fy,t)dt ~y:+f(ys,t) At

t

= same as method 1 (explicit)
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Numerical methods introduce (spuriously!?)
e artificial (numerical) damping
e phase shift
e period alteration

Reasons

e troncature (cf. estimation of derivative .vs. Talyor series)

e transmission of errors from step to step (depending on the
algorithm)

The time step has to be chosen in such a way to capture the fast variations of the
response (natural period) and of the loading [use at least 10 points at least to
represent one period of a sine
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CENTRAL DIFFERENCE METHOD I

The equation of motion is satisfied at time t
m@gt +cqr + kqr = pr
By central difference, the second derivative is approximated as
o Ge=At—29c+ Gepae 2
gt = A—tz +0 (At )
so that

m ,
N (gt-nt —2qe +qriat) +cqe+kge = pr
At?

= Qryar = —— (Pr — €qr — kqe) +2q: — G A¢
m

i.e. an expression of g;1a; as a function of q¢, g: and qy_a-

Eliminate g;_a: by considering

. Qt+At — qr-At +6

9= 2At (At2) = Gi—At = qrpar — 20t 4G:

so that
. A2 .
Gernae=qr+Atge+ S (Pt —cqr — kqr)

i.e. an expression of g;1a; as a function of g, g:.

(10)

(11)
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CENTRAL DIFFERENCE METHOD II

Two possible closures (to close the recurrence)

Option 1: find/express ;4 a: as a function of g, §:
Calculation of the velocity as (hyp: average velocity is obtained by the
finite difference of positions):

erat+qr  Qeenar—ar

= A
> At + 0 (At)
or
. Qe+t —qr .
=2— — 12
de+At At qt (12)

In practice: starting from gg and §g, iterations are performed with (11)
and (12).
(NB: this option requires a supplementary hypothesis)
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CENTRAL DIFFERENCE METHOD III

Option 2: eliminate §; from (11) and obtain g;;a¢ as a function of g,

qt—At-
Insert in (11) the expression of §; given by (10):

Geyat—Genr | At Ge+ot — Ge—At
=g+ At TR TR T —a —k 1
grrat = qr + At AL -‘r (Pt SAt CIt) (13)
( + > ) qr+at = Ppe + 2m —k ) qt— (7m ° ) qt—At (14)
At2 T 2At At? At2 2At

— qo—g-At
- At

Startup: go = g_a: = qo — At qo-

In practice: after determination of q_a¢, iterate with (14).



4' g CENTRAL DIFFERENCE METHOD IV

Méca T, Characteristics Option 1:
2017-2018
V. Donosl e Explicit method
e Unstable
Characteristics Option 2:
e Explicit method
e Limit in the stability of the algorithm: unstable if At too large
b les ot (not really problematic for SDOF systems but well for MDOF
Integrators systems)
! S Example with: m=1kg , f = 1Hz, £ =1%
. aption 2
p=sin2nfyt, with fy = 0.9Hz
o
05
o 5 10 15

64/276
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' g EXPLORATORY EXERCISES

Méca II,

2017-2018
V. Denogl 1. Implement both versions of the central difference method and play
around with parameters.
2. Validate the implementation by comparing your results with those
of the previous slide.
(Numerical values: m=1kg , f = 1Hz, & = 1%, p = sin2xfyt, with
fo = 0.9Hz)
Examples of
Numerical 3. Observe that

Integrators
3.1 option 1 provides an unbounded response (no matter the
timestep)
3.2 option 2 provides an unbounded response if the timestep is
slightly above a critical value

4. Explore the features of the responses for several values of the
problem parameters, in order to determine the critical value of the
timestep (option 2 only)
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CONSTANT ACCELERATION METHOD I

The method is based on approximation of integrals:

t+AL t+At
Qeinr =4+ / g(t)dt ; Qeyar=a:+ / q(t)dt
t t

Constant (average) acceleration hypothesis between t and t+ At:

) Gt
g(t+1)= qt ¢27t+At
(nb: g¢qay is unknown). Hence,
R R 4t + g
q(t+f):qt+wr

4t + Gerae 70
2 2

(time evolution of the velocity and position inside a time step:
T € [0; At])

q(t+1)=qt+ a7+



:' g CONSTANT ACCELERATION METHOD II

Méca II,
2017-2018
V. Denoél
At the end of the time step,
. . Gt +Grin
Geine = e+ At AL (15)
neral Fac
Examples of . q + q A Atz
) Gerar=qe+ Gt T B S (16)

(as a function of §;4 Ay unknown).
Substitue (15) and (16) in the equation of motion at time t+ At, then
solve for Gy a¢.
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The method is based on approximation of integrals:

t+AL t+At
Qeinr =4+ / g(t)dt ; Qeyar=a:+ / q(t)dt
t t

Linear acceleration hypothesis between t and t-+ At:

.. . Gerac—qe

t — =
q(t+7)=d:+ N
(nb: g¢ray is unknown). Hence,

at+At‘*étEE
At 2

2 o -3
_ . o T QA —qe T
q(t+7)=q:+q:7+G: T AT 6

G(t+7) =g+ G+



4' g LINEAR ACCELERATION METHOD II

Méca II,
2017-2018
V. Denoél
At the end of the time step,
deene =G+ Gede+ TRII AL = g TEALTI AL (17)
_ . 2 AP Gene— G\ o . Gt | Qriae 2
Gerar = Gr + qe At + 9t~ + ?Af =qt+ g At + 3 + 6 At
s

Integrators

Substitute (17) and (18) in the equation of motion at time t+ At, then
solve for Gria¢-
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NEWMARK METHODS I

Constant Acceleration Linear Acceleration
(a=1/4, 8§ =1/2) (a=1/6, 8 =1/2)
C'It+At:fh+At% l'7r+Ar:C'h+qt++t+qrAf

dtta nr A2
2 2

Geint = G + G At + qt+Aat =

qit g+ ( + 1580) A

General formalism of Newmark methods (nb: gy is unknown)

Geyne = Gr+[(1—0)G: +0Genc] At
. 1 .. ..
Qr+ar = G+ qeAt+ KE - OC) qr+ OCQHAt} A
Plus equation of motion at time t+ At:

mqeiar+ Cqernr + ke ar = Prrae

(19)

(20)

(21)
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NEWMARK METHODS II

Implicit scheme (= requires a priori iterations to find G ya¢).

Method:

e start from an iterate Gyyay,

e use (19) and (20) to obtain gryar and gryag,

e use the equation of motion (21) to obtain a new value of the
iterate grya¢. Loop.

Conversion into an explicit scheme (possible in case of linear system)

0 1 -dAt qe+At ge+(1-0) g At
1 0 -—aAt? Qeenr | = | g+ aAt+ (% —a) g At?
k ¢ m Grae Pt+At
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NEWMARK METHODS III

Notice this latter equation may also be written

0 1 —6At
1 0 —aAt?
k

c m

0 1 -6
1 0 —o

B* 2B& 1

with B = @y At

Qevat 0
Geine | =] 1
Qeint 0

ge+At
Atgeine
AtGeyne

)

1

At (
0

0 1

11

0 0

(1-8)At
1—a)At?

0

J

priar/m

)



t NEWMARK METHODS IV

Méca II,
2017-2018

V. Denosl Solve for g:;a; (for instance)

1 )
aaem™t aAtC+k Qi+At = Pr+At
. +5 ) a+ 252 )5
(xAtqt qt 2 a qt
Examples of 1 1 1 .
el + ’"< an T aar qt+<2(x 1> "f)

© KF Qerne = PF
then

. ) Fy S\
Ge+at = oAy (qerat—qe) + (1 - *) gr + At (1 — @) Ge

. 1 ( ) 1 . 1 s
Gerar = gae a9 = o n T 2a q
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4' STABILITY OF NUMERICAL METHODS I

Méca 11, Write down the equations of the numerical scheme under the canonical
2017-2018 form
V. Denoél Xernr = Axe+Lr;

where x; is composed of displacements, velocities and/or accelerations
and ry depends on p;, pr_ag, €tc.

Central Difference, option 1
The equations of the Central Difference (11)-(12) are written

At?

Grrne =qr + At g + S (Pt — cq: — kqr)

. 2 . . At .
Gernr =77 (qevat—qe) —qr =g + ™ (Pt — cq: — kqr)

ie.

2 2
( Ge+nt ) _( 1- (“’12Af) 1— §1w21At < o > . % N
Atqeine —(mAt)?  1-2&m At Atgy At
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:' STABILITY OF NUMERICAL METHODS II

Méca 11, Central Difference, option 2
2017-2018 The equations of the central difference (13)-(14) are written
V. Denoél ) 1

gt RN (9t—at —29: + qeat)

. 1
qt :E (gernt —qe-at)

Introduced in G + 2@ &1 g + cofqt =Pt we get

m?

\ Pl 2— (w1 At)? 1-& (0 At At?
S ( detAt ): ( Héfitnﬁt) *1+~§1§2Arg ) < e >+< T (o0 )Pt
eabiticy qt 1 0 qt—At 0
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4' STABILITY OF NUMERICAL METHODS III

Méca 11, The stability is studied on the free response (r =0), so that
2017-2018
V. Denoél Xt At = Ax; = A2 Xt At — ..o = A"+1 X0.
The response is bounded for n — o iif A” remains bounded.
The n" power of a matrix is computed via its spectral decomposition.
Let
A=PAP L,
- then (A contains the eigen values of A)
Stability,
Accuracy

A" =PA"P 1,

which indicates that A" is bounded iif max;|A;] <1 .

If max;|A;] > 1, then A" — co: undesired amplification of perturbations
If max;|A;| = 1: initial perturbations remain undefinitely

If max;|A;] <1, then A" — 0: artificial damping resulting from the
numerical method

77/276



:' g STABILITY OF NUMERICAL METHODS IV

Méca II,
2017-2018

V. Denoél
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Rardke OPTION 1 Central Difference, option 1 (&; =0)

o At)?
A 1- ( 12 )2 1
—(mAr)” 1
: . 2 2
o Ma=1-28 Lo ar [(22) -1
1 2 3 4 5
o,At

The integration scheme is unstable in any case.
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STABILITY OF NUMERICAL METHODS V

. OPTION 2 Central Difference, option 2 (&; =0)
' Al 2-(@ae? -1
— £,=0.01 - 1 0
-~ £,20.10
£,20.30
2 2\ 2
a=1-@80 4, (1 @O0y
1 2 3 4 5
o,At

The integration scheme is stable if 0y At <2, ie. At<Ty/m

— conditionally stable



;I . STABILITY OF NUMERICAL METHODS VI

Méca 11, Stability of Nemark algorithms
2017-2018
V. Denogl Limits of stability for the undamped oscillator
1
08 | Conditionnally . (Dissipative)
' stable Unconditionnally
stable
0.6 4
General Fac
J
Examples o
Numeric 0.4 4
Integrato:
Stability, Incgnditionnally unstable
Accuracy 0.2
IDOF &
Nonlinear
0 T T T T T T T T T
0 0.2 0.4 0.6 0.8 1

«

Linear acceleration: limits of unstable domain (!)

Constant acceleration: spectral radius = 1, unconditionnally
stable & non-dissipative
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STABILITY OF NUMERICAL METHODS VII

Méca II,

2017-2018 Stability of Newmark algorithms: spectral radius
V. Denoél
=1/6,6 =0.6 =1/4,=06 =1/3,6=0.6
) o /! ) @ / ) @ /:
15 15 15
p(A) 1 p(A)1 PA I ]
05 0.5 0.5 - N
i — 0 0
Fact 0 2 4 8 6 8 10 0 2 4 B 6 8 10 0 2 4 8 6 8 10
a=1/6,6=05 a=1/4,6=05 a=1/3,6=05
2 2
1.5 15 15
Stability,
Accuracy p(A) 1 p(A)1 p(A)1
MDOF & 05 X 05 . . 05
tructu o
0 2 4 B 6 8 10 0 2 4 3 6 8 10 0 2 4 B 6 8 10
a=1/6,0=04 a=1/4,6=04 a=1/3,0=04
2 2
15 15, 15
P(A) 1 p(A) 1 p(A)1
0.5, . 0.5 . N 0.5
0
0 2 4 6 8 10 [ 2 4 8 8 10 0 2 4 6 8 10
B &) B
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Besides being stable, it is expected that a numerical method be

accurate. Two major defects are:

e amplitude degradation, numerical damping (cf. stability) - nb:
sometimes useful

e period elongation

Period Elongation [%]

5.0|

°

Houbolt
method

Wilson
0 method
0=1.40

Example here for
g+ofg=0 q(0)=1;4(0)=0

(exact solution: g = cos 27‘6%)

— limitations on the time step
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SUGGESTED EXERCISES I

Numerical integrators

1. With the help of a series of well-chosen numerical simulations,
check the accuracy of the central difference algorithm, in
particular the period elongation.

2. With the help of a series of well-chosen numerical simulations,
check the stability and accuracy of Newmark’s algorithm. Validate
your findings with the computation of the spectral radius of the
iteration matrix.

3. Do the same for other integration schemes: HHT, Houbolt,
Wilson, Bathe, etc.
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Méca II,
2017-2018

V. Denoél
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Structural analysis

1. An object falls at the mid-span of a 4-m span simply

supported beam. It generates a force assumed to be

expressed as
\t/t
F.(t) = FbAAAAAAJKAAAE
1+(t/to)
with Fop =2000N and ty = 0.1s. Determine the maximum

bending moment/stress in the beam made of pine timber
(cross-section of 6.5x18).

. A single bay frame with pinned end beam is subject to a

harmonic excitation at the top. (to be developed).
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4' MuLTI DEGREE-OF-FREEDOM STRUCTURES [

Méca 11, Two different nomenclatures for two different versions of the equation
2017-2018 .

of the motion:
V. Denoél

Multi-degree of freedom systems (matrix version, M-DOF)

Mx (t) +Cx(t) +Kx(t) =p(t)

Systems with 1 degree-of-freedom (scalar version, S-DOF)
mii () + ca(£) + ka(2) = p(t)

MDOF &
Nonlinear
Structures

The solution of

y=ay is y=Cye™
By extension, the solution of
y=Ay is y=Coett
Extension to the MDOF case of the solutions obtained in the SDOF

case (upon condition of the definition of the exponential of a matrix...).
86/276



B

4' MuLTI DEGREE-OF-FREEDOM STRUCTURES II

Méca II,

2017-2018
1-DOF system:
V. Denoél
R ST P = pe(Lqr (2 1) e+ B8 (2 2);
aAtzm aAtC At+At = Pt+At T C OtAtqt a qe > \o qr
1 R
+m(ocAtzquaAtqur(mx 1)%)
M-DOF system:
1 1) 8 8 . At (8 .
ot (amert+ gaee ) mom mpeart € (grpms (1) 5t 5 (5-2)%)
Structures 1 1 .
+M< ae*taart (2 1>x’>

o Discuss optimal choice of Newmark parameters
o [example of the multi-storey building - with undesirable
high-frequency bracing vibrations]
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Méca 11,
V. Denoél
SECTION III: SINGLE DEGREE-OF-FREEDOM
SYSTEMS
EVDQ?E’“ LEARNING OUTCOMES:

® understand the free response of an SDOF system

Domaix ® recognize the signature of an SDOF system in the time and frequency
‘ domains

® get acquaintance with the Dynamic Amplification Factor, stationary and
transient phases of the response

® at the end of this lecture, you should be able to discriminate between time
and frequency domain for the solution of a given problem

90/276



u Contents

Méca 11,
2017-2018

V. Denoél

Time Domain
Analysis

Frequency
Domain

ey Single Degree-of-Freedom Systems
Time Domain Analysis

91/276



<I!

2017-2018

V. Denoél

Time Domain
Analysis

92/276

FREE VIBRATIONS: EXPLORATORY EXERCISES

1. Observe the free response of a single degree-of-freedom system, i.e.
§(t)+28amg(t)+oiq(t)=0

with @1 =1 rad/s, §(0) =0 and various values of £ , g(0).

[nb: Superimpose the responses on the same plot]

2. How much time does it take for the vibrations to damp out ?
Guess how this time is related to the system parameters.



4' g FREE VIBRATIONS [

Méca II,
sormeore Free vibrations = no external loading (p(t) =0). The equation reads
V. Denoél

g(t)+2m&g(t) +ofq(t) =0
Calculus: qp, =0 — determination of g, and integration constants

e write and solve the characteristic equation (in z):

22 +2m &1z + a)12 =0,

a=-o(5/1-8) ¢ n=-o(a-1/1-8)

(because & <1 in civil engineering applications. Usually
& ~1% < 1)
e write the general solution (if z; # z):

g= G et + Ge®?t or q:e’glwlt(Acosa)dt—s—Bsina)dt)

e determine constants C; and ¢, (or A and B) from initial
conditions.
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:' g FREE VIBRATIONS II

Méca 11, qg(0)=q0 ; ¢(0)=4qo. (22)

2017-2018

V. Denotl So A=qg and B = (go + E1w140) /@y, and finally

e 0}
q=e G1aut (qocosa)dtJr %quo sin a)dt> . (23)

with @y = (1)1\/1—52

The free response is harmonic, with a circular frequency @y ~ w;, and

Time Domain

Analysis is modulated by a decreasing exponential

v(r)

- et
5 -

RGN EAED U EL.
| % PN e
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FREE VIBRATIONS III

1. The frequency of the free response motion wy = w;+/1— &2 is close
to the natural frequency for slightly damped systems

Material & Material &
Welded steel  0.1%-0.5% Concrete  1%-2%
Bolted steel 0.5%-1% Timber  2%-5%

— meaning of the natural frequency

2. The envelope e 5191t = e=4127 with n=t/T; (modulation) is
exponentially decreasing. The decrease just depends on &1, when
expressed in terms of the number of cycles.

3. Existence of a memory lag t,
Observing that e~ = 4%(< 1), we notice that the oscillation is
damped out after a time t, such that

t, T
—r=—&2n- - t, ! (24)

T 28



4' g FREE VIBRATIONS [V

Méca 11, The memory lag is the period of time during which the structure

2017-2018 remembers perturbations (impacts, initial conditions, etc.)
V. Denoél

4. Limit case for & — 0

The free response (23) regularly tends towards

qg=qocoswit—+ @sin w t,
1

which shows that the amplitude of the undamped motion does not
Time Domain decrease.
Analysis

5. Particular case for go =0 (free launch)
The free response (23) then reads

q=qoe 511t <coswdt+ L
2]

sin a)dt> ~ goe 5191t cos gt
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FREE VIBRATIONS V

The free response is used to identify the natural period and the
damping coefficient.

e relative maxima occur at times: t; = 2((’)—2"' i=0,1,...— estimation
of the natural frequency
: : : *51(01 2in
e the successive maximum displacements are: g; = qope od

o the logarithmic decrement is defined as

& 42
_ 9 _ ., qoe d_ 2n&
S1=In A In 2(i+)m ’
qi+1 qoe*51w1 g /1-¢&2
qi 1 qi
— & ~—In or E1~——1In
2T Qi1 2N Qiyn
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Méca II,
2017-2018
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Peterbos Footbridge

Maitre de I'ouvrage : Bruxelles Mobilité-Direction, Gestion et Entretien des voiries
Adjudicataire : Association momentanée Groupe Verhaeren & Co et EMERGO NV

Bureau d’Etudes: BGroup, Bureau d’Etudes Greisch

Objectives of the study: determine the vibration amplitudes of this

footbridge under pedestrian loading

Step 1: Build finite element model of the structure
Step 2: Predict natural frequencies and mode shapes
Step 3: Validate with on-site measurement

Step 4: Perform finite element analysis
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e = =
d 1
Time Domain
Analysis
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FREE VIBRATIONS: CASE STUDY III

Predicted mode shapes

Mode 1 (2.23 Hz)

Mode 2 (2.65 Hz) Mode 3 (3.22 Hz)

Mode 4 (3.52 Hz)

Mode 7 (3.92 Hz)

Mode 5 (3.52 Hz) Mode 6 (3.76 Hz)

R O T R |

Mode 8 (4.12 Hz) Mode 9 (4.80 Hz)

A



4' g FREE VIBRATIONS: CASE STUDY [V

Méca II,
2017-2018

V. Denoél

Example of free decay response

0.4
% o2 B
£
s |
= I
g Of
kel
Ti D i Q
§ o2 1
04 . . . . .
0 10 20 30 40 50 60
time [s]

[ Processing file:knee_1, Start Date: 2011/05/05, Start Time: 15:03:38, List of 4

channels]
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Méca II,
2017-2018
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Analy
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acceleration [m/s?]

02—

o

26 27 28 29 30 31 32 33 34 35
time [s]



4' g FREE VIBRATIONS: CASE STUDY VI

Méca II,

=
2017-2018 1 = 0
V. Denoél 3
. enoé x
c 0.5 g -1
= el
s 0 82
= E
-0.5 S -3
c
k]
1 24
0 20 40 60 80 3 0 20 40 60 80
# #
Time Domain
Analysis = 0.01 = 0.01
up ey
€ 0.008 € 0.008
o 2
o o
£ 0.006 £ 0.006
8 3
o 0.004 o 0.004
£ £
£ 0.002 £ 0.002
5] 5]
e 0 e 0
0 20 40 60 80 0 005 01 015 0.2
# Amplitude [mm]
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FREE VIBRATIONS:

CASE STtuDY VII

’ Mode ‘ fi [Hz], computed ‘ fi [Hz], measured ‘ & ‘ £f ‘
1 2.23 2.10 ? +6%
2 2.65 2.79 1.6% -5%
3 3.22 2.82 1.9% +14%
4 3.52 3.20 0.55% | +10%
5 3.52 3.18 0.5% +12%
6 3.76 3.88 0.7% -3%
7 3.92 4.27 0.7% -8%
8 4.12 4.35 0.5% -5%
9 4.80 5.20 0.6% -8%
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Analysis
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EXERCISES

. Identify the damping ratio from measured free-response

accelerations.

. Le poids W d’un batiment est de 900 kN et la réponse libre du

batiment est étudiée en le reldchant a l'instant t = 0 depuis un
déplacement de 3cm. Si le déplacement maximum apres le premier
retour dans la direction d’ou on a réalisé le laché libre est de 2.2
cm, & Uinstant t = 0.64s, calculez (i) la raideur transversale k du
batiment , (ii) la fréquence propre du batiment, (iii) le coefficient
d’amortissement, (iv) la viscosité ¢ du batiment.

. Supposons que la masse et la raideur d’une structure soient égales

4 m=3,5.10%g et k=7.10N/m. Si la structure est mise en
vibrations libres avec les conditions initiales xp = 1.78cm and
%o = 0.14m/s, déterminez le déplacement et la vitesse aprés une
second de vibration lorsque (i) £ =0 (pas d’amortissement), (ii)

£ =0.03.
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IMPULSIVE LOADING: EXPLORATORY
EXERCISES

. Study the impulsive response of a single degree-of-freedom system,

i.e.
F/m for0<t<ty
0 otherwise

a(t)+2éwm(t)+w%q(t){

starting from rest position, with m =1kg, F = 1N, @; = 1rad/s
and & =0.01.

. Focus first on the case where ty < %’f Compute the response for

various values of ty and observe the dynamic amplification factor
(defined as the ratio of the maximum dynamic displacement to the
maximum quasi-static displacement).

. Focus then on the case where ty > fo—’f Compute the response for

various values of ty4.

. Does the damping ratio affect that much the signature of the

response?
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IMPULSIVE LOADING I

RESPONSE UNDER RECTANGULAR PULSE

A Applied Force Spring law
F Surf=Momentum fspring=k°x
>
tq t X
F/m ift<t
. 2 d
+wig= 25
ar g {o if t >ty (25)
F |1—coswt if t <ty
q(t) =+ . (26)
k |cos[ewy (t—tg)] —cosmt if t>ty

nb: F/k = Qstatic
nb II: q(t)/gstatic = dynamic amplification factor
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IMPULSIVE LOADING II

Response under a rectangular pulse with finite duration

X/Xg °

oty 5
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IMPULSIVE LOADING III

Observations:
o & =2for myty >, ie. ty> Ty (Heaviside-like loading)
. XLSt — 0 for oty < (Dirac-like loading)

24

(a)

(b)

0.4 m &ot&

\
(a) (b) (©)

0 0.4 0.8 1.2 1.6 2
t/T
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IMPULSIVE LOADING IV

Particular case oty <
For ty — 0, the response (26) becomes

) gtld@o[cos[wl(t—td)]—coswlt]

t t
< g (1~ )|

sinwit =
m

F . .oy
= — lim |2sin
k ty—0

o F tg w1

I
sinwyt
1

When ty < T1, the momentum / governs the response, not the
maximum force F !



4' g IMPULSIVE LOADING V

Méca 11, Dirac Pulse Loading
2017-2018
V. Denoel The applied force is a Dirac function:
.. . 15 (t)
q(t)+201£14(t) + 0f q (1) =
with initial conditions at rest: q(0) =0; g(0)=0.
Time Domain NB: properties of a Dirac function:

o Vt;ﬁtg: 5(1’—!’0)20

o [TZf(t)5(t—to)dt=f(t)
® units of §(t)= units of %
2

. 267
e example of Dirac function: & (x) = limg_,0 €22

oV2n
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4' g IMPULSIVE LOADING VI

Méca II,

2017-2018
V. Denogl Integration along a short time window
dt dt 15 (1) !
g 201&;¢ 2 dt = / —dt= —
| @@reaga@©+ofam)a= [ = Da=
Limits for dt — 0,
4= () = a(d0) = 4(0%) /
Jia(e)at= q(0))g = a(dr) —0 = a0 =g
Analysis fodt q (t) dt — 0

The response to a Dirac impulse is thus a free response with initial
conditions ¢q(0) =0, g (0“‘) — L.

m

o

q(t)f/h(t):{ , ore=o

_Et s
ﬁﬁeglsm@ﬁ for t>0

112/276



;i g ARBITRARY LOADING I

Méca 11, By extension, the response to a unit pulse applied at time t = 7 reads
2017-2018
. 0 fort<rt
V. Denoél h(t—1) = =
(t=7) {ml%e‘f“’l(f”sinwd(t—r) for t>1

[ unitary impulsive response |

Any loading is just a sequence of impulses:

Time Domain - -
Analysis I\ |
Frequer

L SANU (S Al +,kﬂ, i

+
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:' g ARBITRARY LOADING I

Méca T, Let us consider the pulse applied at time t = 7:
2017-2018
V. Denoél dl = P(‘L’) dt

The response to this pulse is obtained by multiplication by the unitary
impulsive response h(t—1):

dg=h(t—1)dl=h(t—1)p(7)dT

Considering now the sequence of pulses in p(t):

+o0
Time Domain q(t):/o h(t—1)p(c)dt

Analysis

or

_ [P (g _
q(t)—/o Pe sinwg (t— 1) dt

[ Convolution integral ; Duhamel’s integral |
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Méca II,
2017-2018

V. Denoél

Time Domain
Analysis
Frequency
Domain
Analy
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. . .
7 (1~ coswnt)
’ at
at sinwt
¢ (1* o )
» b2 ol

m (b

E 7o =
o sin(w (t=t0)) —sin(wr £
(e w;’m “ )) tost

as w1

ety

poe—ent

me
3

—

+8sinw t—coswit
1+57



u ARBITRARY LOADING IV

posin fuwrt

Méca II, po 0<t<to
2017-2018 . 0 <t
V. Denoél o
po sin B B (1= coswit) 0<t<ty
k B (coswi (t —to) — coswit) to <t
N po cos Bt 10, m 0<t<ty "
. o 0 to <t "
Time Domain ot (1 _ w) 0<t<to
Analysis Po cos Bwit—coswit o “ ) .
: - 0 e sinw sinw
Frequency k 1-5 e (005“«1 (t — to) + Zrenrliel L ) to<t
Domain
Analy

posinawtsin fuyt

2o + sinwt
po (1-02—52) sin awyt sin fwi t4+2a8 (cos wi t—cos aws ¢ cos fun t) % (1 - g, — coswit + =750 ) 0<t<to
k (1-(a+8)%) (1-(a—8)%) ;;;, — coswnt — mw.u;«;,;‘):m.d./,) o<t
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u ARBITRARY LOADING V

Mé I ““,’ 0<t<ty
eca 11, . Pt tSt<t 1
2017-2018 . <t "
V. Denoél : X RVARY
o (4 _ sinunt
A iy 0=<t<to cwfmwwmg 0<t<ty
po (=t _ sinwit) _ f sinwi(t—to) to<t<t o
E (Bt T o=t=n mlwl(lflo)—coxwll) to<t
o (fo—t1) sinws t+ts sin(ws (t—to))—to sinfwi (t—t1)) “=n -
3 Towr (01 st
. ,,um. () ost<t ., do (105 (31))
o to<t . / \ 0
Time Domain P y 2 ot in?
Analysis 2 . (‘%—“sm%‘)’ ~ sinwit) 0<t<t ;;, ( i (cos (2 ) = M eosant)) 0<t<to
Frequency Bzl (_sinw, (¢ — to) — sinwnt) o <t 2
Domain T

=z (coswit — coswy (t —tp)) tg <
Analysi
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: ' g EXERCISES

Méca II,

2017-2018
V. Denoél
1. With the help of Duhamel’s tables, determine the response of
a single-dof system to an exponentially decreasing loading.
Double-check this result with numerical simulation
““in;‘eysisn]aln 2. Compute the shock-response spectrum of a single-dof for

other pulse shapes than those given p. 113.
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Méca II,
2017-2018

V. Denoél

Frequency

Domain Single Degree-of-Freedom Systems

Analysis

Frequency Domain Analysis
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:' g EXPLORATORY EXERCISE

Méca II,
2017-2018
V. Denoél
1. Study the response of a single degree-of-freedom system to
harmonic loading, i.e.
. . 2 .
d(t)+ 2L (1) + 07q(t) = sin(Q1)
starting from rest position, with @; = 1rad/s and £ = 0.05.
R Compare the dynamic response g(t) and the quasi-static response
. gs (t) for various values of Q.
i:g}?;‘s [nb: what if the loading frequency is much larger than the natural

frequency? Much smaller? Similar?]

2. Represent, as a function of Q, the amplitude of the steady-state
response (i.e. after the transient phase).
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4' g HARMONIC LOADING I

Méca II,
2017-2018

V. Denoél

Frequency
Domain
Analysis

121/276

Sinusoidal applied force

We thus have to solve
a(6)+2m&14(t)+ofq(t) = £ sinat

Calculus: second order differential equation, non-homogenous, with
constant coefficients
The solution of such an equation is obtained by:

e writing the general solution of the homogenous equation
qn(t) = e 911t (Acos wyt + Bsin wgt)
e finding one particular solution qp (t)

e writing the total solution q = g5+ qp

e then constants A and B are determined from initial conditions
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2017-2018

V. Denoél

Frequency
Domain
Analysis
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HARMONIC LOADING I

Study of three limit cases
a(t)+2m&g () +ofq(t) = . sinot
Before application of the formal solution, we study three limit cases:

1. w?q(t)>
2. §(t)>
3. 201&1(t) >



:' g HArRMONIC LoADING III

Méca 11, CaSe 1: (D%q(t) > (q(t) 72(1.):]_5]_(7(t)), i.e. O)El <
2017-2018 The equation of motion simplifies to
V. Denoél _
2 P _. —
t)= — t
wiq(t) o, Sin®

whose solution is

P
t)= sin@Ot = —sin®t
q(t) ma? X

Quasi-static response: the structure adapts at each time step to the
applied force. Force and response are in phase.

Frequency
Domain
Analysis
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V. Denoél

Analysis
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HARMONIC LOADING IV

Case 2: §(t)> (0fq(t),201&:19(t)), ie. 2>
The equation of motion simplifies to

=

whose solution is
P Pl .
q=———5sinOt+csttcst.t ~» ———5sinot
m@ k ©2
of
Inertial Response: governed by the structural mass. For @ >, the

structure does not have enough time to adapt itself. Force and response
are 180-degree out-of-phase.



t HARMONIC LOADING V

Méca II, Case 3: 201&1g(t) > ('d(t),a)lzq(t)), ie. wgl ~1
oo nb. Rather uncommon because &; <. We study thus a very narrow
V- Denodt band around .

We thus set @ = @3 (1+€), where |g] < 1, so that

201619 = P sinwt
m
whose solution is
—p _ —cos®t P
9= mcoswt—i-cst = 2(1e)& k + cst.
Domin Resonance: the bandwidth is as narrow as & is small, but dynamic
Analysis amplification inversely proportional to &;! Very dangerous phenomenon

in structures.

125/276



v HARMONIC LOADING VI

P
Méca II, 4 qmax/p Pic d’autant plus T 4 ¢
2017-2018 haut et étroit que
V. Denogl 3 €y est petit
2 /2 @
1 -
. ——— > O
0 1 @ 2 3 0 1 @ 2
. w1 (2%
Analy
Frequency
Domain
Analysis
. @ P
Behavior o Gmax/ 7 [0}
Quasi-static (k) & < 1 0
O
Resonant (c) o = 1 1/251 /2
. @) [0]
Inertial (m) o > 1/(0—12 T
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4' g HarMONIC LoADING VII

Méca 11, Sinusoidal applied force
2017-2018
V. Denogl We thus have to solve
a(6)+2m&14(t)+ofa(t) = L sinat 27)

Calculus: second order differential equation, non-homogenous, with
constant coefficients
The solution of such an equation is obtained by:

e writing the general solution of the homogenous equation

Frequency

Domain gn(t) = e Gront (Acoswyt+ Bsinwgt)

Analysis

e finding one particular solution gp (t)
e writing the total solution g = g+ qp

e then constants A and B are determined from initial conditions

127/276



4' g HaAarMONIC LoADING VIII

Méca II,
2017-2018 Formal study of vibrations under harmonic loading

V. Denoél
Observation: the homogenous solution g fades away (if & #0). After
a certain time (t,), g >~ gst. We thus focus on gs in the sequel.

gt 18 the transient component of the response;
gst is the stationary component

We try to find a solution of the form

Frequency
Domain

Analysis gst = Gy sin®@t + G cos Ot. (28)

Constants Gy and Gp are determined by substituting (28) in (27)

—®2 (Gisinwt + Gy cos®t) + 20w &1 (G cosdt — Gy sin®t)

+@? (Gysin®@t + Gy cos@t) = — sin@t.

3 [l
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4' g HARMONIC LOADING X

Méca II,

2017-2018 Balancing the coefficients of cos@t and sin®@t provides
V. Denoél (l—ﬁQ) Gl—2ﬁ§1G2 :g
2B&G+(1-2)G =0
whose solution is
G =2 LP
B e (26
G =P__2B
2T KR eas)
with =2
Domamn Alternative formulation of (28):
Analysis
gst = Gisin@t+ Gy cos@t = rsin (Ot — ¢)
where
_ P 1
Tk 2 2
(1-B%)"+(2818)
2
¢ = arctan 1 flll;

129/276
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We may thus 1nterpret

Méca II,

2017-2018 Jme — 1 a5 a dynamic amplification factor
V. Denoél K (1-B2)°+(2&B)’
.0 asa phase shift between the loading and the response
\/ +(2&1B)? as a dynamic stiffness, which connects the

loadmg and the amplitude of the response

Frequency
Domain
Analysis
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;i g HARMONIC LOADING XI

Méca II,

2017-2018 We can now represent the exact expressions of gmax/ % and ¢ , and
V. Denoél compare them to the estimations given before.
Qmax/% Pic d’autant plus 4 (P
B haut et étroit que T . .
£, est petit
3 .
2- n/2 o
1 =
natysts - N @)
T T
Domain 0 1 @ 2 3 0 1 @ 2 3
Analysis 1 w1
P
p _gmax/ % 180 _¢ =
) ‘5=” =005 - L—|
3 : £=02 | _—
5=O,SJ
JIVEE .-
2 L %
£=05
1 a— §=07
=
% T 3 % T 5 2 3
o1 1
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HARrRMONIC LoADING XII

Complex Analysis
There is advantage in considering

>

I 420189+ @22 = %e'm. (29)

rather than

G+2mE g+ 07q= %sinﬁt (30)

[if & is real (=p) and £ is the solution of (29), the solution g of (30)
is given by g =3 (2)]
[but & may be complex...]
We search a solution of the form
Qst =9 e, (31)

The substitution of (31) into (29) reads
2 1ot = 1ot 2 ot z 1ot
—0°Ye' "+ 21005 Y 't + 0 Y 't = — 't
m

whose solution is (simply)
Z

= m = (0)2, 32
—524—21(01551-%&)% ( ) ( )
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HArRMONIC LoADING XIII

where the frequency response function (FRF) 7 is defined by

1 1

k _ k
1—2—12+2lm%§1 1-B2+21B&

H =

With a harmonic load Pel0t i associated a harmonic response
Qst = 7 (0) Pe'®t with the same frequency @, with an amplitude
given by || and a phase shift corresponding to the phase of 2257

The frequency response function # may also be written
1 1-B2-2B&

Tk
Ja-B22+2Ba)? /-2 + (288

2518

tarctan
1-p2

Xl
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HArMONIC LOADING XIV

Transient study of the growth to resonance

When =1 (@ = o), the complete dynamic response reads

P wt
q=e 519 (Acoswgt + Bsinwgt _pcos
k 2&

———
Qst

qtr

With initial conditions at rest, one gets

1B
q:—B e Gront cosa)dt—&—Lsinwdt —cosmwyt| .
or, for & <

q= i% [e’glwltél sinmt — (17e’§1wlt) COSU)lt] (33)



:' g HArRMONIC LOoADING XV

Méca II,
2017-2018

V- Denotl Growth of the response when the frequency of the loading corresponds
to one natural frequency

R T
1

Ana
Frequency \&/

Domain
Analysis Rty

e
[r\f\ {\ (\T R

i

b M

i

135/276



Méca II,

2017-2018

V. Denoél

I'ime Domai
Analy
Frequency
Domain
Analysis

136/276

HARMONIC LOADING: CASE STUDY |

Dolhain Footbridge / Kujawy Cement Mill
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PERIODIC LOADING I

The Fourier series decomposition of p(t) reads

p=ap+ Z apcos(nQot) + Z bpsin(nQot)

n=1 n=1
where Q¢ = QT—’; and coefficients a, and b, are given by
1 +Tp/2 g
= = t)dt
2 To /—T0/2 p(t)
2 [rTer Qot) d
an = ?0/7_’_0/2 p(t)cos(nQot)dt
2 +To/2
by = 7/ p(t)sin (nQ0t) dt
To J-Ty)2

Let us assume that the applied force p(t)
is periodic, with period Ty (! not T7)

(34)



4' g PERIODIC LOADING II

Example: Runner-like loading

Méca II,
2017-2018
V. Denoél Py 2
/P“SI“ Tyl
VA L
elelote
Coefficients of the Fourier series of p(t) are given by:
Domin 1 [+To/2 2r Po
nalysis a = —_— 70’1- - =
Anels 0 o / posin — T
5 2 /47M2 2mt 2nntdt 0 for n odd
= = sin —— cos
n To Po To To &2 5z for neven
b 2 /+T0/2 2wt . 27rntdt B forn=1
= R— sin —— sin =
n To postn = To 0 forn>1
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v PERIODIC LOADING III

Méea 11, In (34), the summation Y;,_; may be truncated rapidly.

oraots Proof (with example !7):
V. Denoél
a, b,sin(Q,t)  a,cos(2Q,t) a,cos(4Qt)
NA R
(L
LIV = + AAAAAAAA +
EANARARA
an
Fne Doman * 5 . . n 2 premiers termes / 3pr’imiers\termes 4 premiers termes
Frequency 1 l 3 85 87 MR \
R, T A //\\ \ /\ /\ /\ \ /\ /
YEVRYR
b"‘ ! S \“\J - L WEW JH
| 12312567
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4' g PERIODIC LOADING IV

Méca II,
2017-2018

V. Denoél

Frequency
Domain
Analysis

140/276

Superposition principle:

If g1 is a solution of §(t)+2wi1&1g(t) +w?q(t) = f,
If qp is a solution of §(t)+2m &1 (t) +wiq(t) = f,
then a1 g1+ 2@z is a solution of §(t)+2w1&1g(t) + wPq(t) = aafi+onh

Application to periodic loading ? Straightforward, because we can write
p=ap+ Z apcos(nQot) + Z b,sin (nQot),
n=1 n=1

one just has to compute the response to each loading: ag, a1 cosQqt,
ap cos2{ot ...,b1sinQqt, bysinQpt, ...

Let gp the response under load ag,
Let gn , the response under load a,cos(nfot),
Let gp p the response under load bysin(nQqt),



u PERIODIC LOADING V

Méca II,
2017-2018

V. Denoél

I'ime Domair
Analy
Frequency
Domain
Analysis
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The solution of the equation of motion reads

q(t)=qo+ i Gn,a(t)+ i qn,b(t)
n=1

n=1

a, b,sin(Qt)  a,cos(2Q,t) a,cos(4Q,t)

Réponse avec
4 premiers termes.

+{11 c‘

VA AA A
v} \;/ \,’/ \' il \m 1
o VYUV YU




;i g PERIODIC LOADING VI

Méca I, Sollicitation abs(H) Réponse
2017-2018
a a
V. Denoél " "
.2.‘...n f.Z.....n
1134567 01134567
b, N angle$H) b, n
123 456 7 123 456 7
| DN ———
‘ ‘ ’w Q-S Rés. Inertiel
Amals =
Frequency
Domain
Analysis
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Méca II,
2017-2018

V. Denoél

Frequency
Domain
Analysis
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Alternative: decomposition as a complex Fourier series

The complex Fourier series decomposition of p(t) reads

Foo
p= Z y"elnﬂgt

n=—oo

where the (complex) coefficients &2, are given by

+To/2
P, = i/ 7 p(t)e 1"t dt (36)
To J-1y)2

One then just has to study the response under each load £y, 221 elfht

PretX bt o,

1ot ¢orresponds a harmonic

Because, to a harmonic loading &pe
response
D, = A () Ppe' "ot
the complete response reads
oo = _
2=Y 2,= Y H(nQ)Ppe'™.

n=—oo n=—oo

This is the complex equivalent of (35).
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EXERCISE: PERIODIC LOADING I

1. A man is jumping on a 5-m long beam. The generated force is

assumed to be a half-sine function with amplitude P, = 1000N

F(£) = Posin (%) ()= {f(t) i F(8)<0

0 otherwise

and adjustable period of loading Ty. The beam is assumed to have
a bending stiffness El = 4-10*N.m?, a mass per unit length

U =50kg/m and a damping ratio & = 0.05. Compute the
maximum displacement under this dynamic loading, if we assume
that the man has tuned his jumping frequency to the worst case.

[nb: the result may be computed with hand calculations]

2. Validate your findings with a step-by-step simulation.
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EXERCISE: PERIODIC LOADING II

“A” worst case is when Qg = w1, i.e. Top = T1. In that case, only the b
component of the loading matters. The response to

Po/2-sin(Qt) = Po/2-sin (%-—’ft) is

Py 1
= — = 0_32
b1 =5 2Ek m

(add gs component Py/k = 0.064m)

Another worst case is when 2Qg = oy, i.e. % = T;. In that case, only
the a; component of the loading matters. The response to

—%Po-sin(ZQot) = _3%P0'Sin (%t> 18

Ga, = Po 25/{ =0.14m

(add gs component Py/k =0.064m, and gs component for by — term,
Py/2/k =0.032).



:' . EXERCISE: PERIODIC LOADING III

Méca II,
2017-2018

V. Denoél
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;I . ARBITRARY LOADING I

Méca II,
2017-2018

V. Denoél

An arbitray loading is just a periodic loading with infinite period

12l

H
Tin

N\ A
P A ’ s ¢ T
N ] —
\e Domai -5 % ? i 5 % 3%
Analy 2 2 2
Frequency
Domain
Analysis

t)= lim P, et "t
p(1) To'—mn:z,w !

(37)
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:' g ARBITRARY LOADING II

Méca 11, R T, .
2017-2018 N
V. Denoél | .
I > >
To A
A Q,
1 » R »
Time Domai A To A
Ana Q
Frequency °
Domain s
Analysis ) > tessasssasasnereresasssssasen . >

e Because TpQy = 27, the limit Ty — o implies Qg — 0.
e Q) is the frequency resolution

e the limit means therefore that &2, becomes a continuous fonction
of frequency £ ().
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4' g ARBITRARY LOADING III

Méca II,

2017-2018
V. Denoél
IS gt
t)y=li P 0
p(t) TJTM,,:Z,“, ne
The limit of a summation must give an integral — need to introduce a
small frequency step AQ (= Qp):
1 & 1Qpt
t)= lim — ToZ "tAQ
p(t) Aim o n;w 0Pne
Frequency
Domain 1 =
Analysis — lim — gz(Qn)elQntAQ

To—reo 2T 5,

where we have set 2 (Q,) = ToZ,. Hence:
1 [t
_ = 4 1Qt
p(t)= L 2(Q)%dQ
(definition of the inverse Fourier transform of Z(Q)) .
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ARBITRARY LOADING IV

The limit Ty — +oo applied to £ (Q,) = To P, gives, by considering
(36):
+To/2

2 — | Po— i —18Qnt
Z(Q)= TIOITM ToPp = TIUITm . p(t)e dt
i.e.
e Q
97’(9):/ p(t)e dt. (38)
Summary
p(t) = %/+my(n)elﬂfdn (39)
P(9) = /+mp(t)e"mdt (40)

Relations (39) and (40) indicate that functions p(t) and Z2(Q) are
Fourier conjugates
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ARBITRARY LOADING V

The Fourier series is applicable to the loading as well as to the response

53

P(t):i/erW(Q)ethdQ — g«F(Q):/Jr p(t)e k.

—oo

g(t) = / 2(Q)dQ s Q(Q)—/:Nq(t)e”mdt. (41)

Dynamic Analysis
Let a infinitesimal bandwidth %. The corresponding loading is
2(Q) e’m%. It provides an elementary contribution to the reponse

H(Q)Z2(Q) eth%. One obtains the dynamic response by considering
the whole frequency domain

t)_/ff(Q)@(Q) lﬂfdﬂ

= 2(Q)=#(Q) 2(Q)



B

4' AN IMPRESSIVE SHORTCUT...

Méca 11, We multiply the equation of motion by e~*% (side-by-side) and
2017-201
ol integrate along time:
V. Denoél
T G
/ (G+2m& 4+ 0fq) e Hdt = / pTeﬂmdt- (42)
This swaps the parameters (t to Q):
Z7(Q
—022(Q)+210:£,92(2) + 07 2(Q) = #
»? 2 2\ —1
Frequency Because 7 () = 7+ (—Q +2t; & Q+ a)l) , we thus have
Domain
Analysis

2(Q) = #(Q) 2(Q)

(much more simple, but without a simple physical intuition ...)

nb: by integrating successively by part, it is possible to show that
o0 400 oo o0
/'c']e ‘mdt:—(—lQ)z/qe Qg — _22(Q), /c']e lmdt:—(—zn)/qe W g —10.2(Q)
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Frequency
Domain
Analysis
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. Compute the Fourier transform of p(t) =

_1
1+¢2°

[2(0) = \/Fe 1]

. Compare the analytical result obtained in #1, to the numerical

estimation in Matlab.

. Compute the response of a single degree-of-freedom system to the

loading p(t). Compare both time and frequency domain solutions
[choose m = 1kg, @ = 1rad/s and & = 0.05].



4' g EXERCISES |

Méca II,

2017-2018 1. A control console containing delicate instrumentation is to be

V. Denogl located on the floor of a test laboratory where it has been
determined that the floor slab is vibrating vertically with an
amplitude of 0,8 mm at 20 Hz. If the mass of the console is 363 kg,
determine the stiffness of the vibration isolation system required to
reduce the vertical motion amplitude of the console to 0,013 cm.

2. [Juin 2016] Des études ont montré que les piétons marchant sur
une passerelle flexible sont susceptible de synchroniser leur marche
lorsque 1’accélération horizontale du tablier dépasse 0.1m/s?. Une

Frequency
Domain
Analysis

foule de 0.5 personne par metre carré, avangant lentement, a une
vitesse de 0.7m/s, se prépare a traverser une passerelle de 100m de
portée et de bm de large, réalisée en acier soudé. Le premier mode
propre de la passerelle dans le plan horizontal peut étre approché
par une forme sinusoidale a une demi-onde, de masse généralisée
100 tonnes et fréquence propre f; = 0.45Hz. Sachant que la
sollicitation horizontale générée par un piéton est modélisée
comme une action harmonique d’intensité Fy = 20N et que la
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Méca II,
2017-2018

V. Denoél

T'im domai
\na
Frequency
Domain
Analysis

155/276

fréquence de la sollicitation horizontale d’'une marche lente se
trouve entre 0.4 Hz et 0.9 Hz, déterminez (i) s’il y lieu de craindre
une synchronisation de la foule, (ii) le temps nécessaire pour
atteindre le régime stationnaire, c’est-a-dire 'accélération
maximale de la passerelle dans son premier mode.

Elevation

i —

e

NB: quand une foule de N personnes déambule librement, tous les piétons ne peuvent pas
synchroniser leur marche. On admet donc généralement que ’action de la foule peut étre
représentée par un ensemble, plus petit, de v/N personnes parfaitement synchronisées entre
elles et avec la passerelle, tout en négligeant les contributions des autres piétons.
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motion
Nodal Basi

Modal B
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SECTION IV: MuLTI DEGREE-OF-FREEDOM

SYSTEMS

LEARNING OUTCOMES:

® dynamical modeling of multi degree-of-freedom structures

existence and computation of eigen modes and frequencies
simple and hand calculation of natural frequencies

time and frequency domain analysis of large structure
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Multi Degree-of-Freedom Systems
Setting up the equation of motion



w MDOF SyYSTEMS

Méca 11,

2017-2018 SDOF MDOF

V. Denoél X4 X4 X, X3
E e d — —» —>
w
o m, m, m, m,
(&} K, Kk, Kk, K,
2] OO
[a]

Setting up the
equation of
motion

Nodal Basi

CONTINUOUS

Modal Basis

> either the structure is a discrete set of rigid bodies connected to each other
> either the structure is continuous (eco—number of DOFs) and has to be
discretized to be studied numerically
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w DISCRETE SYSTEMS I

Méca I, Example of discrete systems in civil engineering applications:

2017-2018
Tuned Mass Dampers

V. Denoél
Introduction

Structural

Stability
Numerical
Integrators

DOF Floor dampers (source: deicon.com) Vibrating  TMD
System Structure
MDOF

System

Setting up the
equation of
motion

September 2011

Nodal Basis

Modal Basis

Continuou
Structure

Acceleration (milli-g)

April 2012

Seismic
Analysis

i ' T % E) ) E)
| Time (sec)

TAIPEI (source: Wikipedia)

u]
8
I
i
thit
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DISCRETE SYSTEMS II

Setting up the

m 0 0
0 my 0
0 0 ms3

More generally:

equation of motion

3

X, X, X
W m, M m, M m, }
ki k. ks

[ONO) [ONO) [ONO)

—miXy —kixi+ ko (xo —x1)+p1 =0
—maXp + k3 (x3 —x2) + k2 (x1 —x2) +p2 =0
—m3X3+ k3 (x2 —x3) +p3 =0

)

0 ks

X3

MXx (t) + Cx (t) + Kx(t) = p(t)

0

X1 ki + ko —k2
X2 |+ —ko ko+ks —k3

k3

)

X1
X2
X3

-

P1
P2
P3

)
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2017-2018

V. Denoél

Setting up the
equation of
motion
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CONTINUOUS SYSTEMS I

Continuous Version
Example: Transverse vibrations of a Bernoulli beam

pdx
r
M M+dM
>x [ | A0y
v dx ? T+dT
v g
?v(x,t) 92 ?v(x,t)\
“‘7%7*+EZ<H‘7ET*>_p“J)

with u the lineic mass (mass per unit length) and E/ the bending stiffness.

aM 9 v v
T—W—$<7Elﬁ> and f,-—,udxﬁ

[ Beam equation, with inertial forces |



v CONTINUOUS SYSTEMS II

Méca II,
2017-2018

V. Denoél

Setting up the
equation of
motion

Nodal Basi

Modal Basis
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How to get rid of the PDE 7

Lumped modeling — 1-DOF

1. assume the response takes place in a given shape v (x,t) = ¢ (x) g(t)
(¢ (x) satisfies boundary conditions)

2. project the response in the assumed shape

m*§(t)+ k*q(t) dx = /¢(x)p(x,t) dx
Q

with m* = f 19 (x) dx and k* = [0 (x) £ (194G ) dx.

X

[nb: Another way to cope with the difficulty of the PDE is to recourse to
eigen functions - See section related to vibrations of continuous systems]

[nb: Another alternative is the finite element method (transformation of an
ODE into a set of algebraic equations - See Discrete Version]



B

»

CONTINUOUS SYSTEMS II1

Méca 11, How to get rid of the PDE 7
2017-2018
V. Denodl Finite Element (Displacement/Rotation) Method — M-DOF
Static Analysis (Finite Element Method):
92 d%v(x,t)
E) <EIT> =p(x,t) — Kx=p
Dynamic Analysis:
) ’v(x,t) 92 d%v(x,t) .
Setting up the ? R ? — —
s, s L (855 ) —pt MO+ Kx() =p(1)

e M: mass — inertial forces

o K: stiffness — internal forces
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CONTINUOUS SYSTEMS IV

With the method of displacements (or more generally the finite element
method) the equilibrium of a structure reads

Kx=p
where

e Kj; represents the reaction at DOF i under a unit displacement at
DOF j, while all other DOF's remain blocked;

e p; represents the energically equivalent force applied at DOF i

K,J_/ ' (x) 1 (x) ¥ (x) dx
pi= [ vi(x)p(x)dx

with y;(x) the interpolation function (Hermite polynomials)
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CONTINUOUS SYSTEMS V

Example: bending deformation of a beam

Unit Displacements
& Interpolating Functions

v, vi(x)

—— 2 3
vi=1-3(5)"+2(%)

o, () ) 3
= — ve=t[5-2(5)"+()’]

ws(X) v,

— ys=3(5)7-2(3)°
\ 2 3

— 3% va=t]-(3)+(3)°]
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CONTINUOUS SYSTEMS VI

This results in (Kj = [y (x) El (x) y} (x) dx)

12 6/ -—12 6/
El 60 42 —6r 202
B -12 —-6¢ 12 -6/

60 202 —60 42

Ke =

For one finite element
Kexe = Pe

withxe=( vi 61 v2 6 )

— internal forces (LHS) = external applied forces (RHS).

[ nb: use this equation to internal forces (LHS) - in a postprocessing operation]

Element stiffness matrices K and the vector of applied loads pe are
then localized, rotated and assembled in order to obtain the assembled
system

Kx=p



:' g CONTINUOUS SYSTEMS VII

Méca 11, Example: vector of work-equivalent applied forces (p; = [ ; (x) p(x) dx)
2017-2018
V. Denoél P P

pl pl

P e PRa+1)(a—1)2  Po?(3-20)

Pla® (a—1)

Setting up the
equation of
motion

Post-treatment (if required)

e the displacement field along a finite element is obtained by
interpolation

v(x) = vay1 (x) +01y2 (x) + vays (x) + B2y (x)

e nodal internal forces of a finite element are obtained by Kexe

167/276
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CONTINUOUS SYSTEMS VIII

Mass Matrix
Kx = p translates the equilibrium of the nodes of the model. In
dynamics, we have to add inertial forces.
Option 1: Consistent mass matrix
Let v(x,t) the deformed configuration of the finite element. The inertial
forces (per unit length) are given by f;(x) = uv(x,t).
Work-equivalent inertial forces (corresponding to DOF i) are given by
¢
Fiit) = | fx.wi(x)dx
U . .
= [ [7ava () 81y () + 2y () + By ()] i) dx
¢
= u/o Vi) vi(x) w2 (x) ws(x) va(x) )Xedx

with Xe = < %1 é]_ Vg ég >T
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CONTINUOUS SYSTEMS IX

For one finite element
Meie - Fl,e

where Me, = [ pw;(x)wj(x)dx, i.e.

156 22/ 54  —13¢

Iy 220 42 130 -3¢
¢ 420 54 13¢ 156 —22¢
—13¢ =302 220 42

Element mass matrices M, are then localized, rotated and assembled in
order to obtain the assembled matrix M and the discrete version of the
equation of motion

Mx+Kx=p

d%v(x,t) n 9? (EI d%v(x,t)

etz 32 >:p(x,t) —  Mx(t)+Kx(t)=p(t)

done!
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Consistent mass model Lumped mass model

e~ —1 1 . [}

Interest in considering simpler interpolation functions y; 777



:' g CONTINUOUS SYSTEMS XI

Méea 11, Option 2: Lumped mass matrix
2017-2018 The force at node i is given by the mass at that node multiplied by its
V. Denogl acceleration. We thus define
0 0 o0
0O 0 0 O
M, =
¢ o o 4 o
0O 0 0 O

so that MeXe corresponds to the nodal energetically equivalent inertial
forces along the element.

Setting up the
equation of
motion

171/276
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CONTINUOUS SYSTEMS XII

The damping matrix could be established in a similar manner...
...provided the evolution of viscosity along the finite element is known

c(x).
Foi(t) = [ fo(x.0)vi(x)dx
= [ ) [irvn () + V2w () + B () + 2y ()] wix) e
— [l me) w00 W) Yok
withke=( V1 6 i & )

For one finite element
ce)'(e - FDAe

where Ce; = [ c(x)w;(x)w;(x) dx.



4' g CONTINUOUS SYSTEMS XIII

Méea 11, Damping in structures in composed of
2017-2018

e internal/material damping — few information (use material
specific damping ratio)

V. Denoél

e additional damping (shock absorbers, dash-pots, dampers) —
model required

e aerodynamic damping— model required

Dash-pot model (with constant viscosity c,
i.e. Force = Viscosity X Relative Velocity),

Setting up the

B v=1-7 S
— Ce= ( >
yo=x -c ¢
k —k . .
nb: same as Ke = | Kk for a spring/bar model with constant

stiffness k, i.e. Force = Stiffness x Relative Displacement
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CONTINUOUS SYSTEMS XIV

In summary:

- Compute element matrices Ke and Mg, rotate then assemble
— Kand M

- Construct structural damping — Cg
[ usually as a linear combination of K and M, the only reliable

information... see next]

- Compute additional element matrices corresponding to dampers Cy
and to aerodynamic damping C,

Finally

Mx (t) + Cx(t) + Kx(t) = p(t)

with C = Cs+ Cy+C,.



NUMERICAL SOLUTION OF THE MDOF

.
& EQUATION

Méca II,
2017-2018

V. Denoél

1-DOF system:

1 L _ 5 5 INTE AT
aAf2m+aAtC+ Ge+at = Prrac+ € txAtqu qt+7 - —2)d

1 1 1 .
+m aAt2Ch+ Y qr + 2% -1)q:

M-DOF system:

Setting up the
equation of

8

nnnnnn 1
: (WM+WC+K>XHMZPHM+C<

J 5 A 5 )y
ant T\ )t (o2

1 1 1 .
+M(tmﬂ T anr ’“+<2a 1)”)
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EXPLORATORY EXERCISES I

M3 = 1500 kg

—> dof 3

—

T
]
w
o
3

HEA140

M2 = 3000 kg
. —> dof 2

> <«

HEA140

l M1 = 3000 kg
T [ —> dof 1

HEA140

[ 3000

3000 kg
1500

243 -121 0
-121 243 121 |.10°N/m
0 -121 121
[ 3000
3000 Ns/m
1500

Determine the response of a 3-storey building subjected to a support
motion ug = Asin[Q(t)t], with Q(t) = Qo+ vt, (A=0.01, Qo = 1rad/s,

v =0.1rad/s and t € [0;500]s)
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ANALYTICAL STUDY OF THE EQUATION OF
MOTION I

Newmark is fine, but does not provide a clear understanding of
what is going on...

SDOF
e Free response
e Impulsive Loading — arbitrary loading = sequence of pulses

e Harmonic Loading — arbitrary loading = sum of harmonic
loadings (Fourier series .vs. Fourier transform)

MDOF
Same outline, but in a nodal basis or in a modal basis

e Harmonic Loading — arbitrary loading = sum of harmonic
loadings

e Impulsive Loading — arbitrary loading = sequence of pulses

e Free response
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2017-2018

V. Denoél Nodal Basis
Freq. Domain

(FRF)

Setting up th
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motion
Nodal Basis

Modal Basis
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Nodal Basis
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FREQUENCY DOMAIN II

Apply a side-by-side Fourier transform to both sides of the equation of
motion

M (-0 2 (0)) +C(1oZ (0))+KZ (0) = Z ()
= (-Mo? +10C+K) 2 (0) = Z ()
or

2 (0) = (0) 7 (0)

where /' = (—Mo? +10C + K)71 is the M-DOF Frequency
Response Function
We can also write

N
Zi(0) = ;%(w)%(w)

Jj=1



Méca II,
2017-2018

V. Denoél

Nodal Basis
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FREQUENCY DoOMAIN III

Assume momentarily that &; (@) =0, Vj € [0; N]\ k (only one force is
applied to the structure). In that case:

2 (0) =y (0) Py (0)

o i (o) is the (complex) response of DOF / when a unit harmoinc
loading is applied at DOF j

o | 7| represents the amplitude of the response and £ is the
phase shift between the loading and the response.

— same meaning as in the S-DOF case



:' g FREQUENCY DOMAIN IV

Méca II, Example
2017-2018

V. Denoél

15000] p3 =10°%V27te 5%
10000) Py = -10°
ot a) —> DDL3
00
005 005 01 015 02 t T
[ > DDL 2
A —105V3mte-S0t
- / \ p1 =10 v27;!e 7
| p =
mnnu“ \ 17 ooy
p th
o - - | > DOL 1
10tion 005 005 01 015 02 e
Nodal Basis
lodal B
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u FREQUENCY DOMAIN V

. H11(@) . H12(®) . H13(®)
w0 0 0
Méca II, |
2017-2018 o o 0
E VIS
V. Denoél ., . . .
0 1 'k
10" 10° 10°
s s 0 s 0
Ha1(0) H22(®) Ha23(®)
En pratique: une matrice 3 x 3 x Nyq
Setting up the
equation of
motion
Nodal Basi

Modal Ba
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v FREQUENCY DOMAIN VI

Dépl. Etage 3

. 102 T T

Méca II, d d
2017-2018 3
10

V. Denoél
10t
103
-60 -40 -20 0 20 40 60

Dépl. Etage 2

-60 -40 -20 0 20 40 60
Dépl. Etage 1

motion

Nodal Basi

lodal Ba
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Inv. Fourier

Dépl. Etage 3

4 6 10
Dépl. Etage 2

4 6 10
Dépl. Etage 1

4 6 10



;i g FREQUENCY DOMAIN VII

Méca II,
2017-2018

V. Denoél

Nodal Basis

Modal B

Vibrations of a building equipped with a antenna on its roof
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Méca II,
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V. Denoél Nodal Basis

Time Domain
(Duhamel)

Setting up th
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motion
Nodal Basis

Modal Basis
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:' g TiME DOMAIN ANALYSIS [1

Méca 11, Integration of the equation of motion along a very short time window
2017-2018 gives
V. Denoél

At At
/(Mi(t)—i—C)’((t)—f—Kx(t))dt:/p(t)dt
0 0

. or (after some developments):
the response is a free response with initial conditions,
x(0)=0
x(07) =M1
By extension of the unit impulsive response S-DOF':

The unit impulsive response h; ; is the response of DOF i when a unit
impulsive force is applied at DOF k.
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Méca II,
2017-2018

V. Denoél
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SDOF: q(t) = [y~ h(t—1)p(r)d7

Step 1. Consider the arbitrary force applied at DOF j. This force is
decomposed as a sequences of pulses — Duhamel’s convolution integral:

+o0
X,-(t):/o hij (t— 1) p; (1) dt
Step 2. Repeat the operation for forces applied at other DOF's

n—z/ iy (£~ 7)p; (7)ot

or, with a matrix format

x(t):/;mh(tfr)p(r)dr
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motion
Nodal Basis

Modal Ba
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Example
h

107 1 107 12 107 13

st | | VN UNPNE SR q e
Piiad Bl Rl
2| 2| 2|

— ; ——— : ———
w’ "21 w! 22 ' 23
BT SO B ]
BN S O oo BT S
9 AAAA | 0 f\/\/wvu«m | /\NV\NWVW
. p p
. 4 o

W "31 1w 32 1’ 33
] ] )

] [P ORA. ‘ AP A ] ) ﬂijMJxAﬁvL~AV

En pratique: une matrice 3 x 3 x N

step




.i g TiIME DOMAIN ANALYSIS V

Méca II,

2017-2018
oépl. Etage 3
V. Denoél
oot
0005
0
0005
001
s i s s w
oépl. Etage 2
oot
0005
0
0005
001
Sctting up th R
' Lot Dépl. Etage 1
motion
Nodal Basis 0.01
lodal B 0.005|
0
0005
001
R R )
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Méca II,
2017-2018

V. Denoél

Nodal Basis

Time Domain
(Newmark)

Nodal Basis

Modal Ba
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u MODAL BASIS ANALYSIS

Méca II,
2017-2018

V. Denoél

Modal Basis

VRN

Freq. Domain Time Domain Time Domain
(FRF) (Duhamel)  (Newmark)

Nodal Basi

Modal Basis
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4' g UNDAMPED FREE VIBRATIONS [

Méca 11, We study undamped vibrations
2017-2018 .
V. Denoél Mx () +Kx(t) =0 (43)

.. and try a solution of the form (separation of variables)
x(t)=¢q(t) (44)
where q(t) is a scalar function and ¢ is a vector
— all nodes are moving in phase; the ratio of two amplitudes is always
constant (Vt).
— ¢ is a shape (as a static deformation)
Substitution of (44) in(43) gives
Modat B Moq(t)+Koq(t)=0 (45)
M¢ and K¢ are vectors (N x 1). Let
m=M¢ ; k=Kg.
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4' g UNDAMPED FREE VIBRATIONS II

Méea 11, Equation (45) is written component-by-component:
2017-2018
. ki q(t)
V. Denoél g(t kig(t)=0 = —L —_
mi(6)+ kia (1) - =3

Left fct (i) , right fct(t)= both members are equal to a positive
constant (independent from / and t)

Hence P .
i _a(t) >

mi— q(t)
where ®? is a constant (not any!). And so

§(t)+w?q(t)=0 = harmonic response
k,‘ = m,-a)2

Modal Basis

This indicates that @ has the physical meaning of a circular frequency.
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One still has to determine the value(s) of @ and the shape ¢...

ki=mo® = K¢=Mpo®> & (K-Mo?)p=0

From calculs... we know:

(46)

e ®? is the eigen value of the general problem with K et M, and ¢ is
the corresponding eigen vector — (®;, ¢;)

e there exist N pairs (;, §;) satisfying (46)

In practice (analytical approach)
The eigen values (0,-2 are determined from

det (K—Mo?) =0

— degree-N polynomial in ®? with N roots (positive because K and M

are positive definite)

0<o?<wi<..<wf
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Méca I1, Then, for a given ®;, the corresponding eigen vector ¢; is obtained by
2017-2018 SOlViIlg
V. Denoél (K- Ma),-2) ¢ =0

The system is singular (because det (K — Ma)lz) =0), so ¢; is defined
with a multiplicative constant.

To simplify notations, the eigen vectors are gathered in a matrix

P=[¢r ¢ ... ¢n]

and the eigen values in a diagonal matrix

Modal Basis
o

so that
(K—Mw?)¢; =0vi & (K-MQ?)d=0

197/276
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In practice (numerical approach)
Eigen vectors and eigen valeus are computed with the eig function:
[®; Q%] = eig(K,M)
Normalization of eigen vectors
Option 1: Normalization to a unit maximum absolute value, i.e. such
that
max }¢j,'| =1

J

Option 2: Normalization with respect to the mass, i.e. such that

¢ Mg; =1

NB: ®; = mode i at dof j
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—_—
| ‘ { | ] ,
Méca I, \ / /
| | \ N 7 /
2017-2018 \ / /
| | \ \ / /
V. Denoél ! ‘ " | ' |
| | \ \ \ \
| [ \ % \ \
[ [ \ \ \
—‘ | |
\‘“ “} / / "/
/ / / / / //
[ ‘
|

Mode 1 - f=1.66Hz Mode 2 - f=4.53Hz Mode 3 - f=6.19Hz

108.5 10.4 1.66
0= 809.5 —Sw={ 285 psrad/s—f=<{ 453 »Hz
Modal Basis 1510.6 38.9 6.19
05 1 0.5
d=| 0866 0 —0.866
1 -1 1
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UNDAMPED FREE VIBRATIONS VII

Properties of eigen modes
Eigen modes are orthogonal through the mass and stiffness matrices
Demo: Let’s consider two modes i and j with different frequencies

(0; # ;)
90" Ko; = o7 ¢;" Mg;
9" Ko; = of ¢ Mo (47)
— ¢ Ko; — 0 Koy = 079, Mg; — 079" Mg
Because (P,-TK(])J- = ¢J-TK(P,' and (P,-TM(PJ' = ‘PJ-TM‘PI )
0= (0] — 7) ¢ M
so that ¢, Mg; = ¢, Mg; = 0. Backsubstituting into (47),
¢jTK¢i = ¢,’TK¢j =0.

(nb: one can demonstrate the same relations for @; = w;, but ¢; # ¢;)
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UNDAMPED FREE VIBRATIONS VIII

Modal Properties of the Structure
Important Property:

M* = "M¢ and K* = &Ko are diagonal matrices

e Generalized Mass Matrix
M* =T Mo
e Generalized Stiffness Matrix
K*=¢TKo
o Generalized Damping Matrix
c=o¢7Co

— represent the properties of the structure in the basis of normal modes
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Méca II,

2017-2018 Example
V. Denoél
\ \ \ \ / /
\ Y. /
\ b /,/ 4 //
| \ \\ / /
| / |
| | \ \ \ \
/ | \ %
| \
| | / ] I |
/ / / /
/ / // /’ / /

Mode 1 - f=1.66Hz Mode 2 - f=4.53Hz Mode 3 - f=6.19Hz

Modal Basis

3.64

4500 0.488
4500 (kg); K= 10%(N/m)
4500 6.80

M* =

202/276



¥ APPROXIMATE ESTIMATION OF NATURAL

o
& FREQUENCIES I

Méca 11, Rayleigh Quotient

2017-2018

V. Denoél

The Rayleigh Quotient of a vector y is defined as

y' Ky
y"My

R(y)=

1. The Rayleigh quotient of a mode shape is equal to the squared
natural frequency .
Rig) = 2 ® = 2
¢i M i
2. If y is a perturbation of ¢; of order €, then R(y) is an estimation of
R(¢;) = a),-2 with an error of order €2. In particular, if y is a
Modal Basis perturbation of ¢; of order €, R(y) gives an estimation by excess of

In practice, the Rayleigh quotient is used to give an estiamation of
natural frequencies.

203/276
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& FREQUENCIES II

Méca 11, Rayleigh Quotient - Example
2017-2018
V. Denoél Let

y=(1/3 2/3 1)T.
It is straightforward that

R(y) =127.8(rad/s)?

The “corresponding” natural frequency is thus

1
f1 estimated = b R(y)=1.80 Hz

(to be compared to fi =1.66 Hz, ...
for a somewhat different mode shape ¢; = (0.5 0.866 1)7).

Modal Basis
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APPROXIMATE ESTIMATION OF NATURAL
FREQUENCIES III

Iterative Approach

The fundamental frequency and the corresponding mode shape satisfy
qu) =Mé (48)
(D]? 1= 1

Let us assume that ¢; is normalized to a maximum unit value.
It turns out that - appears as the maximum static deflection under

(1)2
the “load” M ¢; ...
...and ¢; represents this static shape

Instead of formally satisfying (48), we can compute approached values
@1 and ¢; by considering

1 . .
6)712K¢1:M¢1 (49)

where ¢; is an approximation of the mode shape.
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APPROXIMATE ESTIMATION OF NATURAL
FREQUENCIES IV

— A good estimation of the natural frequency and a better
estimation of an approximate mode shape are obtained as a result of a
simple static computation
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APPROXIMATE ESTIMATION OF NATURAL
FREQUENCIES V

Example
Simply supported beam (length L, bending stiffness E/, lineic mass 1)

The exact fundamental frequency is given by

winj El 987 [EI
T\ T2\

Let us assume ¢; = 1 (really tough, but at least normalized to 1)
—>#¢1 represents the static deflection (i.e. deformed shape) under this
1

uniformly distributed mass. The mid-span deflection is

1 s5ult

®?  384El

876 [EI
1= 3 m

and the shape is

nb: E14Y —

_ sul® 16 (X4 3 x
o= V=3mE s (7 23T
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APPROXIMATE ESTIMATION OF NATURAL
FREQUENCIES VI

Instead of choosing ¢; = 1, we have a better estimation now

— 16 x3  x
2 _ o2
n= <L4 L3+L>

which produces

1 277ult o = 285
@2~ 26880EI T\
o 256 x3 x> xT X8
= 175 - 28 y1a% 4 4 X
9= 1385 < L 8 st E ATt L3>

In practice, no iteration is performed and ...

the natural frequency corresponding to a mode shape is obtained by
loading the structure with its own mass in the direction corresponding
to the sign of the expected mode shape. If the maximum displacement
is denoted by &, the circular natural frequency is estimated by

w] = 1/\/2;

In short: it is always possible to determine (at least an approximation

of) natural frequencies
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The N natural modes ¢; form a basis of linearly independent vectors.
Any vector y is expressed uniquely as a combination of these N
independent vectors

N
y=Y qi¢i=2%q
=1
where ® is the N x N matrix gathering the eigen vectors (modes). So,
ne op th q=9""y

1l Basi
Modal Basis

Example
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Mode 1 Mode 2 Mode 3
9,=0.83 9,=-0.11 4:=0.06
\ | [
I e
| \
| ) ’ |
| ‘ |
| / \ \ | l‘
[
\ [ | |
05 | [ [ o5
0.83. | 0.866 | 011.| 0| + 006. -0.866
Vo1 {1 |
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Decomposition of the double pendulum
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MODAL SYNTHESIS IV

Idea: solve the equation of motion with this decomposition. For each

time step t:

N
x(t) =Y ai(t) ¢ = Pq(t)
i=1
Instead of solving
Mx (t)+Cx(t) + Kx(t) =p(t),

we solve
Mg () + Coq () + Kdq(t) = p(t)

— change of variable (unknown)

(50)
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MODAL SYNTHESIS V

Idea: use advantage of M* = T M®d and K* = 7 K¢ (diagonal
matrices), and multiply (50) by ®7:
®TMoG(t)+ 07T ChG(t)+ T Kdq(t) = p(t)

or
M*q(t) +Cq(t) +K'a(t) =p* (1)

where p* (t) = ®Tp(t) represent generalized forces.

— the equations of motion are projected in the modal basis
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MODAL SYNTHESIS VI

Few information about structural damping: give C* a simple form —
diagonal!
The system

M*4(8)+ C'a(t) + K a(t) = p* (£)
is thus a concatenation of independent equations (uncoupled system).
A generic equation reads
M; ;i (t) + G4 (t) + Kiqi () = pi ()
or

Gi () +20i&gi (t) + 07 qi (t) = p,{”(fé)

Because there is few information about damping, it is usually simply
characterized by & — method well adapted to the modal basis
approach.
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4' PROPORTIONAL DAMPING I

Méca 11, Another way to obtain a diagonal modal damping matrix is to
2017-2018

assume
V. Denoél

C'=aM’+BK* ie. C=aM+BK

This choice has an influence on the

g
damping coefficient in each mode:
*
g = oy
[ I * .
> Vv " 2’”%;@‘01
Modal Basis * *
_aMi i +BKY o Boy
2Ib47i ; 2w; 2

Rayleigh damping

215/276
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PROPORTIONAL DAMPING I

In practice o and B are determined in such a way to fix the
damping ratio to a desired value for 2 modes

. — 2w‘w- . . . .
R T
3 _ o By = g = 209 (Q_ﬁ>
J 20y 2 a)l.2—(o.2 0 o

J

(there’s no way to impose a specific value for the other modes; one

can just compute them...)
This technique is used in a nodal analysis where an expression of

C is necessary.

If damping cannot be considered as diagonal,
e solve the coupled system (even in a modal basis thus)

e neglect off-diagonal elements
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MODAL BASIS ANALYSIS |

One has to solve

. N *(t )
6 (0)+ 2084 (9 + 02, ()= P pour =10
i

— use the methods developed for the S-DOF system
e time domain, Duhamel’s convolution integral
e frequency domain (multiplication by the FRF function)
o step-by-step method (time domain)

Repeat the computation for each mode, to determine g;(t), i=1,---

Combine modal responses:

N

x(t)= Y. a:(£)9 = ®a(?)

i=1
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-

x 10*

AN

Force généralisée, mode 1

0 01 02 03
x10*

0.4

Force généralisée, mode 2

0 01 02 03

x 10*
2

0.4

AN

Force généralisée, mode 3

0 01 02 03

0.4

0.02
Rép. modale, mode 1
0 /V\AA/\/\/\/W\
-0.02
0 2 4 6
0.01
Rép. modale, mode 2
0 WMN\/\/\/\AANWMMW
-0.01
0 2 4 6
x10°
5
Rép. modale, mode 3
0 W\/\/\/\/\/\/\/\/\/\/wwvwww
-5
0 2 4 6
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Méca I Example - comparison with the solution obtained in the nodal
) basis
V. Denoél
Dépl. Etage 3
) - g
o.oos:/ \ I \ ;\ /\ \ N ]
of Vo | \ A v\/ N N e
; [ W |
0.005 |/ \/\ / U
001 | J ]
-0.015 L L L L
0 1 2 3 4 5 6
Dépl. Etage 2
0.01 A = 4
L /\ i
b th 0.005 1/ \ / \ r/’\ ™~ -~ -
" AVAVAVAVAV NS
rotion -0.005 \v\/ V 1
11 Basi -0.01 - M
Modal Basis 0,015 - . - : . !
Dépl. Etage 1
0.01,
0.005 AM\ /\/\ n N 1
of V| A } \ /\/ A \/V \ S N AN A e
-0.005 | \/r v \/ ]
-0.01
-0.015 L L L !
0 1 2 3 4 5 6
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MoODAL BASsisS ANALYSIS [V

Example - Duhamel’s convolution integral

(0=~ [ o) e 8 Dsinag (t-1)d
q iy 0pre sinwy (t—1)dt

Idea ? Limit the computation to the first M modes (neglect higher
modes for which @y >>)

N M
x(t) = __Z,ICII(t)¢i ~ _;q,-(t)qn =dq(t)

where ® represents now an N x M rectangular matrix and q is the
vector gathering the M modal coordinates.

In practice, on can keep only a list of M modes (not necessarily the first
M ones).
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MOoODAL BASIS ANALYSIS V

How to select the relevant modes for a given dynamic
analysis ?

Context: a load with a frequency content in a limited band [0, Qs max]
Frequency Domain Analysis:

2(Q) = () 2 (Q)
Neglect modes for which . (Q2) 22* () is small:

e cither J7 () is small in [0,Qs0 max] (argument 1: K, is usually a
decreasing series // argument 2: quasi-static responsé if
fnat 2 5f:soll,max§

o either 22*(Q) is small for the considered loading (Example 1:
simply supported beam with symmetrical loading // Example 2:
the frame)

Other possibility:

e 2(Q) is not negligible, but the considered mode has few influence
on the quantity that is observed
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Meca 11, []
20];_2018 / Exemple 1 Exemple 2 Exemple 3
Mode 1 - f=1.66Hz |
V. Denoél I 1 1 01
1 -1 —
1 1 1
Mode 2 - f=4.53Hz
J 237 0.6 0.6
=1 0 =10 P*=1 09
Mode 3 - f=6.19Hz 0.63 237 06
1f
)
) Basi
Modal Basis
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Dépl. Etage 3 Depl. Etage 3
MODES 1-23 MODES 1-2-3
Lo MODE 1 0.01 MODES 1-2
0.005 0.005
0 \ ol
-0.005 -0.005 \
-0.01 0.01
0.015 -0.015
0 15 2 25 0 05 1 1.5 2 25
Dépl. Etage 2 Dépl. Etage 2
MODES 1-2-3 MODES 1-2-3
001 MODE 1 00t A MODES 1-2
0.005 0005/
0 0 /
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001 0.1
0.015 0.015
0 05 1 15 2 25 0 05 1 15 2 25
Dépl. Etage 1 Dépl. Etage 1
0.01 MODES 1-2-3 001 MODES 1-2-3
’} MODE 1 MODES 1-2
0005/ ¢ 0.005
0 \ 0
-0.005 -0.005
001 -0.01
0.015 0.015
0 05 1 1.5 2 25 0 05 1 15 2 25
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Dynamic analysis in the modal basis is interesting because
e it decreases the number of unknowns (M < N in practice)

e it allows a decoupling of modal equations

e up th The most popular analysis method is a step-by-step analysis in
v the modal basis.
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SECTION V: CONTINUOUS STRUCTURES

LEARNING OUTCOMES:
® rapid dynamic analysis of simple structures
® estimation of natural frequencies of continuous systems

® mathematical treatment of PDE with eigen functions
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Continuous Version
Example: Transverse vibrations of a Bernoulli beam

?v(x,t) 92 ?v(x,t)\
H5p *ﬁ(E’ 92 >_”(X’t)

with u the lineic mass (mass per unit length) and E/ the bending stiffness.

aM 9 v v
T—W—$<7Elﬁ> and f,-—,udxﬁ

[ Beam equation, with inertial forces |
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How to get rid of the PDE 7

Lumped modeling — 1-DOF

1. assume the response takes place in a given shape v (x,t) = ¢ (x) q(t)
(¢ (x) satisfies boundary conditions)
2. project the response in the assumed shape

G (1) + k(e dx = [ 6 (x)p(x.0)dx
Q

with m* = fou¢? (x) dx and k* = fo ¢ (x) &5 (EI%) dx.

nb: Another way to cope with the difficulty of the PDE is to recourse to

eigen functions - See section related to vibrations of continuous systems]

[nb: Another alternative is the finite element method (transformation of an
ODE into a set of algebraic equations - See Discrete Version]
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Aim: to write the governing equation in a modal basis

— Procedure is similar to what is done for discrete MDOF
(modal analysis)

We shall look for a particular solution of the equation of motion
(without loading) under the separation of variable format

v(x,t)=9¢(x)q(1).

The introduction of this particular solution format into the equation of
motion yields

¢(x)a(t)+%¢”"(x)q(t) o,

or, equivalently,
g(t) _ El 9" (x)

a(t)  n 9(x)
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As both sides of this equation are functions of different variables, the
only way to satisfy this equation is to have both sides of the equation
equal to the same (positive) constant

g(t) _EI9"(x) _ o

q(t)  u o(x)
Actually we will show that @ can’t take any value, but well a set of
well-determined values.
[nb: upper dot stands for time derivative, whereas prime symbol stands for
space gradient.]

Mode shapes are obtained from

2
0" (x) - E29 () =0 (51)
and time evolution of modal amplitudes are obtained from
a(t)+@%q(t) =0

nb: this latter equation gives a meaning to @
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NORMAL MODES OF VIBRATION III

Mode shapes are determined from (51), and require knowledge of
boundary conditions. The general solution of (51) is

¢ (x) = Asin kx 4+ Bcos kx + Csinh kx + D cosh kx

2
4_ po
where k" = .
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Example: simply supported beam

In this example, the end conditions are
¢(0) = ¢(L)=0
¢"(0) = ¢"(L)=0
Satisfaction of these conditions yields

B=0 ; D=0 ; AsinkL=0 ; CsinhkL=0
The only non-trivial solution is Asin kL = 0, which results in kL =iz, i.e.
o= () JE
=\ L I

9; (x) = Asin HTTX (52)

nb: the mode shape is normalized by setting a unit maximum value, i.e. A=1 (in
each mode).
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Orthogonality of Normal Modes

Orthogonality is not demonstrated - as such - (see discrete form of
equation of motion).

It is possible to show that
L
| 106001 () de = M 8

[ B0 o = K 5

(no matter the boundary conditions)
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Méca II,

2017-2018
V. Denoél
The first few mode shapes and natural frequencies may be
computed with this technique. Tables provide estimations of the
natural frequencies with simple (exact) formula.
Continuous Example:

Structures

233/276
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Transverse vibrations

Longitudinal vibrations

(p,% EI wr | E
wp =5 — e
4 m L\ p
P S E £
r o a N
pr=" o1 =4.73
o =21 o = T7.85 _k
p3 = 3T w3 =11.0 Pr=RT
g =4m g =14.1
01 = 1.88 o) =393
2 = 4.69 2 =T7.07 T
o3 = 7.85 03 =102 pp=g thkm
o1 =110 04 =133
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— @2m
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The solution of the equation of motion is obtained with this change of
variable

V() = ; 91 (x) ai(t)

where g; are the modal amplitudes (new unknowns of the problem).
The equation of motion in the modal space is obtained by
“left-multiplication” by the mode shape

2VX 4VX
/Oan(x){u‘9 Cet) g2t o)) o

dt? x4
and thus reads

L
MZﬁk(t)+Kqu(t):/[) Ok (X)p(x,t)dx = pj(t) for k=1,...0

with [ definition of generalized mass and stiffness ]

L
/0 WOk (x) @i (x) dx = M 6y

[ B0 000" o= K8



-’

.' MoDAL Basis ANALYSIS 11

Méca II,
2017-2018

V. Denoél

Continuous
Structures

237/276

The modal equations are uncoupled

L
M)+ K5 au(©) = [ 0 (0 p(xit)dx=pi (1) for k=1,..c0

— transformation to a set of ODE (instead of a PDE). Possible to
digitalize the solution (provided a truncation on k is performed).

nb: we have introduced pj, the generalized force in mode k.
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Example: simply supported beam

Generalized masses and stiffnesses are readily obtained as (*)

T pimx _plL

M = j/ usin e Ix = 5

K = /Elf4s i g ()L
L 0 L L - L) 2

We can also check that
ki EI(F)'S

L
M s
i 2

which is comfortable to justify the physical meaning we gave to ®.

* Loi imx oo X _Lgs.
(*) because [y sin ¥ sin { dx = 55;

(53)
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Refinement with damping

In this solution procedure, damping is added a posteriori, by means of
damping coefficients

Mias(8) + 28 /K My aie(£) + K qi(£) = pi (t)

where damping coefficients & are selected according to the constitutive
material of the structure.

SUMMARY: typical analysis outline

1.
2.

Compute mode shapes and natural frequencies

Compute generalized masses ans stiffnesses, as well as generalized
forces

Solve (independently!) for the modal amplitude in each mode (e.g.
simple 1-DDL Newmark approach)

Return to nodal displacements by means of the initial change of
variables v (x,t) =M, ¢;(x) gi(t) (where M is the number of
modes considered in the analysis)
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Méca II,

Problem: A force with constant amplitude F crosses a simply supported

2017-2018
V. Denosl beam (given E/, u and L) at a given velocity v.
1. Modes shapes and natural frequencies are given by (52)
2. Generalized masses and stiffnesses are given by (53)
The force is located at x =0 at t =0 and therefore at x = vt at time t. The
distributed load applied on the beam is thus given as
p(x,t)=Fd(x—vt) (54)
gto_nt?tm'}’}fs The generalized forces are obtained as
L . kmvt
P(0)= [ 00 plx ) dbe = Fou(ve) = Fsin =7 (55)

3. The response in each mode is obtained by solving (undamped structure)

. . kmvt
MGk (t) + Kiqk(t) = F sin

After a bit of algebra...
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4' g APPLICATION TO BRIDGE CROSSING II

Méca 11,
2017-2018
V. Denoél
) F sinwfﬁsina)kt
qr (t) =
Ky 1— <m>2
oy L
or, noticing that @, = k?w; and after introduction of o = % (dimensionless
velocity of the vehicle)
(1) F sin(%ogt) — Esin(wyt) (56)
qe(t) =~
K* a2
k 1-(%)
Continuous — danger in mode k if o= k (nb: in practical civil engineering applications
Structures o< ]_).

4. Return to nodal displacements. For instance, at mid-span

M in(2 _ag
, (;t) -y (_l)k%sm(kwkt) ak :m(a)kt)
k=1;k odd k 1-(%)
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: ' LONGITUDINAL VIBRATIONS I

Méca II,
2017-2018 Another example of Continuous Model
V. Denoél

Longitudinal vibrations of a (truss) bar

pdx
—>
N
>x i | <>
L ax -
u(x,t) T

Continuous

Structures a2u(x7 t) —E a2u(X7 t)
dt? Ix?

with p the material density (mass per unit volume) and E the Young modulus.

+p(x,t)

Mode shapes ?

ux)=0(dalt) = 00a()= S0 (a(e).
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4' g LONGITUDINAL VIBRATIONS II

Méca II,

2017-2018 from which .

V. Denost _a@) _
q(t)

e mode shapes are obtained from

0"(x)
000 °

_E
p

" pw2 _ _ . % %
) (X)+?¢(X)—0 — 0 (x) = Asin c + Bcos -

with c=+/E/p.
e time evolution of modal amplitudes are obtained from
g(t)+w?q(t)=0 — q(t) = Csinwt+ Dcoswt

Continuous
Structures

Example

Fixed ends: u(0)=u(L)=0.
In this case,

c_im E

i wX—O — W =ix
smc— i =1 =1 0
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SECTION VI: SEISMIC ANALYSIS

LEARNING OUTCOMES:

® origin of earthquakes and seismic risk

® to have the required analysis tools for seismic engineering
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Why seismic engineering ?
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—

Seismic

fill

Analysis
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EARTHQUAKES III

Méca II,
2017-2018

V. Denoél

Introduction

Structural
Stability

Numerical
Integrators

SDOF
Systems

MDOF
Systems

Continuous
Structures

Seismic
Analysis
The seismic hazard maps provide earthquake properties, such as peak ground
acceleration (PGA), associated with a given return period, usually 475 years
(probability of exceedance of 10% over 50 years) and 95 years (probability of
exceedance of 10% over 10 years).

=] =) = E == DA
247/276
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Introduction

Structural

Stability

Numerical
Integrators

SDOF

System

MDOF
System

Continuou
Structures

Seismic
Analysis
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EARTHQUAKES IV

Forces induced by impulsive loading in a semi-infinite half-space are

composed of:

e body waves: P-wave and S-waves

e surface waves: Rayleigh and Love

waves

Love waves Rayleigh waves
72 /
A7 £L

T

et IR RSN EEN T 1 IIII|I|}

Direction of propagation

Direction of propagation

A



u EARTHQUAKES V

Méca II,
2017-2018

V. Denoél

Acceleration [m/s?]
o

0 5 10 15 20
Time [s]

Velocity [m/s
S

5 10 15 20
Time [s]

Moy s o mation)

Seismic
Analysis

Displacement [m]

0 5 10 15 20
Time [s]
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EARTHQUAKES VI

The most important information for a structural and civil
engineer is the accelerogram (or seismogram).



4' g EARTHQUAKES VII

Méea 11, Characterization of seismic activity
oraots Obsolete / Useless charaterizations:

e Duration T [s], usually € [10;60] seconds - {the longer the
worse }

V. Denoél

Intensity / - Mercalli Scale - {is that well interesting 7}

Magnitude M - Richter Scale - (log E =11.8+1.5M), with E
the energy at the focus - {few interest because of that}

e Maximum displacement [m], usually € [0.01;1] m - {is
that well interesting ?}
e Maximum acceleration [m/s?], usually € [0;1] m/s? -
S {Dbetter: related to effective loading}
Appropriate charaterizations:
e Accelerogram [m/s?] - {much better: solution of equation
of motion}

e Response Spectra S(T1,&;) - even better: for lazy engineers

251/276



4' g EARTHQUAKES VIII

Méca II,
2017-2018

V. Denoél

Seismic
Analysis
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The Mercalli Scale

I. Instrumental Generally not felt by people unless in favorable conditions.

II. Weak Felt only by a couple people that are sensitive, especially on the upper
floors of buildings. Delicately suspended objects (including chandeliers) may swing
slightly.

III. Slight Felt quite noticeably by people indoors, especially on the upper floors
of buildings. Many do not recognize it as an earthquake. Standing automobiles
may rock slightly. Vibration similar to the passing of a truck. Duration can be
estimated. Indoor objects (including chandeliers) may shake.

IV. Moderate Felt indoors by many to all people, and outdoors by few people.
Some awakened. Dishes, windows, and doors disturbed, and walls make cracking
sounds. Chandeliers and indoor objects shake noticeably. The sensation is more
like a heavy truck striking building. Standing automobiles rock noticeably. Dishes
and windows rattle alarmingly. Damage none.

V. Rather Strong Felt inside by most or all, and outside. Dishes and windows
may break and bells will ring. Vibrations are more like a large train passing close
to a house. Possible slight damage to buildings. Liquids may spill out of glasses or
open containers. None to a few people are frightened and run outdoors.

VI. Strong Felt by everyone, outside or inside; many frightened and run outdoors,
walk unsteadily. Windows, dishes, glassware broken; books fall off shelves; some
heavy furniture moved or overturned; a few instances of fallen plaster. Damage
slight to moderate to poorly designed buildings, all others receive none to slight
damage.



4' g EARTHQUAKES IX

Méea II,

2017-2018

VII. Very Strong Difficult to stand. Furniture broken. Damage light in building
of good design and construction; slight to moderate in ordinarily built structures;
considerable damage in poorly built or badly designed structures; some chimneys
broken or heavily damaged. Noticed by people driving automobiles.

VIII. Destructive Damage slight in structures of good design, considerable in
normal buildings with a possible partial collapse. Damage great in poorly built
structures. Brick buildings easily receive moderate to extremely heavy damage.
Possible fall of chimneys, factory stacks, columns, monuments, walls, etc. Heavy
furniture moved.

IX. Violent General panic. Damage slight to moderate (possibly heavy) in
well-designed structures. Well-designed structures thrown out of plumb. Damage
moderate to great in substantial buildings, with a possible partial collapse. Some
buildings may be shifted off foundations. Walls can fall down or collapse.

X. Intense Many well-built structures destroyed, collapsed, or moderately to
severely damaged. Most other structures destroyed, possibly shifted off foundation.
Large landslides.

XI. Extreme Few, if any structures remain standing. Numerous landslides, cracks
and deformation of the ground.

XII. Catastrophic Total destruction — everything is destroyed. Lines of sight
and level distorted. Objects thrown into the air. The ground moves in waves or
ripples. Large amounts of rock move position. Landscape altered, or leveled by
several meters. Even the routes of rivers can be changed.

V. Denoél

Seismic
Analysis

253/276



:' g RESPONSE OF A 1-DOF OSCILLATOR [

Méca 11, Governing Equations
2017-2018
V. Denoél x(t)
—=
¢
a )I
k ¢ ;
T
uy(t)

Seismic
Analysis

mx(t)+cq(t)+kq(t) =0 — mg(t)+cq(t)+kq(t) = —mi (t)

As if there was an effective loading pegr = —miig (t) in the relative
reference frame.
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RESPONSE OF A 1-DOF OSCILLATOR 11

§(t)+201814 (1) + 0fq(t) = —ig (1)
For a given accelerogram ig, the response g (t) depends on @y and &;
(the properties of the structure).

2
a(t)+%ém(t)+%q(t)=—ug<r)

For a given accelerogram iig, the response g (t) depends on w; and Ty
(the properties of the structure).

— concept of Response Spectrum



u RESPONSE OF A 1-DOF OSCILLATOR III

Méca 11, e /\ """""""""""""" .

2017-2018 o104
: Ground Acceleration [m/s?] 03 Max |q|
V. Denoél -
: 02
2 H 0.1
0 i £=0.05
2 .
4 :
0 5 10 15 20
Time [s] g
qa(t

Velocity [m/s

Seismic o1 k¢
Analysis

Displacement [m]

5 20 u,(
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u RESPONSE OF A 1-DOF OSCILLATOR IV

Displacement Spectrum [m]

Méca II, 0.4
2017-2018 Ground Acceleration [m/s?] '
: Max |q|
V. Denoél 2 03
0
-2 0.2
-4
0 5 10 15 20
Time [s] 0.1
&,=2.5%, 5%, 7.5%, 10%
0
0 5 10
Inertial asymptote
ymp T, [s]

lim Sy (Th) =wu .
T oo d( 1) g,max

Seismic
Analysis Quasi-static asymptoteT2 g % e
lim Sy (77) = lim ; L iigmae = 0
Ty —0 T —0 » » » » »

2
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Méca II,
2017-2018

V. Denoél

Seismic
Analysis
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Ground Acceleration [m/s?]

0 5 10 15 20
Time [s]

Inertial asymptote
lim S, (T1) = g, max

Ty —+oo

lim S, (T1) =0

T1—+o00

Quasi-static asymptote .,

Velocity Spectrum [m/s]

15

S—_____|

10

T, I8l

i A
A Sy (Tr) = lim, == g maz = 0 oo
7lim0 Spu (T1) =0
- —> > > —> >



u RESPONSE OF A 1-DOF OSCILLATOR VI

Acceleration Spectrum [m/s?]

Méca II,
2017-2018

V. Denoél

Seismic
Analysis
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Ground Acceleration [m/s?]

0 5 10 15 20
Time [s]

Inertial asymptote
73133 S (Th) = lig,max
lim S,,,, (Ih)=0

T+

Quasi-static asymptote

4
. ~T3 ...
Qlllglosa (T)i hm i B ‘QV \S@Y \'EVWPV o
lim Spq (T1) = tig,maz
-0 —» —» —> — —>



RESPONSE OF A 1-DOF OsciLLATOR VII

Méca 11, The Displacement, Pseudo-Velocity and Pseudo-Acceleration Response
17-
2017-2018 Spectra
V. Denoél
10! = :
100
<
N
Spv &
NI
Seismic 107!
Analysis
10" i
10°
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V. Denoél

Seismic
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3

Type 1, far earthquake

2
T [s]

Type 2, close earthquake

o 7 : related to damping

Tp Te Tn T

0,8 (1 (25— 1)) for 0< T <Tp

2.5a,5n for Ty <T <Te
2.6(1,,5'7& for Te <T <Tp
2.5a,SnT5e for Tp <T

Subsoil s T [s] T [s) Tp [s]
1 2 1 2 1 2 1 2
A 1.0 1.0 0.15 0.05 0.40 0.25 2.0 1.2
B 1.2 1.35 0.15 0.05 0.50 0.25 2.0 1.2
1.15 1.50 0.20 0.10 0.60 0.25 2.0 1.2
D 1.35 1.80 0.20 0.10 0.80 0.30 2.0 1.2

E 140 1.60 015 005 050 025 2.0 1.2

2
T [s]

Parameters of the model
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Definition of subsoil classes according to EC 8 [1]

Subsoil

Description of stratigraphic profile

Parameters

Vszo [m/s]

Nspr
(blows/30cm)

cy [kPa]

Rock or other rock-like geological formation, including
at most 5 m of weaker material at the surface

> 800

Deposits of very dense sand, gravel, or very stiff clay,
at least several tens of meters in thickness and char-
acterized by a gradual increase of mechanical proper-
ties with depth

360 - 800

>50

> 250

Deep deposits of dense or medium-dense sand,
gravel, or stiff clay with thicknesses from several tens
to many hundreds of meters

Deposits of loose-to-medium noncohesive soil (with
or without some soft cohesive layers), or of predomi-
nantly soft-to-firm cohesive soil

180 - 360

<180

15-50

<15

70 - 250

<70

Soil profile consisting of a surface alluvium layer with
V30 values of type C or D, and thicknesses varying
between 5 m and 20 m, underlain by stiffer materials
with V30 > 800 m/s

Sy

Deposits consisting or containing a layer at least 10
m thick of soft clays/silts with high plasticity index (PI
> 40) and high water content

<100

10-20

S:

Deposits of liquefiable soils, sensitive clays, or any
other soil profile not included in types A-E or S
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ACCELEROGRAMS I



:' g ANALYSIS OPTIONS

x(t)

Méca 1I, T a
2017-2018 ~r
v. Denos ma(£) + < (£)+ kq (t) = —miig (¢)
k. c
5
uy(t)
e use effective loading pesr = —miig (t) in the relative reference frame,
with

e il (t) from existing records at the same location (sometimes
stretched /shrinked)
e synthetic accelerograms corresponding to:

Seismic

Analysis e local wave propagation from bedrock to surface
e standardized response spectrum

® use response spectrum — equivalent static loading
Fequiv =m- Spa(T)

! limitations on the linearity of the structural behaviour !

264/276
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. Compute the response spectra of the synthetic accelerogram you

were given

. Determine with which subsoil class and PGA this accelerogram

could be associated



4' g RESPONSE OF AN M-DOF OSCILLATOR [

Méca 11, Governing Equations
2017-2018

V. Denoél Ja(t)

4]—' Ys()
sz(f)

7—/3/2(0
L /%i(f)

Yi(t)

Seismic
Analysis

My (t) +Cx(t) +Kx(t) =0 — Mx(t)+Cx(t)+Kx(t) =—Mriig (t)

As if there was an effective loading pes = —Mriig (t) in the relative
reference frame.
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4' g RESPONSE OF AN M-DOF OSCILLATOR II

Méca II,
oraots Mk (t) +Cx(t) + Kx(t) = —Mrii (t) (57)
V. Denoél
o If accelerogram iig is available (from existing records at same
location, from wave propagation analysis) — use effective loading
Pesr = —Mriig (t) and solve with time stepping

e If response spectrum is available

e generate spectum compatible synthetic accelerograms (time
stepping)

e design with response spectrum (no solution of equation of
motion is required)

Seismic
Analysis

< see MDOF systems & Newmark methods for time stepping >
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RESPONSE OF AN M-DOF OscCILLATOR III

Design of an MDOF structure with a response spectrum
Response spectrum — use modal basis

Let x = ®q, with the normal modes of vibration ®,
M*g (t) +C*q(t) + K*q(t) = —®  Mriig (t)
The modal response in mode i is given by (diagonal modal damping)

Mia; (t)+ Ciai (t) + Kiq; (t) = ZLiiig (t)
with .Z = —®T Mr, the vector of modal participating masses.
We also define the modal participating ratio

12
M=

with M, = rTMr, and the important property that Yiui=1.



:' g RESPONSE OF AN M-DOF OSCILLATOR IV

Méca II,
2017-2018 f=1.4 Hz

iy
o

.3 Hz f=12.1 Hz

. Denoél
V. Donod HE180A

=1500kg/m

rrrrr

O O O I I

40m

f=18.6 Hz .2 Hz f=35.3 Hz

T
[1]]8

:
-

8m
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:' g RESPONSE OF AN M-DOF OScCILLATOR V

Méca II,

2017-2018 f=1.4 Hz f=6.3 Hz f=12.1 Hz
NT* [ T
V. Denosl Mode MF[to] Lifto] wi|%] []
1 37.5 -53.3  75.8% L
2 53.6 0 0 —
3 49.5 28.4  16.3% —
4 53.5 0 0 —
5 53.0 0 0 &
6 52.3 -14.5  4.03% —
Cumulative of P.M. ratio =18.6 Hz =30.2 Hz f=35.3 Hz

[1]]8

1T

100% T
Seismic
Analysis
0 10 20 30 40

Number of modes

(T
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4' g RESPONSE OF AN M-DOF OscCILLATOR VI

Méca 11, We need to solve
2017-2018
Ve Penetl M3 4; (t) + C54i (t) + Kiqi (t) = Lilig (t)
The response spectrum Sy (77) was defined as the maximum (abs.) of
g (t) from
§(1)+201814 (1) + 0fq(t) = —ig (1)
Comparison of these two thus shows that
.2 My
i = ()] = Sq | 2wy L
Gi.max = max |q; ()| Mz > K
Anayers — maximum absolute response in each mode
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:' g RESPONSE OF AN M-DOF OsSCILLATOR VII

Solution from response spectrum

Méca II,
2017-2018 0.05 . . . . .
Mode 1 v
V. Denoél
0 [\/WMNMMMW\MM
-0.05 ‘ ‘ ‘ ‘ ‘
5 10 15 20 25 30
x10*
T : : : ‘
0
- : : : : :
0 5 10 15 20 25 30
x10°
1 T T T T T
Mode-6
o
Analysis
4 ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30

<of course (?) : good agreement between response spectrum & timestepping >
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RESPONSE OF AN M-DOF OscCILLATOR VIII

Response in mode i

(1)

Xmax = 9;qi, ,max

This displacement field is recovered with the equivalent static forces

] Sa (@;; &)

) = K = Ko

, 2
=Moo, Ll (038) = Mo, 15,0 01:2)

L
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RESPONSE OF AN M-DOF OSCILLATOR IX

Back to displacement and internal forces (combination of
modal responses)

Nodal displacements: x = ®q
Internal forces: F = (K®)q:= ¢q

(i) Combine maximum absolute values (oversafe)
M M
Xk,max = Z ’q)kiqi,maX’ ; Fk,max = Z ’(Pkiqi,max|
i=1 i=1

(ii) if modal responses are uncorrelated, use SRSS (square root of the
sum of the squares)

M M
Xk,max = Z (¢kiqi,max)2 ; Fk,max = Z ((Pkiq",max)2
i=1 i=1



4' g RESPONSE OF AN M-DOF OSCILLATOR X

Méca II,
2017-2018

V. Denoél

(iii) otherwise, use CQC (complete quadratic combination)

M M

Xk,max = Z Zpijq)kjd)kiqi,maxqj‘max
i=1j=1

M M

Fr,max = Z Z Pij Pkj Pkidi,maxdj,max
i=1j=1

Seismic
Analysis
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For further
reading
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Further reading I

¥ Clough, R. W. and J. Penzien. Dynamics of structures.
New-York, McGraw-Hill,1993.

> Géradin, M. and D. Rixen. Mechanical vibrations: theory and
application to structural dynamics, 2002. Ed. Lavoisier.
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