A method for plant leaf area measurement by using stereo vision

Vincent Leemans, Benjamin Dumont, Marie-France Destain, Françoise Vancutsem, Bernard Bodson

Introduction

- Leaf Area Index (LAI) is an important measurement for agronomist and modellers
- Its measure is destructive, tedious and expensive

Material

- Stereo images acquisition :
 - Two cameras 1280 * 960 pix
 - Base distance: 120 mm
 - Distance camera-crop :+/ 700 mm
 - Focal length: 6 mm
 - Vergence : 8°
 - Disparity of 1 pixel ≈ Δz 2.5 mm

Experimental set-up

- Measurements were made on 16 plots
 - 2 N applications
 - 2 soils
 - 4 repetitions
- 3 dates (27thMarch, 23thApril, 5th June)
- 5 stereo image couples per plots
- Destructive reference measures on 50 cm for each plot

Principle

- Algorithm
 - Image rectification *
 - To have the same points on the same lines on both images

- Algorithm
 - Image rectification *
 - Estimate disparities *
 - "modified H. Hirschmuller algorithm"
 - For each pixel of the left image, research in the right image the best match of a block centred on the pixel
 - → Block size, MinDisparity, DisparityRange

- Algorithm
 - Image rectification *
 - Estimate disparities *
 - Post treatments *
 - Eliminate doubtful data and hidden pixels
 - Minimal values
 - Compute xyz in "human" coordinates *
 - $(xyd)_{pixels} \rightarrow (xyz)_{m}$
 - By using calibration (indoor, checkboard)

Parameters

- Algorithm
 - Image rectification *
 - Estimate disparities *
 - Post treatments *
 - Compute xyz in "human" coordinates *
 - Image segmentation (Leaves/Soil)
 - LDA on RGB

Threshold

- Algorithm
 - •
 - Image segmentation (Leaves/Soil)
 - Definition of the ROI

- Algorithm
 - -
 - Image segmentation (Leaves/Soil)
 - Definition of the ROI
 - Computation of the areas

• Leaves
$$\sum_{Triangles} |\vec{AB} \times \vec{AC}|/2$$

- Total: based on the mean leave z plane and on the ROI dimensions
- LAI = Leave Area / Total Area

- Sensitivity analysis of LAI vs parameters
 - Not sensible to the 3D algorithm parameters
 - Sensible to the threshold
 - Determined based on visual inspection

- LAI-3D < LAI Ref → reference LAI under estimated
- Linear relation between LAI-3D and LAI Ref for LAI Ref < 2 → "saturation" afterwards

Reference LAI under estimated

0.53 / 0.

0.83 / 0.

 Linear relation between LAI-3D and LAI Ref for LAI Ref $< 2 \rightarrow$ "saturation" afterwards

At plot level $\sigma_{LAI Ref} = 0.31$

 $R^2 / S_{y.x}$

Raw data

Mean on 5

images and

4 repetitions

	4	_			*
-	ا، Reference م	_			_
LAI 3D		exp(LAI)	GC	exp(GC)	
.53 / 0.8	38	0.57 / 0.84	0.58 / 0.83	0.60 / 0.80	_
.83 / 0.5	54	0.90 (0.39)	0.69 / 0.74	0.74 0.65	
					2

Conclusion

- It was possible to evaluate the reference LAI with a standard deviation of 0.4
- The standard deviation on the predicted LAI was not much higher than the standard deviation of the reference LAI
- No difference was observed linked to the origin of the LAI variation
- There was a "saturation" phenomenon, but it was less important than with the ground cover method

Thank you for your attention ...

- Variability of the results :
 - Wide "in plot" variability
 - Linked to the observed area ≈ A3 sheet (1/8 m²) and to

the length of picking (0.5m)

LAI Ref - Ground cover

- Analysis of the variability
 - Standard deviation (variance)
 - Between plot (3D) + in plot (3D) < Between plot (Ref)
 - But 5*4 images / 4* 0.5 m

March and April data

Source of variations	Reference	3D estimate
General averages	1.35	1.14
Treatments and dates	0.39 (0.155)	0.36 (0.131)
Plot	0.36 (0.13)	0.13 (0.017)
Between images		0.27 (0.074)
Total	0.52 (0.27)	0.45 (0.21)

March, April and June data

maron, April and Jano data						
Source of variations	Reference	3D estimate				
General averages	1.91	1.17				
Treatments and dates	1.24 (1.5)	0.33 (0.11)				
Plot	0.56 (0.31)	0.26 (0.07)				
Between images		0.30 (0.09)				
Total	1.29 (1.66)	0.46 (0.21)				

- Algorithm
 - •
 - Image segmentation (Leaves/Soil)
 - Definition of the ROI
 - Computation of the LAI
 - Computation of the Average Leaf Angle

$$\vec{CP} = \vec{AB} \times \vec{AC}$$

$$ALA = mean \left(acos \left(\frac{\vec{CP}}{|\vec{CP}|} \right) \right)$$

*: OpenCV Libraries

- sgbm.P1 = 4*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
- sgbm.P2 = 16*cn*sgbm.SADWindowSize*sgbm.SADWindowSize;
- sgbm.minDisparity = minDisparity;
- sgbm.numberOfDisparities = numberOfDisparities;
- sgbm.uniquenessRatio = 0;//10;
- sgbm.speckleWindowSize = 0;
- sgbm.speckleRange = 32;
- sgbm.disp12MaxDiff = 2;//1;
- sgbm.fullDP = true;