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Département d’Astrophysique, de Géophysique et d’Océanographie
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Chapter 1

Introduction

????
It is no longer to be proved that gravitational lensing is a great source

of information about galaxies, quasars, cosmology, ... Our interest goes to
multiply-imaged quasars. The measurement of the time delay between sev-
eral images of a gravitationally-lensed quasar allows a calculation of the Hub-
ble constant H0

1 (Refsdal, 1966). This method is completely independent
from classical methods based on “standard candles”1 . Moreover, it has great
advantages: it is basically geometrical and only General Relativity, which is
now a well-established theory, is needed as theoretical support. The time
delay between several images of a quasar has two components: a geometrical
one and a potential one. These components depend on the mass distribution
in the lens galaxy. This distribution can be constrained, to a large extent, by
an accurate knowledge of the lensed images geometry: positions of these im-
ages in relation with the lens galaxy and possible presence of arcs or Einstein
rings. Most of the time, the main uncertainty comes from the dark matter
distribution in the lens galaxy.

The first stage is thus the modeling of the lensing system which eventu-
ally leads to the reconstruction of the source(s) undergoing the strong lensing.
To do so, accurate astrometry and photometry are required not only for the
multiple images, but also for the lensing galaxy. Therefore high resolution
images are needed. The first instrument that comes to mind is obviously the
NASA/ESA-HST or Hubble Space Telescope. In our particular case, the im-

1See definition in the glossary, page 83.
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2 CHAPTER 1 Introduction

ages of gravitational mirages were acquired by the camera 2 of the instrument
NICMOS (Near Infrared Camera and Multi-Object Spectrometer).

What matters next is of course the image processing. Even if we are
dealing with high resolution images, it is very important. Indeed, the instru-
mental profile of the HST is far from having a simple shape: it contaminates
any diffuse structure under or around the point sources. The technique used
is the deconvolution with the MCS algorithm (Magain, Courbin & Sohy,
1998). It is based on the non violation of the sampling theorem: we try
to obtain images with a better resolution instead of an infinite one. As a
consequence of the knowledge of the final PSF or Point Spread Function, an
image is decomposed into point sources and a diffuse background.

A new image processing using this algorithm has been developed. We call
it the iterative method : the PSF is improved step by step by estimating the
background and subtracting it from the original images. So it simultaneously
allows us to determine the PSF and to perform a deconvolution of images
containing several point sources plus extended structures. Therefore it is
particularly well-suited for multiply-imaged quasars when no extra star is
available in the field for the PSF determination.

The first object we investigate is the famous Cloverleaf, H1413+117, a
quadruply-imaged quasar. Two sets of NIC-2 data are analyzed: the first
one was obtained with the F160W filter and the second one with the F180M
filter. The iterative method gives astrometric and photometric measurements
in both filters and reveals the primary lensing galaxy as well as a partial
Einstein ring. The reliability of the method is checked on a synthetic image
similar to H1413+117.

The second gravitationally-lensed system under investigation is called
WFI J2033-4723. In this case too we obtain accurate astrometric and pho-
tometric measurements in the F160W filter. We detect the lensing galaxy
which, unlike the Cloverleaf, is already obvious on the original images, as
well as an extended and faint background surrounding the lensed images.

The third lensed quasar is WFI J2026-4536. The F160W data provide
accurate astrometry and photometry and allow an accurate analysis of the
primary lens which is already observable on the original frames.

From the outset and to close this introduction, let me underline the fact
that the deconvolution technique is far from being obvious and easy to apply.
It requires more than common sense and scientific abilities: it deals with
instinct and intuition. I would describe it as a mix between art and science,
which makes it even more interesting in my eyes.

This piece of work is divided as follows: Chapter 2 presents the theoretical
aspects needed to go through this report (quasars, gravitational lensing and
deconvolution), the iterative process using the MCS algorithm is presented in
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Chapter 3 and the application of this new method to several lensed systems
is detailed in Chapter 4. We then conclude in Chapter 5 while Chapter 6
deals with the prospects of this work, i.e. modeling strong lenses.

Let us mention that this work was carried out in the context of a collab-
oration named COSMOGRAIL, which stands for COSmological MOnitoring
of GRAvItational Lenses. Chapter 6 provides more details about it.
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6 CHAPTER 2 Theoretical notions

2.1 Quasars

This section is mainly based on the following works: Krolik (1999), Binney
& Merrifield (1998) and Letawe (2006).

2.1.1 Introduction

Some galaxies show a strange behavior. What differs from classical ones is the
presence in their center of a nucleus releasing a huge quantity of energy by non
nuclear processes as it is the case in the stellar interior: these galaxies produce
very high luminosities (up to ten times the typical luminosity of a galaxy) in
tiny volumes. They are called AGN (see Fig. 2.1), which stands for Active
Galactic Nuclei, or simply active galaxies. They are observable in a wide
range of wavelengths and their spectra are very interesting: in the optical and
UV, they present emission (and sometimes absorption) lines reaching a flux
of several percent of the continuum flux. In most cases it is impossible (for
the moment...) to obtain an image with a resolved active nucleus. However
this is possible at radio frequencies. We can thus sometimes observe some
variable structures that seem to move at very high velocities. AGN are
also important to astrophysicists because they allow them to investigate the
cosmological evolution of galaxies and the intergalactic medium through the
absorption lines in the spectra of bright distant AGN (quasars, see Section
2.1.2).

Figure 2.1: Artistic view of an AGN. The central black hole is surrounded
by a disk composed of hot gas and a huge belt composed of colder gas and
dust. The latter is called the torus. We can also see two jets of high energy
particles. Credit: CXC/M.Weiss.

AGN can be sorted out in four categories: Seyfert galaxies, radio galaxies,
blazars and quasars. The latter are the main subject of this chapter. Let us
explain briefly what the other types consist in.
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Seyfert galaxies

Since galaxies are studied, some scientists have been observing some objects
with unusual shapes. The best example is probably Carl Seyfert who made
a catalog, back in 1943, with galaxies looking like spiral but having a very
bright region at their center, i.e. a very bright nucleus, that often show quite
broad emission lines of high excitation.

A very interesting characteristic of such galaxies, called without surprise
Seyfert galaxies, is the tiny size of their nucleus. Indeed, this very bright
part is highly variable on periods of less than a year. That deserves a short
explanation. Let us assume that the luminosity of an extended object of
size a doubles. These variations have to occur simultaneously on the entire
nucleus: there must be an exchange of information between the different
points of this nucleus. The observed brightness of the object adjusts to the
new level in a time τ ' a/c, i.e. in the time that light takes to travel from
the back of the object to the front. It implies, as periods of several months
are observed, that the maximal size of the nucleus cannot be larger than
several light-months, which is really small compared to the size of the entire
galaxy.

Seyfert galaxies are classified in two groups depending on the aspect of
their spectrum. Type I Seyfert galaxies emit an intense continuum and in
their spectra the permitted spectral lines have very broad wings while the
forbidden lines are narrow because of a weaker Doppler effect. In Type II
Seyfert galaxies both permitted and forbidden lines are less broadened by
the Doppler effect. Moreover, they show a less intense continuum. One third
of the Seyferts are of Type II.

The Seyfert phenomenon can also occur at lower luminosity. Indeed, some
galaxies show a nucleus similar to the Type II Seyferts but the forbidden lines
are caused by atoms in a lower ionization stage. They are called LINERs for
Low Ionization Nuclear Emission Line Regions. Most of the time, LINERs
reside in the center of elliptical galaxies.

Radio galaxies

Radio galaxies constitute another type of AGN. They differ from Seyfert
galaxies because their nucleus is not necessarily visible. These objects, which
most of the time look like normal elliptical galaxies, are characterized, as their
name tells us, by strong and extended radio emissions, 10 000 times superior
to those of classical galaxies.

These radio waves are produced by highly energetic electrons moving in a
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Figure 2.2: Radio lobes tied to the nucleus by thin relativistic jets. Credit:
Addison Wesley.

magnetic field1, i.e. by synchrotron radiation2(see Fig. 2.3 for an illustration
of this phenomenon). The radio flux comes from two huge regions called the
radio lobes and located on either side of the nucleus. In general their size
is about 10 times larger than the one of the galaxy and can reach several
megaparsecs2. High-resolution radio images reveal that these lobes are often
tied to the nuclear source by thin relativistic filaments called radio jets (see
Fig. 2.2). Sometimes a jet can be visible at optical frequencies, as it was
discovered by Geoffrey Burbidge in 1956 in the giant elliptical galaxy M87
(see Fig. 2.4). Radio galaxies whose emissions are dominated by the com-
pact nucleus are called FR-I radio galaxies whose those which emissions are
dominated by the lobes are called FR-II radio galaxies.

As for Seyferts, FR-II radio galaxies can be sorted out in two categories
according to their optical spectrum:

� narrow-line radio galaxies or NLRGs, which show only the narrow emis-
sion lines that we find in Type II Seyferts;

� broad-line radio galaxies or BLRGs, which also show the broad lines
observed in Type I Seyferts.

Blazars

The word blazars comes from BL Lacertae, the prototype of this class of
objects, and obviously from the term quasar itself. Blazars are radio emitters

1This magnetic field is created by the particles moving in the accretion disk of the
supermassive black hole.

2See definition in the glossary, page 83.
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Figure 2.3: Illustration and explanation of the synchrotron radiation phe-
nomenon. Credit: http://blueox.uoregon.edu.

and appear to be point-like, very bright and dramatically variable objects:
they can change in brightness by large factors on timescales of a few weeks.

Blazars can be sorted out in two categories: BL Lac objects and OVV
quasars, OVV standing for Optically Violent Variables. The difference resides
in the fact that OVV show broad but weak optical emission lines in their
spectra, which is characteristic of quasars, while BL Lac objects do not. Let
us mention that the border between these two types is quite fuzzy. Depending
on the moment of observation, a blazar can even switch from one category
to the other.

At first it was believed that BL Lacertae was some kind of extremely
variable star. But in 1974, Adams found out it is an AGN: the bright point
source is actually surrounded by a faint nebulosity, i.e. an elliptical galaxy.
The spectra revealed a redshift of 0.07 (Miller, French & Hawley, 1978) for
this object.

Blazars are probably a particular case of radio galaxies, their character-
istics being due to their relative position to the Earth: the latter is located
on the axis of the jets and the radio lobes (see section 2.1.3 for further expla-
nation). One of the arguments is the following: high resolution observations
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Figure 2.4: The giant elliptical galaxy (E0 according to Hubble classification)
M87, located at 50 106 light years, is an AGN. It corresponds to the radio
source called 3C 274. The galaxy itself appears to be red: it is composed
of old and relatively cold stars. The blue radio jet, made of high energy
electrons, comes from the nucleus and is around 6500 light years long. Credit:
NASA/STScI.

show that blazars are located at the center of elliptical galaxies and radio
galaxies are elliptical too.

2.1.2 Once upon a time...

The neologism quasar stands for QUAsi-Stellar Astronomical Radio source
and was born in the late 1950s. This name was introduced when very loud
radio sources were discovered. For some of them, no visible counterpart other
than a stellar-looking object was observed. It was believed that quasars were
some strange and new kind of stars belonging to the Milky Way. But their
spectra showed very clear emission lines corresponding to no usual chemical
element. This mystery was solved in 1963 by the Dutch astronomer Maarten
Schmidt who studied a particular quasar, 3C 273, observed during the third
radio sources survey carried out at Cambridge University3. According to
him, quasars are very distant and, so, very bright sources. Therefore the
emission lines are strongly redshifted (in this particular case the redshift z
is equal to 0.16) and simply correspond to hydrogen. It means that 3C 273
is receding at a rate of around 47 000 km/s. More generally it shows that

3That is why each object disovered during this survey has a name which begins with
“3C”.
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quasars are far from being located in our galaxy.

Later, it was found that many similar objects were radio-quiet, i.e. did
not emit radio waves. These were called Quasi-Stellar Objects or QSOs.
Nowadays, the term quasar is used for all of them even if only about 10 % of
the QSOs known to date have been proved to radiate at least 0.1% of their
total luminosity in the radio range.

Some spectral similarities to Type I Seyferts were also pointed out. It
is now agreed that QSOs are no stars of the Milky Way at all, but objects
located at the center of distant galaxies. Their nucleus is so bright optically
that it can outshine the whole surrounding galaxy. At this center some sort
of very energetic process is occurring, most likely due to the presence of a
supermassive black hole.

So why are they point-like? Simply because of their distance. Indeed,
they are so distant that their optical angular size is comparable to the res-
olution of ground-based observations. Indeed, at z ' 1 the angular size
of an average galaxy amounts only to 1′′ 4. The luminosity of the nucleus
completely drowns the stellar light and from our planet the object appears
as an unresolved point. It is only under very good observing conditions that
the host galaxies of QSOs can be observed.

All host galaxies of QSOs which are strong radio emitters, i.e. radio-loud
quasars, seem to be giant elliptical. It is less clear for QSOs which are not
strong radio emitters, i.e. radio-quiet quasars: the distribution of luminosity
of the host is better represented by the exponential law, the latter being
typical of spiral galaxies. For AGN with a redshift larger than 1, it is quite
rare to observe the host galaxy: the visible light we receive is ultraviolet in
the rest frame and most galaxies are weak in these bands. Moreover, at such
redshifts, the luminosity contrast between the host and the nucleus is very
large.

Let us mention that the distinction between Seyferts and quasars is quite
fuzzy. To make it clearer, it has been decided that AGN with absolute
magnitudes brighter than Mv ∼ −23 are considered as QSOs, and fainter
radio-quiet objects as Seyferts. Another distinction is often made: if the
host galaxy is visible we talk about a Seyfert galaxy. If none is visible,
we talk about a quasar. Let us insist on the fact that this last distinction
depends mostly on the background level and on the instrument performances
but is somehow correlated to the luminosity of the object.

4Typically, 1′′ is the typical size of the seeing (see definition in the glossary, page 83)
disk even at a good ground-based observatory.
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2.1.3 The Unified Model of AGN

Figure 2.5: Schematic representation of how an active galactic nucleus looks
like in the Unified Model paradigm, depending on the angle with the line of
sight. Credit: M. Polletta, ITESRE/CNR, Bologna, Italy.

In the 1980s, unified models of AGN were developed. Nowadays a stan-
dard theoretical model is generally accepted to explain the existence of the
whole AGN family. It is simply called the Unified Model (see Fig. 2.5). The
basic principle is the following: every type of AGN is the same phenomenon,
at various luminosities, observed with different viewing angles, which, com-
bined with the anisotropy of the AGN radiation and a possible dust obscu-
ration, can cause the apparent differences. Let us go a little bit further in
this theory.

It is believed that the friction caused by matter falling into a supermassive
black hole of between 106 M¯ and 109 M¯ is responsible for the huge energy
release in AGN. As the angular momentum must be conserved, the matter
flattens into an accretion disk (see Fig. 2.6). This matter is heated by friction
and becomes a plasma which emits a strong continuum in the optical, UV
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Figure 2.6: Artistic view of a black hole accreting a star. Credit: ESA,
NASA and Felix Mirabel (French Atomic Energy Commission and Institute
for Astronomy and Space Physics/Conicet of Argentina).

and X-ray bands. Let us notice that this continuous radiation is responsible
for the excitation of the layers surrounding the black hole. This energetic
process is much more efficient that nuclear reactions occurring in stars: an
active galaxy can be as bright as several galaxies. That is why we can observe
such objects even if they are located very far. The furthest AGN detected
to date is situated at a redshift of 6.28.

The accretion disk is surrounded by a region containing clouds of dust
orbiting around the black hole. These clouds are responsible for the spectral
lines observed in active galaxies, which are, of course, affected by the Doppler
effect. Moreover, the area around the black hole is divided in two different
regions: the broad-line region (BLR), closer to the black hole, and the narrow-
line region (NLR), further from the black hole. Indeed, clouds with a shorter
orbital radius move faster than clouds with a larger one. As a consequence,
their velocity dispersion is larger and so is the broadening of their emission
lines.

The torus is a region surrounding the fast clouds but located in the same
plane as the accretion disc. It consists in a thick belt of gas and dust, with a
diameter of about 104 AU5. This region is opaque to visible or UV radiation.

Let us insist on the fact that the high density clouds are visible only if
the line of sight is situated along a cone around the axis of symmetry of the
torus. The lower the angle between the line of sight and the orbital plane,
the less core emission reaches us because of the presence of the dust torus
(see Fig. 2.7). When the broad-line region is observable, we are dealing with

5See definition in the glossary, page 83.
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Figure 2.7: This artistic illustration shows the thick dust torus surround-
ing a supermassive black hole. As the line of sight is in the plane of the
torus, most of the light emitted by the accretion disk is blocked. Credit:
ESA/V.Beckmann (NASA-GSFC).

a QSO or a Type 1 Seyfert depending on the luminosity. When we cannot
see this region, the spectrum is dominated by narrow emission lines and we
are dealing with a Type II Seyfert. Still, in the latter case, some photons
coming from the high density region can be scattered in our direction and
broaden the wings of the narrow emission lines.

Perpendicular to the orbital plane and along the rotation axis, some par-
ticles are accelerated by a magnetic field (see Fig. 2.3 above) to velocities
close to the speed of light. These relativistic particles form very long and
thin jets which are responsible for the radio emission of some active galaxies.
When these particles encounter some matter they are decelerated and we can
observe radio lobes. In such a case the AGN is radio-loud. On the contrary, if
no jets are observable, the AGN is radio-quiet. The reasons for the presence
or absence of jets are still obscure.

In blazars the jets are pointing towards us and only a region with a small
radius is observable. In radio galaxies, our line of sight does not pass right
down the jets but they are seen on side. It is obvious now why blazars are
much less likely than radio galaxies. Here also we can distinguish narrow-line
and broad-line galaxies.

If the line of sight passes through the dust torus and if they are both
included in the same plane, the BLR and the continuum are unobservable:
we are in the presence of a Type II Seyfert or a Type II quasar (see next
section), depending on the luminosity of the nucleus, or in the presence of
a NLRG if the AGN is radio-loud. However, as already mentioned, a part
of the continuum is still reachable to us: some photons responsible for it
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are scattered and polarized by free electrons orbiting outside the dusty and
obscure zone.

Let us go back to what is responsible for the existence of AGN, as first
suggested by the British scientist, Donald Lynden-Bell, in 1969: supermas-
sive black holes. To produce a luminosity typical to that of a quasar, i.e. 1040

W, a supermassive black hole would have to consume a quantity of matter
equivalent to 10 stars like the Sun per year. For the brightest specimens this
amount increases to 100 M¯. It is very likely that active nuclei “turn off”
and “on”, depending on their surroundings. That suggests that they will not
keep on consuming the same amount of matter until the end of times: when
a quasar has consumed all the matter in its sphere of influence it will become
an invisible object and its host an ordinary galaxy. That explains the ab-
sence of nearby AGN and why they appear to have been much more common
in the early Universe. That also means that most galaxies, including ours,
could have gone through an active stage. They would be quiet now because
the supermassive black hole would not be accreting in significant amounts
any more. But if a galaxy with a quiet supermassive black hole enters in
collision with another galaxy, some fresh material can enter the sphere of
influence of the black hole and the quiet galaxy is back to the state of AGN.
There may even be a connection between the brightness of an active galactic
nucleus and the time since it was last gravitationally-disturbed.

To end this section let us insist on several important dark zones in the
understanding of AGN. First of all, the model of the supermassive central
black hole, even if it is the most commonly accepted, is not completely con-
firmed. Indeed, direct signatures of this monster are harder to obtain than
some indirect ones. The most comprehensive and convincing argument was
made by Rees & Ostriker in 1977 concerning the short variability timescales
and the causality bounds, as already explained above. Then the origin of
such black holes is quite unclear. Stars massive enough to collapse and give
birth to such objects have never been observed. However it could be the
result of a massive star that would have collapsed into a black hole, then the
latter, accreting surrounding stars and matter, would have become larger
and larger to finally form a supermassive black hole.

2.1.4 Properties of quasars

Nowadays, more than 60 000 quasars are known. The redshift extracted from
their spectrum ranges from 0.06 to 6.4. That means that quasars are located
at distances from 240 Mpc (780 million LY) to 4 Gpc (13 billion LY). It
is not astonishing that they represent, to the eyes of the astrophysicists, a
fascinating tool to probe the past of our Universe.
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As quasars, though situated so far away from us, are observable, they
have to be very bright. In fact they appear to be the most luminous objects
known to date. Their luminosity can reach 1012 L¯. The quasar with the
brightest apparent magnitude is 3C 273 in the constellation of Virgo. Its
average apparent magnitude is 12.8 and its absolute magnitude is -26.7. Let
us insist on the significance of such a value: located at a distance of 10 pc,
3C 273 would almost shine as our Sun. So this quasar is about 100 times
more luminous than the average galaxies like the Milky Way.

A quasar spectrum presents an intense continuum from the X-ray to the
IR range. In the optical and UV bands it shows narrow and broad emission
lines. It was also pointed out that their spectrum is non thermal, i.e. it does
not mainly depend on the temperature: their emission law does not follow
Planck’s Law for black bodies. As the Seyferts, quasars are divided in two
subgroups depending on the presence of broad lines in their spectra: Type 1
quasars show broad emission lines while Type 2 do not. A typical spectrum
of a Type 1 quasar is shown on Fig. 2.8.

Figure 2.8: Typical spectrum of a Type 1 quasar. At short wavelengths,
i.e. on the bluer side of the spectrum, the continuum is more intense. The
redshifted emission lines of hydrogen (from the Balmer serie) are indicated.
Credits: Jerrold G. Thacker, 2001.
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2.2 Gravitational lensing

This theoretical section is mainly inspired by Schneider, Ehlers & Falco
(1992), Binney & Merrifield (1998), Courbin (1999), Burud (2001) and Courbin
& Minniti (2002).

2.2.1 Introduction

Another point making AGN so interesting for the scientific community is a
phenomenon called gravitational lensing (see Fig. 2.9). Basically it is the
bending of light rays coming from a distant bright source, such as a quasar,
by a foreground object called lens and having a sufficiently deep gravitational
well. The distorted and sometimes multiple images of such a distant source
can be used to infer, amongst others, the mass-to-light distribution of the lens
through its gravitational potential and to estimate its amount of dark matter.
Lensing can also be used as a gravitational telescope: a lens concentrates the
light from very faint and very distant (thus very old) background objects,
making them appear brighter (it is called the magnification effect, see section
2.2.5 for further information) and therefore more easily investigated.

Figure 2.9: Illustration of the gravitational lensing phenomenon: the rays of
light coming from a distant source are bent when passing around a massive
object. The white arrows show the path of the light coming from the true
source. In general several images of the source are observed in directions
corresponding to the tangents of the real light rays, as shown by the orange
arrows. Credit: NASA/ESA.



18 CHAPTER 2 Theoretical notions

There are three classes of lensing:

1. Strong lensing : the distortions are particularly obvious. It occurs when
a quasar is being lensed and multiply-imaged by a foreground galaxy.
If the quasar is sufficiently variable, such a case can lead, through the
measurement of the time delay (see section 2.2.6), to the determination
of the Hubble constant which is crucial in cosmology.

2. Weak lensing : the distortions of background objects are much smaller.
They can be found by studying statistically a large sample of objects.
Indeed, the distortions can be seen as a stretching in a preferred direc-
tion, perpendicular to the line joining the distorted object to the center
of the lens. It occurs, e.g., when galaxies are lensed by a foreground
galaxy cluster. In such a case we can sometimes observe giant luminous
arcs and arclets (which correspond to strong lensing). In studying the
distribution of distortions we can measure the shear of the lensing field
in any region and obtain an estimation of the mass distribution in the
cluster.

3. Microlensing : no distortion in shape is observable but the light coming
from the lensed object varies in time. It occurs when a star or quasar
gets aligned with a massive and sufficiently compact foreground object.
It leads to two distorted unresolved images resulting in an observable
magnification. As the source, the lens and the observer move relative
to each other, the configuration changes in time and so does the mag-
nification. Galactic microlensing is very useful to detect compact halo
objects in the Milky Way or extrasolar planets.

The effects are very small. Per example, in the case of strong lensing, a
galaxy of 1011 M¯ will produce multiple images separated by at most a few
arcseconds. Galaxy clusters can produce separations of several arcminutes.

Let us notice that gravitational lensing acts equally on all kinds of radi-
ation: the phenomenon is not restricted to optical wavelengths; it is achro-
matic.

In the following sections we will concentrate on the topic under investiga-
tion in this work: multiply-imaged quasars which constitute a case of strong
lensing.

2.2.2 A small piece of History

The first writings about the bending of light rays by a massive object go
back to 1804 by Johann Soldner, a German mathematician and astronomer
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working at the Berlin Observatory. In his article, entitled “ On the deflection
of a light ray from its straight motion due to the attraction of a world body
which it passes closely ”, he estimated, in a Newtonian context, the deflection
angle of a light ray passing close to the solar limb to 0.84 arcsec. Let us note
that, in the 18th century, Isaac Newton had already thought about that
phenomenon but without finding a way to prove its existence or validity.

In 1911, Albert Einstein mentioned the influence of gravity on the prop-
agation of light. He knew nothing about the work of Soldner one century
earlier. But at the beginning of the 20th century, the Theory of General
Relativity was incomplete and he obtained, for a star in the solar limb, the
same deflection angle as Soldner estimated in the Newtonian context. He
obtained the right value a little bit later, in 1912, when his General Theory
of Relativity was finally complete. The deflection angle α̂ of a ray passing
at a minimum distance ξ, also called the impact parameter, of an object of
mass M is:

α̂ =
4GM

c2

1

ξ
(2.1)

where G is the constant of gravity and c the speed of light. This is equal
to two times the Newtonian value. This factor of two reflects the spatial
curvature. With the solar values for radius and mass, Einstein obtained
α̃¯ = 1.74′′.

In 1919, this theory was confirmed by Arthur Eddington who observed
for the first time the apparent displacement of the position of a star in the
solar limb during a total solar eclipse (see Fig. 2.10). In spite of the poor
accuracy of his measurements, it proved that this deflection could only be
explained in the context of a relativistic theory for the gravitation.

Figure 2.10: Bending of the light rays coming from a star in the solar limb
during a total eclipse of the Sun. Credit: Jose Wudka.
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Fritz Zwicky was the first to consider the case of galaxies acting as lenses
in 1937. His calculations showed that this phenomenon was within the reach
of observations as the probability that it could occur was of the order of 10%.

Originally, gravitational lensing was discussed for stars or galaxies but
nothing else. Then, in the 1960’s, the first quasars were discovered. A
scientist called Barnothy was the first to connect them with lensing in 1965.
From that moment, many other aspects of lensing were explored.

But it was not until 1979 that the first lensed quasar was discovered by
Walsh et al.. They noticed that two apparently distinct quasars, separated by
6.′′, had nearly identical spectra and could be two images of the same object.
Later, the lensing galaxy was identified and the lens nature of this system,
named Q0957+561, firmly established. From that time, gravitational lensing
had finally collected the attention it deserved and still does...

2.2.3 The lens equation

In the case of an extended gravitational lens, the deflection angle is not given
by Eq. 2.1 anymore, which is only adapted to point mass lenses. Actually,
every infinitesimal element of the mass distribution of the lens must be taken
into account.

To give the expression of the deflection angle we must first describe the
general context we work in. As, most of the time, the typical distances (to
the source, to the lens, between the lens and the source) involved in the
geometrical configuration of a lensed system are much larger than the size
of a lensing galaxy, we work in the “thin lens approximation”. That means
that we always consider a mass sheet, perpendicular to the line of sight,
containing all the deflecting matter. As a consequence, the latter is located
at a single distance from the observer (and from the source). That is why
we always consider a lens plane, an observer plane and a source plane as
illustrated on Fig. 2.11. On the latter, O stands for observer, L for lens, S
for source and I for image. DL is the distance between the observer and
the lens, DS between the observer and the source and DLS between the lens
and the source. Several angles are also defined: α̂ is the deflection angle
i.e. the angle (from the lens plane) between the direction of the source and
the direction of the image, α is the angle between the source and its lensed
image, β is the unlensed position angle and θ is the lensed position angle of
the background source. Finally ξ is the distance, in the lens plane, of the
light ray to the observer-lens axis.

The deflection angle α̂ for a lens with circular symmetry is given by:

α̂ (ξ) =
4GM (ξ)

c2

1

ξ
(2.2)



2.2 Gravitational lensing 21

Observer plane Lens plane Source plane

uO ~
L

x S

x I

!!!!!!!!!!!!!!!!!!!!! !! !! !! !! !! !! !! !!

hhhhhhhhhhhhhh

(( (( (( (( (( (( (( (( (( (( (( (( (( (( (( (( (( ((
6

?

ξ 6

?

η

-¾ DL -¾ DLS

-¾
DS

θ
β

α

α̂

Figure 2.11: Geometry of a gravitationally-lensed system assuming the lens-
ing galaxy L bends the light of a background source S. As a consequence the
observer O sees a lensed image I of the source. The line passing through L
and O is called the optical axis by similarity with an optical system.

where G is the constant of gravitation, M (ξ) the mass contained in the radius
ξ and c the speed of light. Let us consider that the angles involved in the
lensed system are very small: θ, β, α̂ ¿ 1. In using formulae from basic
trigonometry, it is easy to obtain the following equation:

θDS = βDS + α̂DLS. (2.3)

Let us define the reduced deflection angle α (θ) as:

α (θ) =
DLS

DS

α̂ (θ) . (2.4)

The Eq. 2.3 then becomes:

β = θ − α (θ) . (2.5)

As the observer has no direct access to the source, the observable is θ and
not α.
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If the mass distribution of the lens is not symmetric, Eq. 2.5 becomes
vectorial:

~β = ~θ − ~α (θ) . (2.6)

Let us insist on the fact that this equation is purely geometric: the energy
or wavelength of the deflected light ray does not intervene in the reasoning.
Gravitational lensing is indeed an achromatic phenomenon.

In the thin lens approximation, the deflection angle caused by any lens can
be calculated in adding the contributions from every point mass contained
in the lens plane. If we consider a two-dimensional vector ~ξ = (ξx, ξy) in the
lens plane, we obtain the following expression:

~̂α(~ξ) =
4G

c2

∫ ∫
Σ(~ξ′)(~ξ − ~ξ′)

|~ξ − ~ξ′|2
d~ξ′ (2.7)

where Σ(~ξ) is the surface mass density at position ~ξ. As ~θ = ~ξ/DL, we
can write the reduced deflection angle for a finite circular lens with constant
surface mass density Σ as:

α (θ) =
4πGΣ

c2

DLDLS

DS

θ. (2.8)

In defining the critical surface mass density as follows:

Σcr =
c2

4πG

DS

DLSDL

, (2.9)

Eq. 2.7 finally becomes:

α (θ) =
Σ

Σcr

θ. (2.10)

It can be shown that a circular lens with uniform surface mass density acts
as a perfect converging lens.

In general, for any mass distribution of the lens, multiple images are
produced if Σ ≥ Σcr.

In short, the challenge is to solve Eq. 2.8. Two situations can occur:

1. for a given mass distribution, you want to know the configuration of
the images of the background source;

2. you try to find which mass distribution can be responsible for an ob-
served configuration of lensed images.
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Figure 2.12: Illustration of the Einstein ring phenomenon and the neces-
sary conditions to observe it. The image of the Einstein ring of B1938+666
was obtained with NICMOS, Near Infrared Camera and Multi-Object Spec-
trometer, on the Hubble Space Telescope, in 1998. Credit: L. J. King from
University of Manchester.

2.2.4 Einstein rings

Unlike an optical lens, a gravitational one has no single focal point. As a
consequence, if the observer, the massive lens and the background object are
aligned, the latter will appear as a perfect ring surrounding the lens (see Fig.
2.12). This phenomenon was first mentioned by Chwolson in 1924 but then
quantified by Einstein in 1936. That is why it is called an Einstein ring.

In such a case, the angle β (see Fig. 2.11) is equal to 0 and the lens
equation (Eq. 2.6) is simplified and scalar:

θE = α̂ (θ)
DLS

DS

(2.11)

where θE is the angular radius of the Einstein ring. Introducing the expres-
sion of the deflection angle given in Eq. 2.2, the previous equation can also
be written as follows:

θE =

√
4GM

c2

DLS

DLDS

. (2.12)

A lensed system showing an Einstein ring, complete or partial, leads to
more accurate models of the mass distribution of the lens because it provides
more constraints than a doubly or quadruply-imaged quasar. At very high
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resolution it is even possible to resolve details of the ring, the latter being
the amplified and distorted version of the quasar host galaxy.

In most cases the lensing galaxy is off-center, creating a number of im-
ages according to the potential of the lens and the relative positions of the
observer, the lens and the source.

2.2.5 Magnification

When light is bent by a lens, the flux received is amplified compared to
the one that we would observe if no lens was present: gravitational lensing
conserves the surface brightness of a source but not the surface itself. That
is why a lensed image of a source can be brighter than the source itself.

The magnification factor µ, i.e. the amplification of the image compared
to the source, is thus equal to the ratio between the surface of the image and
the surface of the source itself. For a circularly symmetric lens, it can be
written as:

µ =
θdθ

βdβ
. (2.13)

For a point mass lens, Eq. 2.3 is a second degree equation and thus easy
to solve. There are 2 solutions with opposite signs:

θ± =
1

2

(
β ±

√
β2 + 4θ2

E

)
. (2.14)

So in the case of an isolated point mass lens, there are 2 lensed images. Let
us notice that an image outside the ring defined by the Einstein radius θE has
a positive parity, while an image inside has a negative one. In the latter case,
the image has an inverted parity compared to the source, i.e. it is mirror
inverted.

Differentiating Eq. 2.14 and taking Eq. 2.13 into account, we obtain the
expression of the magnification for each image:

µ± =

√
β2 + 4θ2

E

β
+

β√
β2 + 4θ2

E

± 2. (2.15)

Let us introduce the impact parameter u. It is defined as the angular separa-
tion between the source and the lens in units of Einstein angle, i.e. u = β/θE.
Taking this new parameter into account, Eq. 2.15 becomes:

µ± =
u2 + 2

2u
√

u2 + 4
± 1

2
. (2.16)
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The flux magnification of the 2 images is obtained as follows:

µ = |µ+|+ |µ−| =
u2 + 2

u
√

u2 + 4
. (2.17)

2.2.6 An overview on time delays

A strong lens produces several images of the same background object. So
the light that arrives on Earth has followed different paths: there is a delay
between the arrival times of photons which have been emitted simultane-
ously but have travelled along the different paths. Assuming our quasar is
sufficiently variable, a photometric monitoring with good time resolution will
allow us to obtain the light curves of the lensed images. These light curves,
as they come from images of the same source, should be identical apart from
a shift in time. The latter is called a “time delay”.

There are two contributions to the time delay. The first is the obvious
delay due to the difference in optical length between two different paths.
The second contribution is relativistic. It is due to the Shapiro effect. This
effect occurs when light rays pass through regions with different gravitational
potentials: the stronger the potential, the more the light will be slowed down.
It is exactly what happens to light emitted by a quasar passing near a galaxy:
different rays travel through different parts of the potential well. Let us
mention that according to Fermat’s principle6, lensed images will occur at
stationary points of the time delay.

In 1964, Sjur Refsdal wrote a paper presenting the first method to derive
H0 from time delay measurements. To do so a mass model for the lensing
galaxy is needed. That topic will be briefly discussed in chapter 6. The
possibility to probe our Universe and to get information about cosmology
in studying time delays of lensed quasars has made them very famous and
popular amongst the scientific community. Let us underline the fact that
obtaining accurate values of H0 from time delays is far from being easy. A
first reason is that quasars rarely show very sharp variations. Photometric
monitoring over long period, longer than the time delay, is then necessary.
A second one is caused by microlensing of stars in the lensing galaxy. The
microlensing variations will affect differently the individual light curves. If
they occur on short time scales, they can be considered as an extra source of
noise on the light curves. Conversely, if they occur on long time scales, they
introduce trends into the light curves. The most critical case is probably

6Fermat’s principle states that the optical path length must be extremal: it can be
minimal or maximal but also a saddle point, the latter being a point of a function or
surface which is stationary but not extremal.
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when the microlensing variations occur on similar time scales as the quasar
intrinsic variations. The third reason comes from the dominating source
of error: it can vary from one case to the other. The main error can come
from the time delay measurement, from the astrometry of the quasar images,
from the modeling of the lens, from microlensing or even from some unknown
systematic error. So, to obtain a reliable value of H0, it is better to monitor
as many systems as possible than to concentrate on a single one.

2.3 Deconvolution

The theoretical notions hereafter come mainly from the following PhD theses:
Courbin (1999), Burud (2001) and Letawe (2006).

2.3.1 Introduction

Higher and higher resolution images are always demanded by scientists. In-
deed, the more detailed are the observations, the more information they can
provide. That is why it is very fashionable to build larger and larger tele-
scopes and even to send some into space. But numerical techniques can
also be used to improve data acquired with a not so big mirror, in not so
good atmospheric and/or optical conditions. Deconvolution is one of these
techniques allowing to recover information from blurred images. It has been
largely developed after the launch of the Hubble Space Telescope because of
strong optical aberrations discovered on its mirror.

Whenever some data are acquired, it is important to have within reach a
good image processing technique to “clean” the observations. The first step
is to get rid of parasites such as cosmic rays, cold or hot pixels, dead pixels,
and so on. These effects are taken into account in every common reduction
method. The second step consists in clearing the images from the influence
of the optical system that has collected the light and possibly from the effects
of the atmospheric turbulences. As already mentioned, deconvolution is one
of the techniques used for this purpose.

Every observationD (~x, t) is sampled on a detector, ~x representing a pixel7

on the Charged-Coupled Device8 (hereafter CCD), and may depend on time
t. It can be decomposed as follows:

D (~x, t) =
(
F (~x, t)×+ T (~x, t)

)
+ N (~x, t) (2.18)

7The word pixel comes from the contraction of the words picture and element.
8See definition in the glossary, page 83.
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where F (~x, t) represents the original signal, T (~x, t) stands for the instru-
mental profile and N (~x, t) is the noise. T (~x, t) is also called the total PSF
or Point Spread Function. It is the instrumental diffraction shape of a the-
oretical point source of light through the whole optic system and possibly
through atmospheric layers if the observations are ground-based. Let us no-
tice that the noise N is mainly due to the readout of the CCD and to the
statistical character of the counting of photons. The lower the signal-to-noise
ratio (S/N) is, the poorer our estimate of the original signal will be.

To make it easier we will consider a unique observed image which does
not depend on time. Equation 2.18 can then be written as follows:

D (~x) =
(
F (~x)×+ T (~x)

)
+ N (~x) . (2.19)

Our aim is to recover the signal F (~x) and to highlight high frequencies
components on the data in spite of the noise. It is obvious that we have
to deal with an inverse problem and, as a consequence of the presence of
noise, with an ill-posed problem: it has no unique solution. Regularization, a
process consisting in introducing additional information about the problem,
is then necessary in order to select a solution amongst the set of all light
distributions compatible with the observation, within the error bars.

Many different deconvolution techniques have been elaborated, each one
being based on a different regularization criterion. Most of them present
some weaknesses. At some level they all produce deconvolution artifacts,
which add to the deconvolved image information that does not exist in the
original one. This often prevents from obtaining reliable astrometric and
photometric measurements. The next section will expose briefly three of the
most used techniques and their problems.

2.3.2 The common methods and their weaknesses

Extremely brief reminder on convolution

Convolution is a mathematical operator, symbolized by ×+, which, when ap-
plied to two functions f and g 9, produces a third function which somehow
represents the amount of overlap between f and a reversed and translated
version of g . Mathematically, this phenomenon can be expressed by the
following integral:

(
f ×+ g

)
(x) =

∫ +∞

−∞
f (ξ) g(x− ξ) dξ. (2.20)

9For simplicity we assume that they are both defined from −∞ to +∞.
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Wiener deconvolution

The foundations of deconvolution techniques and time-series analysis were
largely built by Norbert Wiener in a book that he wrote during but published
after World War II. Wiener deconvolution is a linear procedure based on the
application of the Wiener filter to reduce the noise problems inherent to
deconvolution.

By the convolution theorem, which states that a convolution in the image
space becomes a simple product in the Fourier space, we can apply the Fourier
transform to Eq. 2.19 such that we obtain:

D(~ν) = F (~ν) · T (~ν) + N(~ν) (2.21)

where ~ν is the variable in the Fourier space and where D(~ν), F (~ν), T (~ν) and
N(~ν) are the Fourier transforms of D(~x), F(~x), T (~x) and N (~x) respectively.

What comes then to mind is to invert Eq. 2.21 to directly obtain the
original signal in the Fourier space:

F (~ν) =
D(~ν)−N(~ν)

T (~ν)
(2.22)

which is valid if T (~ν) differs from zero. However the term N(~ν)/T (~ν) diverges
at high frequencies, precisely the ones we try to recover.

A solution to this problem was found by Wiener: before inverting the
observed signal, one can apply a special filter to the data which will attenuate
high frequencies. That filter can be written as follows in the Fourier Space:

Φ(~ν) =
|B(~ν)|2

|B(~ν)|2 + |N(~ν)|2 (2.23)

where B(~ν) = F (~ν) T (~ν). If there is no noise, the filter becomes equal to
unity and has no effect on the observed signal. Of course, nor N(~ν) neither
B(~ν) are known, but |N(~ν)|2 and |B(~ν)|2 can be estimated by separating the
contributions from the noise and the actual data in the power spectrum of
the data |D(~ν)|2.

The maximum entropy methods

Here again we are willing to obtain a deconvolved signal that will be the best
representation of the original signal in a least squares sense 10 . We are thus
trying to minimize the following expression:

∣∣∣D(~x)− [F(~x)×+T (~x)]
∣∣∣
2

. (2.24)

10See definition of the least squares minimization in the glossary, page 83.
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Let us assume that our CCD has only one dimension. We can write the
previous expression in terms of a χ2:

χ2 =
N∑

i=1

[
di −

(
ΣN

j=1tijfj

)

σi

]2

(2.25)

where N is the total number of pixels, σi an estimated value of the standard
deviation of the signal acquired in the ith pixel, di the measured value in the
ith pixel of the observed image and tij the intensity in pixel j of the PSF
centered on pixel i.

Just before the 1950s, Shannon showed that the average amount of infor-
mation contained in a probability distribution pi is measured by the entropy:

H = −
∑
i=1

piln pi (2.26)

Moreover, the maximum entropy principle states that, amongst all the solu-
tions to an inverse problem, the one with the highest entropy and, thus, the
minimum amount of information, should be chosen. To apply it to image
processing, we assume that the intensity distributions are normalized, e.g.:

N∑
i=1

fi = 1 (2.27)

so that fi can be viewed as a probability, i.e. the probability that the next
photon will be emitted in the region of the sky corresponding to pixel i.

The maximum entropy method consists in minimizing the following func-
tion which depends on N variables (the fi):

Φ = χ2 − λH (2.28)

where χ2 is given by Eq. 2.25 and where λ is a Lagrange parameter introduced
to modulate the weight of H, which can be seen as a smoothing term. The
maximum entropy image is the flattest (in other words, the closest to a
constant) which is compatible with the data. Finally let us note that this
method automatically constrains every fi to be positive as expected for a
detected number of photons.

The Richardson-Lucy algorithm

The Richardson-Lucy algorithm, created by Richardson in 1972 and theoret-
ically developed by Lucy in 1974, is an iterative and non-linear procedure
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which basic idea is to calculate the most likely fj , given the observed di and
known tij . If the noise is neglected in a first approximation, some manipula-
tions of Eq. 2.19 lead to the following expression:

f
(n+1)
j = f

(n)
j

N∑
i=1

di

ci

tij (2.29)

where fn
j is the nth estimate of fj, where

ci =
N∑

k=1

tikf
(n)
k , (2.30)

and where di/ci is the ratio of the value acquired in pixel i and the value
obtained in the same pixel from the image reconstructed after deconvolution.
This ratio is then convolved by the normalized PSF tij to get rid of the details
with higher frequencies than the instrumental profile. The so modified ratio
is then used to correct the first estimation of the deconvolved image: we
obtain a new estimation of fj which can be used as a starting point for
the next iteration. If this process converges, it converges to the maximum
likelihood solution for fj . Usually f

(0)
j is the measured value in pixel j .

Let us notice that for positive data, a positive PSF, and a positive first
approximation of the deconvolved image, every following estimation of f j
will also be positive.

Their weaknesses

Mainly there are three problems encountered by these classical methods. The
first one is related to the sampling theorem, the second one to the smoothing
parameter and the last one to the positivity constraint. Hereafter we develop
the three of them.

� The sampling theorem

The sampling theorem states that a signal, continuous in time, can be
reconstructed from its samples only if it is band-limited, e.g. its Fourier
transform is equal to zero above a certain finite frequency νf , and if the
sampling rate exceeds the so-called Nyquist frequency, written νc for
cut-off frequency, equal to twice νf . When the sampling frequency is
too low, all the components of frequencies higher than νc are badly rep-
resented by the chosen sampling step and superimposed on frequencies
between −νc and νc. This artifact is called aliasing11 (see fig. 2.13).

11Signals having the same sample as the original signal are called aliases.
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Figure 2.13: An example of the aliasing phenomenon. Left : properly sam-
pled image of a brick wall. Right : effect of a bad sampling (undersam-
pling) on the same image. The aliasing phenomenon is obvious. Credit:
www.wikipedia.org.

Let us insist on the fact that, even if the di are well sampled, it does
not imply that the fi will be well sampled too. The simplest example
of a violation of the sampling theorem is a perfect deconvolution of an
image containing a star: it would give an image of the star narrower
than the sampling step and this is not permitted. The problem of clas-
sic algorithms is that they attempt to reach an infinite resolution. That
would be possible only if the pixel size of the detector was infinitely
small, which is far from being the case. This is thus in complete con-
tradiction with the sampling theorem. As a consequence, the Gibbs
phenomenon, i.e. rings surrounding point-like objects, will appear in
the deconvolved frame. This phenomenon, also known as ringing ar-
tifacts, comes from the fact that the signal is band-limited. We will
not give more details about this special topic. Let us just insist on the
fact that these artifacts are caused by high frequencies contained in the
point sources. For those who are interested, here is a good reference of
a PhD thesis developing this subject: Blanchet (2006).

� The smoothing parameter

Usual algorithms select the smoothest solution amongst the ones com-
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patible with the observed light distribution, according to different cri-
teria: it allows them to attenuate the amplification of the noise and
the Gibbs’ oscillations. But choosing the smoothest image is in com-
plete contradiction with our expectations. Indeed, our intuition tells
us that an astronomical observation is far from being smooth: we want
to detect objects like stars, planets, quasars, and other structures. We
expect bright points on a faint diffuse background.

� The positivity constraint

To be efficient, the positivity constraint must be applied to an image
with no sky background. But most of the time, the photon noise im-
plies a lot of pixels with a negative value. The algorithms such as
Richardson-Lucy have to put to zero these negative values before de-
convolution, in the observed frame as well as in the PSF. That modifies
consequently the shape and the intensity of faint objects, as well as the
wings of the instrumental profile.

A first step towards the solution was made by Lucy in 1993. He developed
a technique based on the Richardson-Lucy algorithm and called the PLUCY
algorithm. Its particularity resides in the decomposition of the deconvolved
frame in 2 images, one containing the point sources and the other the dif-
fuse background. High frequencies are thus treated separately. This allows
less contamination of the deconvolved image by the ringing artifacts. This
algorithm works better than the Richardson-Lucy method. However a funda-
mental weakness persists: the algorithm tries to obtain a deconvolved image
with an infinite resolution, which is completely forbidden by the sampling
theorem.

2.3.3 The MCS algorithm and its advantages

The basic principle of the MCS algorithm (Magain et al., 1998) is to respect
the sampling theorem in trying to improve the spatial resolution of images
instead of trying to obtain an infinite one. To do so we do not deconvolve
the image by the total PSF T (~x) but by a narrower one, S(~x), so that the
deconvolved frame has its own PSF R(~x) compatible with its own sampling
step:

T (~x) = R(~x)×+ S(~x). (2.31)

Practically, R(~x) is chosen so that the deconvolved data are well sampled:
the image of a point source on the detector must have at least two pixels as
full-width-at-half-maximum (hereafter FWHM). The same conditions prevail
for the image of a point source in the deconvolved frame.
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There are two important consequences of Eq. 2.31. First of all, the decon-
volved image will be well sampled and its spatial resolution can be strongly
improved. Secondly, the final instrumental profile of a point source, R(~x), is
known and even chosen by the user (generally it is a Gaussian function). We
can also notice that the highest frequencies are modeled analytically. It al-
lows us to decompose every astronomical image in a sum of M point sources
and a diffuse background.

The shape of the point sources in the deconvolved frame is known but
we will have to measure their intensity ak and their center ~ck. So, if the
detector is a square with N pixels on each axis, there are 3M +N2 variables,
one intensity and two coordinates per point source plus one value of the
background per pixel. The deconvolved image can thus be written as:

F(~x) = H(~x) +
M∑

k=1

akR(~x− ~ck) (2.32)

where H(~x) is the background.
Practically, the algorithm attempts to minimize the following function:

K =
N∑

i=1

1

σ2
i

[ N∑
j=1

sij

(
hj +

M∑

k=1

akr(~xj − ~ck)
)
− di

]2

+ λ

N∑
i=1

[
hi −

N∑
j=1

rijhj

]2

, (2.33)

di being the value registered in pixel i on the CCD. The parameter λ al-
lows the user to adjust the value of the χ2 so that the deconvolved frame
is statistically compatible with the observed data. Indeed, a least squares
minimization is considered as good if χ2 = 1 per degree of freedom. Here
again, if the detector is a square with N pixels on each axis, χ2 must be
approximately equal to N2 so that the fit is considered as good. In other
words, λ gives a weight to the smoothing term. The latter contains all the
frequencies of the diffuse background higher than the one of R(~x). Every
structure with such a frequency is not physical so it has to be minimized.
Finally the length scale of the smoothing is not arbitrary, as it is the case
for most of the methods, but directly related to R(~x) and, as a consequence,
local.

The user is guided by the value of the χ2 but also by the residual maps.
The residual map Z(~x) of an observation is expressed in units of standard
deviation. It is defined as follows:

Z(~x) =
M(~x)−D(~x)

σ(~x)
(2.34)
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where M(~x) stands for the solution reconvolved by the partial PSF S(~x)12.
It represents the deviation of the model compared to the original image.

It is also practical to work with the reduced chi square χ2
r measured on

what we call the reduced residual map. Actually the latter expression is a
misuse of language introduced to ease the communication. The reduced chi
square of an image with N pixels is mathematically defined as follows:

χ2
r =

1

N

(
M(~x)−D(~x)

σ(~x)

)2

. (2.35)

Theoretically the χ2
r must be close to unity. That would be the case for a

perfect deconvolution executed with a perfect PSF. If it is lower than 1, the
model follows too closely the data and the deconvolution is noisy. This is
called overfitting.

Another advantage of the MCS algorithm: it does not need the positivity
constraint to be efficient. One can choose whether to use it or not depending
on the case treated.

To end this section, let us mention that, as the MCS method is an itera-
tive procedure, the user has to estimate the initial intensity and position of
every point source in the image. The algorithm will adjust them during the
process. Moreover, the MCS method preserves the astrometric and photo-
metric properties of the observed objects. For readers who want more details
about it, we suggest the original paper of Magain et al. (1998).

The analytical model

The MCS algorithm has other possibilities that we have not mentioned here.
Amongst them, one is of great interest for us: the possibility of introducing
an analytical model (considered as a part of the diffuse background) to fit the
luminosity profile of a galaxy. We have two possibilities: a de Vaucouleurs
model (de Vaucouleurs, 1948) well-suited for elliptical galaxies, i.e. bulge
systems, and an exponential luminosity profile (Freeman, 1970) well-adapted
to spiral galaxies, i.e. disk systems.

The light profile G of a galaxy with elliptical isophotes can be expressed
as follows in the frame of the observed galaxy if the ellipse is centered on
(0, 0):

G′(x′, y′) = I0 e−(Ax′2+By′2+Cx′y′)α

(2.36)

where I0 is the central intensity of the galaxy, A, B and C are parameters
of the model and where α is equal to 0.125 in the case of a de Vaucouleurs

12The solution must be reconvolved by S(~x) and not by the total PSF T (~x) because the
deconvolved frame has its own PSF R(~x).



2.3 Deconvolution 35

profile and to 0.5 in the case of an exponential profile. If we choose the ellipse
axes as the coordinate axes:

G(x, y) = I0 e−
(

x2

a
+ y2

b

)α

(2.37)

where a is the semi-major axis and b the semi-minor axis of the ellipse.
There are other important parameters: the angle θ representing the ori-

entation of the observed frame compared to the orientation of the ellipse,
and the ellipticity e corresponding to the ratio between the minor and major
axes. The angle θ leads to the position angle or PA which is the angle that
folds back the semi-major axis of the ellipse on the direction of the North.

These parameters are related to the coefficients A, B and C:

a2 =
2cos(2θ)

(A + B) cos(2θ) + A−B
, (2.38)

b2 =
2cos(2θ)

(A + B) cos(2θ) + B − A
, (2.39)

θ =
1

2
arctg

( C

B − A

)
, (2.40)

e =
B − A

(A + B) cos(2θ)
. (2.41)

Another parameter that we can derive from the ellipticity is the inclina-
tion angle i of the galaxy on the line of sight (assuming it would have circular
isophotes if seen face-on):

e = cos(i). (2.42)

Let us add that the de Vaucouleurs’ law can also be written as follows:

I(r) = Ie e−7.67
(

4
√

r
Re
−1

)
(2.43)

where Re is the projected effective radius, i.e. the radius which encloses half
of the luminosity emitted by the galaxy, and Ie is the surface brightness at
Re.

Optimal image combination

The MCS algorithm has another considerable advantage: it allows the user
to simultaneously deconvolve several images of the same field of view. Each
image has its own partial PSF. The extended structures and the positions of
the point sources are forced to be equal in each frame. For the intensity of
the sources, the user can choose whether to force them to be proportional
in each frame or not. If the data have been acquired consecutively during a
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short time period then there is no physical reason to let the intensities vary
from one deconvolved frame to the other. On the contrary, if the images were
acquired over a long time period and with the purpose of determining the
variations of intensity, then it is essential to let them vary from one frame
to the other. The best example is probably the deconvolution of images of
gravitationally-lensed systems in order to determine a time delay.

After a simultaneous deconvolution, the user obtains a unique and opti-
mally constrained deconvolved image, which is compatible with and based
on all the images of a same object taken in different observational conditions
but in a given instrument configuration, e.g. through a given filter. That
means that their total signal is used to constrain the parameters.

In the case of a simultaneous deconvolution of n images D1(~x), D2(~x), ...,
Dn(~x), each one of them having its own PSF S1(~x), S2(~x), ..., Sn(~x), the
function to be minimized is the following:

K =
N∑

i=1

1
σ2

1,i

[
N∑

j=1

s1,ij

(
α1h(~xj + ~δ1) + β1 +

M∑

k=1

a1,k r(~xj − ~ck + ~δ1)
)
− d1,i

]2

+
N∑

i=1

1
σ2

2,i

[
N∑

j=1

s2,ij

(
α2h(~xj + ~δ2) + β2 +

M∑

k=1

a2,k r(~xj − ~ck + ~δ2)
)
− d2,i

]2

.

.

.

+
N∑
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1
σ2
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]2

+ λ
N∑

i=1

[
hi −

N∑

j=1

rijhj

]2

. (2.44)

Each one of the n first terms is related to a particular image while the last one
is the smoothing term. di,j is the value of the observed data in pixel j for the
ith image, σi,j its standard deviation and si,j the value of PSF in the same
pixel and for the same frame. We can notice that three new parameters
are introduced: α, β and ~δ. The first one, α, is the multiplicative factor
of the background: it corrects possible effects from differences in exposure
times or in the transparency of the atmosphere in the case of ground-based
observations, but also imposes the extended structures to have the exact
same shape in each frame. The second new parameter, β, is an additive term
introduced in order to get rid of errors that could have occurred during the
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reduction of the images in the sky-subtraction. In this equation no constraint
is applied to the intensities a of the sources: they are free to vary from one
image to the other. In the case of non-varying intensities, a is multiplied by
the factor α so that the images have the same ratio between the intensities
of the sources and the background. The last parameter, ~δ, is introduced to
take into account a spatial offset between two different exposures13. This
technique is called dithering and is highly recommended to get rid of bad
pixels and cosmic rays. Let us insist on the fact that it is preferable to
deconvolve simultaneously many dithered images than one combined frame.
This method is particularly well-suited to detect underlying and relatively
faint structures such as lensing galaxies or Einstein rings as explained in
Courbin, Lidman & Magain (1998).

A de Vaucouleurs or an exponential profile can also be used to fit a galactic
light distribution in a simultaneous deconvolution. It is considered as a part
of the background so it depends on the parameters α, β and ~δ.

Let us now conclude this section in stating the advantages of the MCS
algorithm:

� This algorithm is capable of improving the resolution but also the sam-
pling. Let us insist on the fact that this does not replace a good sam-
pling of the original data;

� It can be applied to a single frame or to several images of the same
field;

� It separates the diffuse background from the point sources without
contamination;

� It calculates the position and intensity of point sources from approxi-
mate values;

� It does not need the positivity constraint to obtain good results;

� The user is guided by the value of the χ2 and the residual maps to
choose a value for the smoothing parameter and to reach the best so-
lution.

Determination of the PSF

To optimally use the MCS algorithm, it is necessary to know the PSF S(~x)
with a great accuracy. Indeed, it is the most important point to insure that
MCS will be successful.

13Practically the first image of the data set is considered as the reference frame: α1 = 1,
β1 = 0 and δ1 = 0.
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In this work we want to treat HST/NICMOS-2 images. The Tiny Tim
software package (Krist & Hook, 2004) allows the generation of HST PSFs
for each instrument, filter and observing configuration. Moreover, it depends
on the spectral type of the observed object. Most of the astrophysicists are
usually satisfied with this PSF to get rid of the instrumental shape. But
the actual PSF always departs significantly from this approximate version.
And to reach the best results, we must use a better approximation. For that
purpose, an algorithm was developed on the same basis as MCS to fit the
PSF on one or several point sources of an image. So we can write the partial
PSF S(~x) as a sum of a function constructed on the basis of the Tiny Tim
software that we call P(~x) plus a numerical background that we call B(~x)
and which is determined by comparison with actual point source images in
the frame:

S(~x) = P(~x) + B(~x). (2.45)

Let us notice that the total PSF T (~x) can also be written that way because
it has the same shape as S(~x).

If we consider a single frame, the function to minimize is the same as Eq.
2.33 where D(~x) is replaced by T (~x) and S(~x) is replaced by R(~x) in order
to construct S(~x). It gives, for a one-dimensional image with a point source
centered in c and with the usual notations:

KS =
N∑

i=1

1

σ2
i

[ N∑
j=1
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(
p(x− c) + b(x− c)

)
j
− ti

]2

+ λ

N∑
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N∑
j=1

wijfj

]2

(2.46)

where wij represents a length scale for the smoothing term. Practically,
we choose wij equal to rij because, if a deconvolved frame cannot contain
any frequency higher than R(~x), then neither should the PSF S(~x) used
for its construction. The parameters to modify during the iterations of the
algorithm are the following: the center of the point source, its intensity and
all the pixels bi from the numerical background image.

Let us not forget that the MCS algorithm allows the user to oversample
the deconvolved frame compared to the original data. This is mainly useful
if we have several images of the same field with the object position shifted
on the detector. But it also requires the instrumental profile itself to be
oversampled by the desired factor. To do so we take advantage of the presence
of several point sources on one frame: they are located on different places on
the CCD, so they can be deconvolved at the same time, each one of them
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constraining the numerical background of the unique oversampled output
PSF. That gives a PSF with a higher S/N than in one fit on a single source.

Checking the residual maps allows the user to possibly detect a variation
of the PSF in the field or a contamination by an underlying or neighboring
object that is not obvious on the original frame.

More recently, Magain et al. (2007) presented a method, derived from
MCS, to determine the PSF on images consisting of possibly blended point
sources. This method works well, even in very crowded fields, when no
point source is sufficiently isolated to derive an accurate PSF from standard
techniques.

The next section presents a method which extends the one of Magain
et al. (2007) to images containing a mixture of point sources and diffuse
background. It is based on an iterative scheme, in which both the PSF and
diffuse background are improved step by step.
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The iterative method using the
MCS algorithm

×+ � =

We developed an iterative procedure using the MCS algorithm to treat
archival HST/NICMOS-2 (Noll et al., 2004; Dickinson et al., 2002) images
of gravitationally-lensed quasars.

Unfortunately, for the gravitational mirages that are of interest to us, no
extra images of stars are available to improve the PSF: we have to use the
information in the point sources of the lensed system itself. However, we
know there may be some extra structure under the point sources, as well as a
contribution from the lensing galaxy. The difficulty resides in the separation
of these contributions from the point sources themselves.

The originality of the present method is that the same images are used
to determine the PSF and to perform the deconvolution (basically to detect
the diffuse background and to obtain the astrometry and photometry of all
objects). It works only if there are several point sources in the field: this
makes it possible to distinguish the structures belonging to the PSF, and thus
appearing in the vicinity of each point source, from the diffuse background
assumed not to be identical around each source.

This new method is based on an iterative procedure. We start with a
first approximation of the PSF, in the case of HST images this PSF is con-
structed by the Tiny Tim software (Krist & Hook, 2004; see Fig. 3.1 for an
example of a Tiny Tim PSF), with a sampling step two times smaller than
the original one (oversampling of a factor of two). That instrumental profile
is deconvolved by the final Gaussian PSF R(~x) in order to obtain the decon-
volution kernel that we call S0(~x). This is a reasonable first approximation,

41
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Figure 3.1: PSF constructed by the Tiny Tim software for two filters available
on NIC-2. They are considerably different. However we can easily notice
that they both have complex structures including spikes. Left : a PSF for the
F160W filter (defined in the next chapter). The colour scale goes from 0%
(black) to 0.13% (white) of the peak intensity. Right : a PSF for the F180M
filter (defined in the next chapter). The coulour scale goes from 0% (black)
to 0.16% (white) of the peak intensity.

although not accurate enough to obtain trustworthy deconvolved frames. In-
deed, when using that instrumental profile for deconvolving original images,
which we call D0(~x), significant structures appear around each point source,
clearly showing that the Tiny Tim PSF departs from the actual one. An
example is shown on Fig. 3.2: it is the simultaneous deconvolution of four
frames of the Cloverleaf gravitational lens1 through the F160W filter.

For all these reasons we proceed as follows:

1. First, for each individual image, we determine an improved PSF fol-
lowing the method described in Magain et al. (2007). This is done by
adding a numerical background to the approximate PSF S0(~x) (here,
the deconvolved Tiny Tim PSF) so that the observed image D0(~x) is
reproduced better. But, since this method assumes that the image
contains only point sources, and since our object is supposed to con-
tain a diffuse component, a part of it will be wrongly included in the
improved PSF S1(~x). If the structures of the diffuse component were
identical around each point source, it would be entirely included in
the PSF. On the other hand, assuming that the quasar is quadruply-

1See section 4.1 for details on this object.
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Figure 3.2: Results of the simultaneous deconvolution of a quadruply-lensed
quasar, the Cloverleaf, using a Tiny Tim PSF. Left: deconvolved image,
the colour scale going from 0% (black) to 0.4% (white) of the maximum
intensity. Right: residual map of the deconvolution. The remnant structure
around each point source is obvious and is due to the use of an inaccurate
PSF.

lensed, and if the background were completely different around each of
the point sources, only around 25% of it would be included in the PSF.
In practice, a variable fraction of the background goes into the PSF. As
long as that fraction is below 100%, our iterative procedure will allow
improvements of the results.

2. We then use the once-improved PSFs S1(~x) to perform a simultaneous
deconvolution of all images. Let us insist on the fact that each image
has its own instrumental profile: S1(~x) varies slightly from image to
image. The simultaneous deconvolution allows us to obtain a first ap-
proximation of the diffuse background, H1(~x), which, by construction,
is the same in each image. However, since a part of the actual back-
ground was included in the PSFs S1(~x), H1(~x) is only the remaining
part of the actual background.

3. We subtractH1(~x), reconvolved and resampled to the initial resolution,
from the original images. This gives us a new version of the observed
images, D1(~x), containing a lower amount of diffuse background. The
first iteration is over.

4. To begin the second iteration, we use the images D1(~x) to determine
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the PSFs S2(~x). As D1(~x) contains a lower amount of background than
D0(~x), the new PSFs are indeed closer to the correct ones.

5. The simultaneous deconvolution of the original images D0(~x) with the
new PSFs S2(~x) allows us to get a diffuse background H2(~x) which is
improved with respect to the one obtained at the previous iteration.

6. We subtract H2(~x) from the original images D0(~x). This closes the
second iteration.

7. The iterative procedure is continued until no significant improvement
is observed. Usually around 3 to 5 iterations are necessary, depending
on the structures under the sources.

This iterative process is illustrated on real examples in the next chapter.
Sometimes this process needs to be adapted to the case treated. For

example when the diffuse background is not faint enough comparing to the
intensities of the sources, it is better to first deconvolve simultaneously the
data with the Tiny Tim PSFs than to start in fitting these PSFs on the point
sources. Indeed, these latter sources are strongly contaminated by the intense
extended structures such as an obvious lensing galaxy. Before subtracting
the background obtained thanks to the Tiny Tim PSFs from the original
images, it is necessary to clean it from the bad structures which are created
to compensate the inaccuracies in the Tiny Tim PSFs. This demands some
intuition to decide what is part of the real background and what is not. At
this stage it is always better to remove too many structures than too few
because it is possible to recover them in the next iterations.
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4.1 The Cloverleaf (H1413+117)

4.1.1 Introduction

Four years after its discovery in 1984 by Hazard et al., the QSO H1413+117
was identified as a gravitational lens by Magain et al. (1988). This system,
consisting in 4 components of comparable brightness separated by ∼ 1 arcsec,
is best known as the Cloverleaf. It is also one of the brightest quasars amongst
the BAL (Broad Absorption Line) class, with a redshift of 2.558 and an
apparent visual magnitude of 17. The lensing galaxy was detected by Kneib,
Alloin & Pello (1998) from a careful PSF subtraction on near-infrared HST
images. Let us try to apply our iterative method on this set of images
and on another one which was taken with a different filter. We will see
that it permits to obtain a more accurate astrometry of the system and a
better characterization of the lensing galaxy. Moreover, it will also allow the
detection of additional structures, such as parts of an Einstein ring. All these
facts are also related in an article presented in appendix.

4.1.2 HST imaging

The first set of HST data (PI: E. Falco) was obtained on the 28th of De-
cember 1997 by the camera 2 of NICMOS1 with the F160W filter, a wide
band filter corresponding approximately to the near-IR H-Band. We use the
four calibrated images, i.e. treated by CALNICA, the HST image reduction
pipeline. Each of them has an exposure time of 639.9389 s and a mean pixel
size of 0.′′07510 according to the version 6.3 of the Tiny Tim software (Krist
& Hook, 2004). These images were obtained in the MULTIACCUM mode:
each of them is a combination of several samples, 19 in the present case. A
combination of these four images is shown on the left panel of Fig. 4.1.

The second set of frames (PI: D. A. Turnshek) was obtained on the 10th

of July 2003 with the same instrument in the F180M medium-band filter.
As for the F160W filter we use the calibrated images, here eight frames,
four of them being a combination of 18 samples and the other four being a
combination of 16 samples. The first four have an exposure time of 575.9418 s
and the latter four an exposure time of 447.9474 s. The mean pixel size is,
again according to the Tiny Tim software (Krist & Hook, 2004), 0.′′07568. A
combination of these calibrated images is shown on the right panel of Fig.
4.1.

1Let us recall that NICMOS stands for Near Infrared Camera and Multi-Object Spec-
trometer
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Figure 4.1: Combined HST/NICMOS-2 images of the Cloverleaf. Left: com-
bination of the 4 calibrated and reduced images obtained with through the
F160W filter. The colour scale goes from 0% (black) to 2.4% (white) of the
maximum intensity. Right: combination of the 8 calibrated and reduced im-
ages obtained with through the F180M filter. The colour scale goes from 0%
(black) to 5% (white) of the maximum intensity. The structure of the PSF
is noticeable. North is to the top and East to the left.

The wavelength ranges of these two filters are partly superimposed: the
passband of the F160W filter is 1.4 µm ≤ λ ≤ 1.8 µm while it corresponds
to 1.76 µm ≤ λ ≤ 1.83 µm for the F180M filter. The latter was chosen in
order to include the oxygen [OIII] forbidden line doublet (499 – 501 nm) at
the redshift of the QSO.

The image reduction was divided into two parts: the image cleaning and
the calculation of the sigma images, i.e. the frames containing the standard
deviations of the pixel intensities. The first step of the first part consists
in computing the intensities in counts per pixel. The second step consists
in removing the sky background, which is mostly caused by the zodiacal
light2 at short wavelengths and by the thermal emission from the telescope
at long wavelengths. As the NIC-2 detector is composed of four quadrants,
it is necessary to subtract a different constant value for each of them. These
constants were derived from the parts of the image where no obvious light
source is observed.

The second step consists in the calculation of the sigma images. We start
from the sigmas obtained by the pipeline CALNICA. Two effects are then
corrected. First, we take into account the underevaluation of the standard

2See definition in the glossary, page 83.
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deviation for the negative pixels: we replace all negative intensities by a null
value. Secondly, we make use of the HST flag files indicating bad pixels,
e.g. cold or hot pixels. It allows us, using the inverted sigma images, to put
the statistical weight of such bad pixels to zero so that the information they
provide has no influence on the deconvolution.

Let us mention that, at the time of these tests, we did not remove the
cosmic ray impacts from the images during the reduction process. We used
the deconvolution residuals (see section 2.3.3) to spot the pixels having been
likely contaminated by a cosmic ray. We then put the inverted sigma value
of such pixels to zero.

All the manipulations are carried out with the IRAF3 package.

4.1.3 Deconvolution

The iterative method is then applied to both sets of reduced images in order
to improve their resolution and sampling and, most importantly, to detect
any significant extended structure which might be hidden by the complex
PSF. In order to improve the resolution while keeping a well sampled light
distribution, we use a sampling step 2 times smaller than the original pixel
size and we choose, as the final PSF R(~x), a Gaussian with a FWHM of 2
pixels in the new sampling grid4. Let us mention that, since the HST PSF
varies with the position in the focal plane, and since the object is located in
different parts of the detector at each exposure, each original image has its
own individual PSF.

For the F160W data set, seven iterations are necessary while, for the
F180M data set, convergence is reached after three iterations. This differ-
ence is due to the fact that the diffuse background is less intense relative to
the point sources in the latter filter. Fig. 4.2 and 4.3 illustrate the evolution
of the PSF in the iterative scheme: they show the corrections applied at dif-
ferent stages. We can see that the first step of the iterative process changes
significantly the PSF obtained with Tiny Tim. The next steps allow smaller
adjustments and smaller details. In the case of the F180M filter, it is obvi-
ous that only 3 iterations are necessary, as the corrections already become
negligible after the second step. The same happens after the sixth iteration
in the F160W filter.

3IRAF, Image Reduction and Analysis Facility, is distributed by the National Optical
Astronomy Observatories, which are operated by AURA, the Association of Universities
for Research in Astronomy, Inc., under cooperative agreement with the NSF, National
Science Foundation.

42 pixels in the new grid correspond to 4 pixels in the original frame.
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Figure 4.2: Corrections applied to the PSFs for one image of the F160W
data set at different stages of the process. The colour scale goes from -1.3%
(black) to +1.3% (white) of the peak intensity of the Tiny Tim PSF. Left:
corrections to the PSF at the first iteration, starting from the deconvolved
Tiny Tim PSF. Middle left: corrections at the second iteration. Middle right:
corrections at the fourth iteration. Right: corrections at the last iteration.

Figure 4.3: Corrections applied to the PSFs for one image of the F180M
data set at different stages of the process. The colour scale goes from -4.8%
(black) to +4.8% (white) of the peak intensity of the Tiny Tim PSF. Left:
corrections to the PSF at the first iteration, starting from the deconvolved
Tiny Tim PSF. Right: corrections at the last iteration.

Now that we have an idea about the evolution of the successive corrections
applied to obtain a trustworthy instrumental profile, we can focus on the
results of the deconvolution itself. Fig. 4.4 and 4.5 show the deconvolved
frames from the last iteration, respectively for the F160W and the F180M
data set. A partial Einstein ring, which is the gravitationally-lensed image
of the quasar host galaxy, and the lensing object can be seen for both sets on
the background frame (top right) and on the background plus point sources
frame (top left). The lens galaxy appears less intense compared to the point
sources in the F180M filter, which is expected as it is a medium-band filter
including the [OIII] emission lines (499 – 501 nm) at the redshift of the
QSO, but no emission line at the redshift of the lens. The partial Einstein
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Figure 4.4: Results of the last simultaneous deconvolution for the F160W
data set. North is to the top and East to the left. Top left: deconvolved
image, i.e. point sources plus smooth background; the point sources are
labeled as in Magain et al. (1988). Top right: smooth background common
to all images of the set where the lensing galaxy G is encircled. Bottom
left: mean residual map of the simultaneous deconvolution. Bottom right:
image reconvolved to the instrument resolution and sampling, with the point
sources removed.

ring also has a different structure: compared to the F160W filter, it appears
more intense in the F180M filter close to the point sources and less intense
in between them. This suggests that the NLR5 is more compact than the
global lens galaxy, which could have been expected.

The residual map (see bottom left panel of Fig. 4.4 and 4.5) guides us

5To learn more about the NLR, see section 2.1.3.
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Figure 4.5: Results of the last simultaneous deconvolution for the F180M
data set. North is to the top and East to the left. Top left: deconvolved
image, i.e. point sources plus smooth background; the point sources are
labeled as in Magain et al. (1988). Top right: smooth background common
to all images of the set where the lensing galaxy G is encircled. Bottom
left: mean residual map of the simultaneous deconvolution. Bottom right:
image reconvolved to the instrument resolution and sampling, with the point
sources removed.

through the different steps of the iterative process. We can see that, for both
sets at the last iteration, there is some structure left under the point sources,
but nothing systematic, and there is nearly no remnant structure where the
ring and the lensing galaxy are located. The fact that the residuals under
the four point sources have very different shapes suggests that they are not
due to errors in our instrumental profile, but rather to small PSF variations
from one QSO image to the other.
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We calculate the reduced chi square χ2
r for each set and each iteration

step in the zone of interest, i.e. in a square containing the four point sources
and the extended structures (ring plus lens). In the last iterations it barely
changes: the PSF is not improved significantly anymore and the iterative
process has converged. We obtain a χ2

r of 3.845 for the F160W data set after
the seventh iteration, and a χ2

r of 1.125 for the F180M data set after the
third iteration, which is really good. Let us mention that these values are
computed taking into account all images of a given set, so that any slight
incompatibility between some of the input images results in an increase of
the χ2 that cannot be lowered by changing the model. A final χ2

r of 1 means
that the model is perfectly compatible with all the images of the set. It
implies that all the images are statistically compatible with each other and
that the PSF is perfectly known. Any inaccuracy in the data acquisition or
reduction will also increase the final χ2.

4.1.4 Astrometry and photometry

Tables 4.1 and 4.2 give the relative astrometry and photometry for the quasar
images as well as for the lens, in the F160W filter and the F180M filter
respectively. The coordinates are measured in arcsec relative to component
A (see Figs. 4.4 and 4.5). The apparent magnitudes are given in the Vega
system.

As the geometric distortions for the HST/NIC-2 depend on the position
on the CCD, their proper corrections require an individual deconvolution of
each image. We obtain the position of each point source, relative to source
A, on each individually deconvolved frame and we correct them from the

Table 4.1: Relative astrometric and photometric measurements for the four
components and lensing galaxy of the Cloverleaf, in the F160W filter. The
right ascension α and the declination δ are given in arcsecond relative to
component A. The photometry is given in apparent magnitude in the Vega
system. The internal 1σ error bars are also indicated.

F160W
ID ∆α (′′) ∆δ (′′) Magnitude
A 0. 0. 15.760 ± 0.002
B 0.7426 ± 0.0002 0.1686 ± 0.0004 15.863 ± 0.005
C -0.4930 ± 0.0003 0.7135 ± 0.0004 16.143 ± 0.004
D 0.3526 ± 0.0007 1.0394 ± 0.0004 16.400 ± 0.006
G 0.1365 ± 0.0024 0.5887 ± 0.0035 20.527 ± 0.037
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Table 4.2: Relative astrometric and photometric measurements for the four
components and lensing galaxy of the Cloverleaf, in the F180M filter. The
right ascension α and the declination δ are given in arcsecond relative to
component A. The photometry is given in apparent magnitude in the Vega
system. The internal 1σ error bars are also indicated.

F180M
ID ∆α (′′) ∆δ (′′) Magnitude
A 0. 0. 15.548 ± 0.006
B 0.7458 ± 0.0003 0.1688 ± 0.0002 15.650 ± 0.009
C -0.4917 ± 0.0003 0.7105 ± 0.0003 15.902 ± 0.004
D 0.3532 ± 0.0003 1.0400 ± 0.0002 16.218 ± 0.007
G 0.1255 ± 0.0036 0.6192 ± 0.0069 22.182 ± 0.101

distortions according to the formulae given in the NICMOS Data Handbook
(Noll et al., 2004). We can then compute average values. For the point
sources, this gives more accurate results than a simultaneous deconvolution
with a mean correction on the coordinates. On the other hand, this is not
true for the lensing galaxy and the Einstein ring. As these objects are faint,
it is better to rely on the results of the simultaneous deconvolution, where
the signal in the whole set of images is used to constrain their shape. A mean
geometric correction can be applied, whose internal errors are lower than the
random uncertainties on these faint components.

The error bars given in Tables 4.1 and 4.2 are internal errors. The listed
values are the standard deviation of the mean computed from the individual
deconvolutions.

The astrometric precision for the point sources is about 0.5 milliarcsec in
the F160W filter and 0.3 milliarcsec in the F180M filter. The higher precision
in the medium-band filter may be explained by the fact that the partial ring
and the lens galaxy appear fainter relative to the point sources and thus have
a lower contribution to the error bars.

Of course, the precision on the position of the lens galaxy is significantly
lower. This is due to the facts that (1) it is a diffuse object, (2) it is much
fainter than the point sources (about 4.5 mag in the F160W filter and 6.4
mag in the F180M filter) and (3) it is mixed with the PSF wings of the point
sources.

Tables 4.1 and 4.2 also show that the results derived from both filters
are not compatible within their internal error bars. As the geometry of
the system is not expected to vary on the time scale of a few years, this
disagreement suggests that the actual error bars are significantly larger than
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the internal ones. The causes may be diverse. As the two sets of data
were acquired six years apart, with a different orientation of the HST and
thus of the detector, and in different cycles of NICMOS (pre- and post-NCS,
NICMOS Cooling System6), some geometrical distortions may not have been
completely taken into account. The uncertainties concerning the coefficients
of the formulae used to correct for the geometrical distortions, as given in the
NICMOS Data Handbook (Noll et al., 2004), account for an uncertainty of
the order of 0.1 milliarcsec in each filter, which is about an order of magnitude
smaller than the external errors we obtain (see next paragraph). It is thus
possible that a residual distortion of the NICMOS images remains, at the
10−3 level of accuracy, i.e. 0.001 arcsec per arcsec. An imperfect separation of
the partial Einstein ring from the point sources in the deconvolution process
as well as some inaccuracies in the PSF recovery may also play a role.

The external errors, computed by comparing the source positions derived
from the two data sets, are the following: the average difference in position
between the point sources amounts to 1.4 milliarcsec. Assuming that the
errors in both data sets contribute equally to this difference, we derive a
value of 1.4/

√
2 ≈ 1 milliarcsec (i.e. 0.013 pixel) for the estimated accuracy

in the position of the point sources.
Our measurements are compared to those of Magain et al. (1988) and

Turnshek et al. (1997) given in Table 4.3. The latter were derived from images
acquired with other HST instruments, the Wide Field Planetary Camera and
the Wide Field Planetary Camera 2, and with a completely different image
processing technique, while the first ones were obtained from much lower
resolution ground-based images. For both sets of results we indicate the 1σ
error bars. Let us mention that they do not appear in the original paper of
Magain et al. (1988). The average difference between our results and those
of Magain et al. (1988) amounts to 4 milliarcsec, which is close to the error
bars on the measurements performed by these authors. The same comparison
with Turnshek et al. (1997) gives an average difference of 2.6 milliarcsec, also
compatible with their error bars.

The primary lens, a single galaxy, was detected in 1998 by Kneib et al.
After a PSF subtraction of the four lensed images they obtained the following
relative position for the lensing galaxy:

α = 0.112′′ ± 0.02′′

and

δ = 0.503′′ ± 0.02′′

6The instrument ran out of nitrogen coolant sooner than expected in January 1999.
During a Hubble Service Mission in 2002, a cryocooler was installed on board the HST: it
now cools NICMOS through a cryogenic (below 123 K) neon loop.
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Table 4.3: Relative astrometry of the Cloverleaf from Magain et al. (1988)
and from Turnshek et al. (1997). The right ascension α and the declination
δ are given in arcsecond relative to component A. The 1σ error bars are also
indicated.

Magain et al. (1988) Turnshek et al. (1997)
ID ∆α (′′) ∆δ (′′) ∆α (′′) ∆δ (′′)
A 0. 0. 0. 0.
B 0.753 ± 0.006 0.173 ±0.006 0.744 ± 0.003 0.172 ± 0.003
C -0.496 ± 0.004 0.713 ± 0.003 -0.491 ± 0.003 0.716 ± 0.004
D 0.354 ± 0.004 1.043 ± 0.004 0.355 ± 0.003 1.043 ± 0.012

This result is compatible with ours in right ascension: ∆α = −0.025′′±0.020′′.
But this is not true for the declination: ∆δ = −0.086′′ ± 0.020′′. Possible
systematic errors, in particular on the lens position, are investigated in the
next section.

Finally, as already mentioned, the intensity distribution along the partial
Einstein ring is significantly different in the two filters: it is more regular in
the wide band filter, F160W, than in the narrower one, F180M. As the latter
was chosen to emphasize the [OIII] emission lines (499 – 501 nm) and thus
to obtain a mapping of the narrow emission line region in the quasar host
galaxy, such a difference is not unexpected. The partial ring observed in the
broad-band filter is a distorted image of the full host galaxy, while the narrow
emission-line region is more prominent in the F180M filter. In particular, two
bright knots are seen close to the A and C images of the quasar (see Fig.
4.5). These knots cannot correspond to deconvolution artifacts, which might
be caused, e.g., by an imperfect modeling of the PSF. Indeed, such artifacts
would be expected around all point sources and at the same position relative
to these point sources, which is not the case. Moreover, the observed positions
are in agreement with the inverted parity expected between two neighboring
images in such a lensed system. These bright knots must therefore correspond
to the emission line region in the quasar host galaxy, which is thus probably
brighter on one side than on the other. A detailed modeling of the system,
including an inversion of the lens equation, should allow the reconstruction
of an image of the host galaxy and of the narrow line region. This would be
the first time one could map the host and narrow line region of a BAL QSO
at such a high redshift.
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4.1.5 Synthetic image

The accuracy of our results is further tested by carrying the same procedure
on a synthetic image having characteristics similar to those of the HST/NIC-
2 F160W images of the Cloverleaf: 4 point sources, a faint lensing object and
a partial Einstein ring (see left frame of Fig. 4.6). This synthetic image
was convolved with a PSF similar to the actual one, but unknown to the
test performer. Random noise was then added to get a S/N comparable to
that of the combined HST image (see right frame of Fig. 4.6). The results

Figure 4.6: Left : synthetic image of a gravitationally-lensed quasar with a
configuration similar to the Cloverleaf: 4 point sources, a faint lensing object,
and a partial Einstein ring. The orientation is the same as in the original
F160W Cloverleaf images. Right : the same image convolved with a HST-
type PSF unknown to the test performer and with random noise similar to
the actual observations.

obtained after three iterations are presented on Fig. 4.7, which displays the
background, the point sources plus background and the residual map. Some
remnant structures can be seen under the point sources on the residual map.
The residuals are slightly weaker than those observed in the residual maps
of the actual images, but show similar characteristics.

On average, the flux in the background (ring + lens) is recovered within
4% , which can be considered as excellent since this diffuse background is
very weak compared to the point sources. However, because of the smoothing
constraint, the deconvolved ring and lens appear slightly flatter than the
original ones. The largest differences are found under the brightest point
source (A), where the deconvolved ring is about 43% below the original one.

Table 4.4 summarizes the astrometry carried out on this artificial Clover-
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Figure 4.7: Results of the last iteration on the synthetic image. Left: diffuse
background. Middle: diffuse background plus point sources. Right: residual
map of the deconvolution.

leaf: the first pair of columns present the measurements made on the final
deconvolved image resulting from the iterative process, the second pair of
columns the results when using a deconvolved Tiny Tim PSF for a unique
deconvolution, and the last one the measurements made on the original im-
age.

The differences between the positions obtained for a particular source
reach a maximum of about 0.3 milliarcsec with a mean value around 0.1
milliarcsec, which is slightly better than the internal precision estimated in
Tables 4.1 and 4.2 and significantly more accurate than the ones obtained
from the deconvolution with the Tiny Tim PSF. On the other hand, the
lens galaxy position is not as accurate as the ones of the point sources: the
maximum difference amounts to 20 milliarcsec (i.e. a quarter of a pixel).
Indeed, the position of such very faint diffuse objects is rather sensitive to
inaccuracies in the PSF: any error in the wings of a bright point source PSF
may have impacts on the faint neighboring objects.

Table 4.4: Relative astrometry of the artificial Cloverleaf. The two coordi-
nates are given in arcsecond relative to component A.

Iterative process Tiny Tim Original image
ID ∆α (′′) ∆δ (′′) ∆α (′′) ∆δ (′′) ∆α (′′) ∆δ (′′)
A 0. 0. 0. 0. 0. 0.
B 0.7719 0.1770 0.7726 0.1755 0.7718 0.1767
C -0.4538 0.7140 -0.4538 0.7129 -0.4538 0.7138
D 0.3913 1.0480 0.3921 1.0483 0.3913 1.0479
G 0.1826 0.6151 0.1787 0.5877 0.1819 0.5940
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Given these possible sources of errors and the results of the simulations,
we estimate the accuracy on the lens galaxy position to amount to some 20
milliarcsec.

4.2 WFI J2033-4723

4.2.1 Introduction

WFI J2033-4723, a quadruply–imaged quasar, was discovered in La Silla,
Chile, during an optical survey using the MPG/ESO 2.2 m telescope oper-
ated by the European Southern Observatory (ESO). This discovery is related
by Morgan et al. (2004). The source redshift is 1.66 while, according to
Eigenbrod et al. (2006), the galaxy has a redshift of 0.661. The magnitude
of the entire system is estimated at ∼ 17.9 in the g filter which passband
is 458 nm ≤ λ ≤ 528 nm. The maximum separation between two lensed
images amounts to 2.′′5. This gravitational mirage is surrounded by at least
six galaxies within a radius of 20 arcsec, which makes it a difficult system to
model.

4.2.2 HST imaging

Our set of images was acquired with camera 2 of NICMOS through the
F160W filter on the 14th of April 2004. The set is composed of four images
obtained in the MULTIACCUM mode: the first frame is a combination of
19 samples while the other three frames are a combination of 20 samples.
As a consequence, the first image has an exposure time of 639.9389 s while
the others have an exposure time of 703.9361 s. According to the version
6.3 of the Tiny Tim software (Krist & Hook, 2004), the mean pixel size of
these frames is 0.′′07568. As for the Cloverleaf, we use the images calibrated
by CALNICA7. A combination of these four images is shown on Fig. 4.8.
Let us notice that the lensing galaxy is already observable, in between the
four point sources. Moreover, another object is present to the North of the
system. It turns out to be a nearby galaxy according to Morgan et al. (2004).

The image reduction we apply is the same as for the Cloverleaf: it is
described in section 4.1.2. Let us just recall that it is divided into two parts:
the image cleaning and the calculation of the sigma frames which are of great
importance in our deconvolution algorithm.

7Let us recall that CALNICA is the HST image reduction pipeline.
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Figure 4.8: Combination of the four calibrated and reduced images of WFI
J2033-4723 obtained with the F160W filter of NIC-2. The colour scale goes
from 0% (black) to 2.8% (white) of the maximum intensity. North is to the
top and East to the left.

4.2.3 Deconvolution

Here again, as no extra star is available, we use the iterative method which
allows us to improve the Tiny Tim PSF step by step and to separate possible
significant extended structures from the point sources. As in the case of
H1413+117, we use a sampling step 2 times smaller than the original pixel
size and a Gaussian with a FWHM of 2 pixels for R(~x), i.e. the PSF of the
deconvolved image. These choices allow an improvement of the resolution of
the deconvolved frame comparing to the original images as well as a good
sampling of the resulting light distribution.

Convergence is reached after three iterations and the reduced χ2 amounts
to 3.59. The results are shown on Fig. 4.9. The mean residual map shown
on the right panel indicates that there is no systematic structure under the
lensed images. That means that the instrumental profile is well-adapted.
The irregular remnant structures are probably due to small variations of the
PSF in the field.

On Fig. 4.9, the resulting deconvolved frame was obtained with a larger
smoothing parameter than the one leading to the best reduced χ2: the aim
is simply to get a flatter and less noisy background. In doing so we highlight
the presence of a diffuse and faint background surrounding the four lensed
images (see middle panel). Several questions come straight to mind: at which
distance is this structure located? It could be a kind of halo associated to
the lens galaxy. But then why is it encircling the lensed images? In such a
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Figure 4.9: Results of the last simultaneous deconvolution for WFI J2033-
4723. North is to the top and East to the left. Left: deconvolved frame,
i.e. point sources plus smooth background; the point sources are labeled
as in Morgan et al. (2004) and the lensing galaxy G is encircled. Middle:
smooth background common to all images. Right: mean residual map of the
simultaneous deconvolution.

case it would not be related to them. It is thus very unlikely that we are
precisely in this configuration. Another possibility is that this structure is
located between us and the lensed system, along the line of sight. It could
be a dust cloud and the perspective could make it seemingly encircling the
four images. But again, we would be in special conditions. This structure
remains thus quite mysterious. A very deep and highly resolved spectrum
could allow the measurement of its redshift and would tell us where it is
located comparing to the lensing galaxy. Such data are not available yet.

Unlike the case of H1413+117, the lensing galaxy is already obvious on the
original frames of WFI J2033-4723. It is then worth trying to fit an analytical
model on it. The latter being a part of the background, it will be constrained
by the four frames of the set. After having tested both light profiles available
with MCS, i.e. the de Vaucouleurs and exponential models, we conclude
that a de Vaucouleurs profile is better adapted to model the main lensing
galaxy of WFI J2033-4723. The results are summarized in Table 4.5. The
columns show the following parameters: the PA8 in degrees, the ellipticity,
the effective semi-major and semi-minor axis. For each parameter, we list the
standard deviation of the mean extracted from the individual deconvolutions
of each frame. Let us insist on the fact that the listed value of the parameter
itself is not the mean of the individual values, but the result coming from

8Let us recall that PA stands for Position Angle and is the angle that folds back the
direction of the major axis over the direction of the North.
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the simultaneous deconvolution. The PA is highlighted on the middle panel
of Fig. 4.9.

Table 4.5: Lensing galaxy parameters for WFI J2033-4723 derived from the
fit of a de Vaucouleurs profile. The first column presents the position angle in
degrees. The usual sign convention is adopted: a positive angle corresponds
to the anticlockwise direction. The ellipticity is given in the second column.
The two last columns contain respectively the effective semi-major and semi-
minor axis of the ellipse. Each measurement is accompanied by its 1σ error
bars.

Position Angle (◦) Ellipticity a0 (′′) b0 (′′)
-152.2 ± 4.3 0.176 ± 0.026 0.665 ± 0.036 0.556 ± 0.025

4.2.4 Astrometry and photometry

The astrometric and photometric results extracted from the last iteration are
listed in Table 4.6. They are derived the same way as we did for the Clover-
leaf: we deconvolve each image individually except for the results concerning
the galaxy which are better constrained on the simultaneous deconvolution.
For each measure, the standard deviation of the mean obtained from the
individual deconvolutions is provided. Of course, these are internal error
bars. And as we have no image acquired in different conditionns, we cannot
compare the results and thus cannot obtain reliable estimate of the external
error bars.

We notice that the error bars of the magnitudes shown in the last column
of Table 4.6 are larger by a factor two than those obtained for the Cloverleaf
(see Table 4.1). There is no obvious explanation based on the deconvolution
process itself: the results are quite satisfying when we look on the χ2 and on
the mean residual map.

One aspect of WFI J2033-4723 comes then to mind: the presence of this
diffuse background surrounding the four lensed images. Let us compare it
to the source C (see on the left panel of Fig. 4.9) which is the less-magnified
image: their total flux are of the same order, the approximate magnitude
of the halo in the Vega system being of 17.7. The latter value is estimated
on the simultaneously deconvolved frame in subtracting the contribution of
the galaxy itself from the total flux of the background (halo plus galaxy).
Even if this method is quite coarse, it is enough for us to give the following
conclusion: the halo can be partly responsible for the loss of accuracy in our
photometry comparing to what we usually obtain with the iterative method.
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Table 4.6: Relative astrometry and photometry for the four components
of WFI J2033-4733 and its primary lens. The two coordinates are given
in arcsecond relative to component B along the two usual directions: the
right ascension and the declination. The photometry is given in apparent
magnitude in the Vega system. For each measurement, we present the 1σ
internal error bars.

F160W
ID ∆α (′′) ∆δ (′′) Magnitude
B 0. 0. 17.767 ± 0.019
A1 -2.1946 ± 0.0004 1.2602 ± 0.0003 17.162 ± 0.021
A2 -1.4810 ± 0.0004 1.3756 ± 0.0005 17.518 ± 0.021
C -2.1129 ± 0.0003 -0.2778 ± 0.0003 17.876 ± 0.020
G -1.4536 ± 0.0020 0.3086 ± 0.0008 18.591 ± 0.026

Indeed, as the PSF is improved step by step in subtracting an approximate
background, our process is very sensitive to any structure under the sources.
The worst situation that can occur to us is an image with a flat and nearly
constant background under each point source, which is exactly the case for
WFI J2033-4723.

The previous reflection can lead to another one, related to the algorithm
itself: the MCS version that we used when we treated WFI J2033-4723 did
not allow to impose non-varying source intensities from one frame to the
other9. In other words that means that the background in each frame is
the same except for a multiplicative factor and an additive term but the
intensities of the point sources are free to vary from one image to another (see
Eq. 2.44): the ratio between the intensity of the sources and the background
is not the same in each frame. And in certain cases, it seems to be more
advantageous, in term of χ2, to have a quite different ratio in the images.
That will, of course, degrade the accuracy of the photometry. This nasty
effect can be avoided with the new version of the algorithm in constraining
the point sources and the background to have the same relative intensity in
all images.

Let us compare our astrometric results with those obtained by Morgan
et al. (2004) in treating the very same images. They are listed in Table 4.7.
Our results are compatible with theirs within their error bars which are the
dominating ones. The highest difference is observed for the position of the
galaxy. This is not unexpected as a diffuse object is more sensitive to the

9The reason of this choice is simple: the algorithm was first used to obtain light curves
of varying gravitationally-lensed systems.
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image processing.

Table 4.7: Relative astrometry of WFI J2033-4723 obtained by Morgan et al.
(2004). The two coordinates are given in arcsecond relative to component B
along the two usual directions: the right ascension and the declination. The
1σ error bars are also given.

F160W
ID ∆α (′′) ∆δ (′′)
B 0. 0.
A1 -2.193 ± 0.03 1.258 ± 0.02
A2 -1.477 ± 0.03 1.368 ± 0.02
C -2.108 ± 0.03 -0.282 ± 0.03
G -1.412 ± 0.33 0.277 ± 0.20

4.3 WFI J2026-4536

4.3.1 Introduction

WFI J2026-4536 is another gravitationally-lensed system discovered in the
same survey as WFI J2033-4723. It has the same kind of configuration but
the maximum image separation amounts only to 1.′′4. The quasar is at a
redshift of 2.23 and the total brightness of the system reaches 16.5 in the g
filter. Apparently the environment is way less crowded than the one of WFI
J2033-4723.

4.3.2 HST imaging

The four images of WFI J2026-4536 were obtained with NIC-2 through the
F160W filter on the 21st of October 2003. They were taken in the MULTI-
ACCUM mode: the first frame is a combination of 19 samples and has an
exposure time of 639.9389 s while the three other frames are each a combi-
nation of 20 samples and have an exposure time of 703.9361 s. We use the
images calibrated by CALNICA10. According to the version 6.3 of the Tiny
Tim software (Krist & Hook, 2004), the mean pixel size of NIC-2 was of
0.′′07568 at the time of the observation. A combination of the four calibrated
and reduced images of WFI J2026-4536 is shown on Fig. 4.10. Our reduction
process is the same as for the Cloverleaf and is explained in section 4.1.2.

10Let us recall that CALNICA is the HST image reduction pipeline.
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Figure 4.10: Combination of the four calibrated and reduced images of WFI
J2026-4536 obtained with the F160W filter of NIC-2. The colour scale goes
from 0% (black) to 2.1% (white) of the maximum intensity. North is to the
top and East to the left.

4.3.3 Deconvolution

As no extra star is available in the field of WFI2026-4536, we use the iterative
method to improve the Tiny Tim PSF and to separate possible diffuse struc-
tures from the point sources. We use the same sampling step and final PSF
as for the two previous lensed systems: a sampling step 2 times smaller than
the original pixel size and a Gaussian with a FWHM of 2 pixels for R(~x),
the final resolution of the images. These choices lead to an improvement of
the resolution of the deconvolved frame comparing to the original images as
well as a good sampling of the final light distribution.

After having reached the final iteration and analyzing the results, we
noticed a problem in the astrometry and photometry: the individual results
coming from the fourth image were different from the others and in taking
them into account, the error bars were larger. We then suspected this image
to be the node of the problem: there might be some pixels affected by cosmic
rays or any other disease that we did not identify as such during the reduction
phase. Unfortunately we could not find any of them. Still, we decided to
remove the fourth image from our set of data. Indeed, this frame is much
noisier than the other ones, which is not normal as all the observations were
acquired in the very same conditions: there might have been an anomaly in
the acquisition process.

The last step was thus redone with the first three images. In total,
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Figure 4.11: Results of the last simultaneous deconvolution for WFI J2026-
4536. North is to the top and East to the left. Left: deconvolved frame,
i.e. point sources plus smooth background; the point sources are labeled
as in Morgan et al. (2004) and the lensing galaxy G is encircled. Middle:
smooth background common to all images. Right: mean residual map of the
simultaneous deconvolution.

four iterations were necessary to reach convergence and the final reduced
χ2 amounts to 4.73. The results are shown on Fig. 4.11. The mean residual
map shown on the right panel indicates that there is no systematic structure
under the point sources: the instrumental profile is well-adapted. The rem-
nant structures are probably due to small variations of the PSF in the field
of the CCD.

In this case, the primary lensing galaxy is already visible on the untreated
images. As for WFI J2033-4723, it is thus very interesting to make use of
an analytical model in the deconvolution algorithm to fit its light profile.
This model, as a part of the diffuse background, will be constrained using
the information available in the three frames. After having tested the expo-
nential profile and the de Vaucouleurs profile, we conclude that the latter is
better adapted to model this galaxy. The results of the best fit are shown
in Table 4.8. The columns show the following parameters: the PA in de-
grees, the ellipticity, the effective semi-major and semi-minor axes. For each
parameter, we calculate the standard deviation of the mean in deconvolving
each frame individually. However the listed value of the parameter is not a
mean value extracted from the individual deconvolutions, but the result of
the simultaneous deconvolution. The PA is highlighted on the middle panel
of Fig. 4.11.
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Table 4.8: Lensing galaxy parameters for WFI J2026-4536 derived from the
fit of a de Vaucouleurs profile. The first column presents the position angle
given in degrees. The usual sign convention is adopted: a positive angle
corresponds to the anticlockwise direction. The ellipticity is given in the
second column. The two last columns contain respectively the effective semi-
major and semi-minor axes of the ellipical galaxy. For each measurement,
we present the 1σ error bars.

Position Angle (◦) Ellipticity a0 (′′) b0 (′′)
68.5 ± 7.9 0.243 ± 0.042 0.583 ± 0.073 0.747 ± 0.050

4.3.4 Astrometry and photometry

The astrometric and photometric results of the last deconvolution are ex-
posed in Table 4.9 as well as the error bars. They are the standard deviations
of the mean and they were derived the same way as for the Cloverleaf and
WFI J2033-4723: in deconvolving individually each frame of the set. Here
again, they are internal: we have no image acquired with another instrument
configuration and thus we cannot compare the results to obtain an estimation
of the external error bars.

Let us compare our astrometric results with those listed in Table 4.10
(Morgan et al., 2004). They were also obtained with the NIC-2 F160W set
of images. Our position of the lensed images are very close to theirs and
are compatible within their error bars. As usual, the accuracy on the galaxy
position is not as good as the one on the position of the point sources. They
are not compatible within the 1σ error bars for the right ascension but they
are in agreement for the declination. A fainter and diffuse component is
always more sensitive to the image processing and to any inaccuracy in the
recovered PSF.
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Table 4.9: Relative astrometry and photometry for the four components of
WFI J2026-4536 and its lens galaxy. The two coordinates are given in arc-
second relative to component B along the two usual directions: the right
ascension and the declination. The photometry is given in apparent mag-
nitude in the Vega system. For each measurement, we present the 1σ error
bars.

F160W
ID ∆α (′′) ∆δ (′′) Magnitude
B 0. 0. 17.054 ± 0.007
A1 0.1622 ± 0.0003 -1.4279 ± 0.0003 15.586 ± 0.002
A2 0.4150 ± 0.0003 -1.2135 ± 0.0002 16.019 ± 0.006
C -0.5717 ± 0.0003 -1.0440 ± 0.0001 17.272 ± 0.005
G -0.0475 ± 0.0013 -0.7912 ± 0.0017 19.456 ± 0.046

Table 4.10: Relative astrometry of WFI J2026-4536 obtained by Morgan et al.
(2004). The two coordinates are given in arcsecond relative to component B
along the two usual directions: the right ascension and the declination. The
1σ error bars are given.

F160W
ID ∆α (′′) ∆δ (′′)
B 0. 0.
A1 0.1621 ± 0014 -1.4281 ± 0.0009
A2 0.4149 ± 0014 -1.2133 ± 0.0009
C -0.5722 ± 0015 -1.0436 ± 0.0004
G -0.0813 ± 0031 -0.7967 ± 0.0068





Chapter 5

Conclusions

????
We have elaborated a new image processing method, based on the MCS

deconvolution algorithm, which allows, at the same time, the determination
of the PSF of images and their deconvolution. This procedure is applicable
to images which contain at least two point sources so that the algorithm can
separate the contributions of background objects from those of the instru-
mental profile itself.

This technique is particularly well-suited to the analysis of multiply-
imaged quasars: it allows the detection of extended structures such as lensing
galaxies, arcs or rings. It provides accurate astrometry and photometry of
the multiple images and of the lens, which is very important for modeling
the system. This technique has been applied on HST NIC-2 images of three
gravitationally-lensed quasars: H1413+117 (the Cloverleaf), WFI2033-4723
and WFI2026-4536.

Let us summarize our results on the Cloverleaf. The internal error on the
source positions, taking into account the error coming from the deconvolution
only, is of the order of 0.4 milliarcsec. When comparing the astrometry
coming from two different sets of images, we find an external error of the
order of 1 milliarcsec. It probably finds its origin in an incomplete correction
of the geometric distortions. Moreover, we detect the lensing galaxy and
measure its position with an accuracy of ∼ 20 milliarcsec. We also discover
a partial Einstein ring, which should allow us to constrain the deflection
model and, through an inversion of the lens equation, to estimate the light
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distribution in the quasar host galaxy and narrow line region.
In the second lensed quasar that we investigate, i.e. WFI2033-4723, the

maximum internal error on the position of the point sources amounts to 0.5
milliarcsec. We also detect the main lensing galaxy and fit a de Vaucouleurs
profile on its surface brightness: that brings further constraints as the PA or
the ellipticity to be used when modeling the whole lensed system. We also
detect a faint and relatively flat diffuse background encircling the four im-
ages and the lens. That structure remains quite mysterious for the moment:
further investigations are necessary.

In our last case, WFI2026-4536, the internal error on the position of the
lensed images amounts to 0.3 milliarcsec at most. The main lensing galaxy,
already detected before image processing, is highlighted after a simultaneous
deconvolution of three images of the set, the fourth one being damaged. We
also fit a de Vaucouleurs profile on this lens, which, as already mentioned, is
very important to constrain the lens model.

For the three first gravitationally-lensed systems under investigation, the
application of our iterative method using the MCS algorithm is a success.
Since they were treated, some modifications have been made to the algo-
rithms and to the reduction process. They were tested on several objects,
mostly gravitationally-lensed quasars, and have lead to improvements on cer-
tain points of the procedure. However, no matter the version of the algorithm
used, it often demands carefulness and perseverance to obtain such results.
But it always requires a sharp intuition on the object which nature we want
to unveil.



Chapter 6

About the next step towards
H0: modeling strong lensing

×+ =
One of the most important applications of gravitational lensing is, as

already mentioned, the determination of the Hubble constant, H0. To be
able to do so, we need to have:

1. a measurement of the time delay between at least two lensed images
of the system. This non trivial task can be carried out on light curves
obtained by monitoring the object on a long-term period and with high
photometric accuracy;

2. a pretty accurate estimation of the lens mass distribution, which can
be obtained with results coming from an adequate treatment of high
resolution images.

Of course, this latter point is now within our reach as we developed an image
processing technique able to provide accurate astrometry and photometry of
images containing a non-negligible background plus point sources.

The first point is carried out by other members of the COSMOGRAIL
collaboration. Let us recall that COSMOGRAIL stands for COSmological
MOnitoring of GRAvItational Lenses. This collaboration, which started in
April 2004, brings astrophysicists from different countries together: Switzer-
land, Belgium, England and Uzbekistan. The COSMOGRAIL program is
the following: monitoring lensed quasars (for the moment approximately 30)
to obtain well-sampled light curves. The aim is to measure accurate time
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delays in order to derive H0. The data are obtained with four small tele-
scopes located in the northern and southern hemispheres: the Swiss Euler
telescope at La Silla in Chile, the Belgian-Swiss Mercator telescope in La
Palma (Canary Islands, Spain), the telescope of Maidanak Observatory in
Uzbekistan and the Himalayan Chandra telescope in India. For the moment,
the COSMOGRAIL members are mainly working on WFI J2033-4723, e.g.
Christel Vuissoz from the Swiss node is responsible for the calculation of the
time delay and Dominique Sluse, also from the Swiss node, is in charge of
the modeling part and is thus using our results.

But what else do we need to model a gravitationally-lensed system? In-
deed, positional constraints from high resolution images are not enough:
some other observational parameters are necessary. The distance to the
source and the distance to the lens are very important. Even if most of
the lensing galaxies are not faint, their redshift is far from being trivial to
derive. But a technique based on the MCS algorithm allows the spatial de-
convolution of spectra: it has proved to be very useful and has permitted to
obtain some lens redshifts from ground-based data. In other cases (e.g. a
larger image separation or a brighter lens), the lens spectra can be obtained
by traditional techniques such as simple slit spectroscopy.

Another difficulty can be pointed out: an isolated lens bending the light
from a background quasar is fairly rare. Indeed, galaxies are distributed in
groups or clusters. So, most of the time, when a lensed system is observed,
there are other objects relatively close to the line of sight that perturb the
potential and thus modify the image positions, the time delays and the in-
ferred value of H0. This phenomenon is taken into account through a shear
in the galaxy model. Unfortunately that causes a degeneracy: the observed
configuration of images can be reproduced by several mass models.

Two options are to consider when modeling strong lenses: whether to
do it with a parametric model as it is the case in the gravlens algorithm of
Keeton (2001b) and Keeton (2004), or with a free form lens model as in the
pixelens algorithm of Saha & Williams (1997) and Williams & Saha (1999).
The first solution relies on analytical models such as the singular isothermal
sphere (SIS). In this model, the mass components behave like particles in an
ideal isothermal gas and the deflection angle does not depend on the impact
parameter (Keeton, 2001a). In the second option the mass distribution is
not restricted to any shape: the model is created from lots of small inde-
pendent mass elements called pixels. Let us mention that quadruply-imaged
quasars bring more constraints than doubly-imaged quasars, which is not to
be neglected for the construction of a model.

Until now the determination of mass distributions has lead to large un-
certainties, which is problematic for the calculation of H0. But the problem
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can be taken the other way: if H0 is measured by a completely independent
technique, the time delay can bring non-negligible extra constraints to the
model and in particular, to the composition and structure of dark matter
halos (Schechter & Wambsganss, 2002).

This topic is worth further investigations: this is the subject of another
work that will be carried out by Eva Eulaers who is also a member of the
COSMOGRAIL collaboration.





Appendix A

Related paper

The paper related to the Cloverleaf and to the presentation of the new iter-
ative method based on the MCS algorithm is shown on the following pages.
It was accepted on the 28th of March 2007 and will be published soon in
Astronomy & Astrophysics.

Deconvolution of HST images of the
Cloverleaf gravitational lens

Detection of the lensing galaxy and a partial Einstein

ring

V. Chantry and P. Magain
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Glossary

Expression Definition

Annual parallax The annual parallax of a celestial body is the appar-
ent displacement of this body viewed from two sepa-
rated observation points whose base line is the radius
of the orbit of the Earth around the Sun. It can also
be viewed as the semi-major axis of the apparent el-
lipse covered by an object on the sky.

Astronomical unit Semi-major axis of Earth’s orbit around the Sun, i.e.
1 AU = 150 106 km.

CCD A charged-coupled device or CCD is an electronic
chip sensitive to light. It consists in an integrated cir-
cuit containing an array of coupled capacitors, each
one of them representing a pixel. Under the control
of an external circuit, the charges of a pixel can be
shifted to another one. This way, the charges can
be transferred row by row to a serial output register.
The picture is the display of the electronic distribu-
tion.

Hubble constant Very important concept in cosmology, the Hubble
constant is the ratio of the recession speed of a galaxy
(due to the expansion of the Universe) to its distance
from the observer. The reciprocal of the Hubble con-
stant coincides with the age of the Universe in the
case of a model in uniform expansion.
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Expression Definition

Least squares min. The least squares minimization technique is an ap-
proach used in statistics, curve fitting and signal pro-
cessing amongst others. For given observed data, the
least squares values of the unknown factors of a model
are the values minimizing the sum of squared devia-
tions, obtained in comparing the data to the model
predictions.

Parsec (pc) Distance of an object having an annual parallax
(see definition in the current section) of 1 arcsec, i.e.
1 pc = 3.086 1016 m = 3.26 LY.

Seeing Blurring and twinkling of observed objects seen
through a telescope. It is caused by a combination
of temperature differences and turbulences in the at-
mosphere crossed by the light to reach the detector.

Standard candle A standard candle is an astronomical object belong-
ing to a special class, such as supernovae or some
variable stars. The luminosity of such an object is
known due to some characteristics possessed by the
whole class. Then, if a distant object is identified as
a standard candle, comparing its observed brightness
with the luminosity will lead to its distance.

Synchrotron rad. A relativistic charged particle (most of the time an
electron) moving in a magnetic field is accelerated
along a field line. In spiraling around the latter, it
emits a synchrotron radiation.

Zodiacal light The zodiacal light is caused by the scattering of sun-
light by zodiacal dust.
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